
ON TAMURA’S IDENTITY yx = f(x, y) IN GROUPS

PRIMOŽ MORAVEC

Abstract. The purpose of this paper is to study the groups satisfying the
law yx = xa1 yb1 xa2 yb2 , where ai and bi are positive integers. Tamura posed
a problem as to when such a law implies that a group is abelian. We show
that, apart from obvious reasons why such a variety should contain non-abelian
groups, every elementary amenable or residually finite group satisfying such a
law has to be abelian.

1. Introduction

Tully showed in his unpublished work [8] that if a semigroup S satisfies an identity
yx = xmyn, where m and n are fixed positive integers, then S is commutative. This
led Tamura [7] to study semigroup identities of the form yx = f(x, y) where f(x, y)
is a fixed semigroup word of the form f(x, y) = xa1yb1xa2yb2 · · ·xasyas , where ai
and bi are positive integers and s ≥ 1. Tamura showed that the law yx = f(x, y)
implies commutativity in semigroups if and only it implies commutativity for groups.
This rises a natural question:
Question 1.1 ([7], Problem 1, item 4). Which laws yx = f(x, y) of the above form
imply commutativity in groups?

Apart from the above mentioned Tully’s result, it appears that only Stein [6]
recently dealt with this question and partially solved this for s = 2, and some other
special types of laws. Generalizations of Tamura’s identity in semigroups have been
considered by Putcha and Weissglass [3, 4], and Kowol [1].

The purpose of this paper is address Tamura’s problem for the variety Ta1,b1,a2,b2

of groups satisfying the law
(1.1.1) yx = xa1yb1xa2yb2 .

Our approach will be different from the one taken by Stein [6], who mainly considered
the cases when some of the parameters a1, b1, a2, b2 are equal to 1. We prove the
following result:
Theorem 1.2. Denote

d = gcd{a1 + a2 − 1, b1 + b2 − 1},
g = gcd{a1, b2, d},
c = a2b1 − 1,

f = gcd
{
d,

(
d

2

)
, c

}
.

Then the Tamura variety Ta1,b1,a2,b2 contains non-abelian groups in the following
cases:

(a) When there exists a positive integer e > 2 such that a1 ≡ 0 mod e, b1 ≡ 1
mod e, a2 ≡ 1 mod e and b2 ≡ 0 mod e.
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(b) When at least one of a2 and b1 is equal to 1, and g 6= 1.
(c) a2 6= 1, b1 6= 1, and f 6= 1.

When we exclude the above cases and assume g 6= 1 and f = 1, then
(d) Every elementary amenable or residually finite group in Ta1,b1,a2,b2 is abelian.
(e) If g ∈ {2, 3, 4, 6} and d/g is a prime, then every group in Ta1,b1,a2,b2 is

abelian.

The proof and more detailed information about the above cases are given in
Section 2. Close inspection of the proof reveals that Theorem 1.2 roughly says that
there are the following possible scenarios: either all groups in Ta1,b1,a2,b2 are abelian
for trivial reasons, or there are trivial reasons why this variety contains non-abelian
groups, or every reasonably nice group in Ta1,b1,a2,b2 is abelian.

2. The law yx = xa1yb1xa2yb2

We first introduce some notations. If e is a positive integer, then Be is the variety
of groups of exponent dividing e, that is, groups satisfying the law xe = 1. By CBe
we denote the variety determined by the law [xe, y] = 1. The variety of locally finite
groups satisfying the identity xe = 1 will be denoted by Re; this is a variety by the
positive solution of the Restricted Burnside Problem [9].

Let x1, x2, . . . , xn be elements of a group G. We write xx2
1 = x−1

2 x1x2. The
commutator of x1 and x2 is defined by [x1, x2] = x−1

1 x−1
2 x1x2, and we inductively

define [x1, x2, . . . , xn] = [[x1, x2, . . . , xn−1], xn] for n ≥ 3. For other unexplained
notions we refer to [5].

We begin by exhibiting a case when Ta1,b1,a2,b2 contains non-abelian groups for
trivial reasons.

Proposition 2.1. Suppose there exists a positive integer e > 2 such that a1 ≡ 0
mod e, b1 ≡ 1 mod e, a2 ≡ 1 mod e and b2 ≡ 0 mod e. Then the variety
Ta1,b1,a2,b2 contains Be. In particular, if e > 2, then Ta1,b1,a2,b2 contains non-abelian
groups.

The proof is straightforward and thus omitted. In the rest of this section we
assume that the parameters a1, b1, a2, b2 do not satisfy the condition stated in
Proposition 2.1 for any e > 2.

Lemma 2.2. Let G ∈ Ta1,b1,a2,b2 and x, y ∈ G.
(a) xa1+a2−1 = xb1+b2−1 = 1,
(b) [y, x] = [ya2 , xb1 ],
(c) [y, x, xb2 ] = [y, x, xa1 ] = 1,
(d) [y, x]a1 and [y, x]b2 belong to Z(〈x, y〉).

Proof. Let G satisfy the identity (1.1.1). If we plug in x = 1 or y = 1, we get
(a). Now (1.1.1) can be rewritten as yx = x1−a2yb1xa2y1−b1 which is equivalent
to [x, y−1] = [xa2 , y−b1 ]. From here we easily get (b). The equation [x, y−1] =
[xa2 , y−b1 ] can also be written as [y, x]y−1 = [yb1 , xa2 ]y−b1 , which, together with (b),
implies [y, x] = [y, x]y1−b1 = [y, x]yb2 . Similarly, [y, x] = [y, x]xa1 , hence we obtain
(c).

By (a), (b) and (c) we have that [y, x, x] = [[y, x]a2 , xb1 ] = [[y, x]a2 , x · x−b2 ] =
[[y, x]a2 , x−b2 ][[y, x]a2 , x]x−b2 = [[y, x]a2 , x]x−b2 = [([y, x]x−b2 )a2 , xx

−b2 ] = [[y, x]a2 , x].
This implies that [y, x]−1[y, x]a2 = [y, x]a1 commutes with x, and hence also with y.
Similarly we prove the remaining part of (d). �

Remark 2.3. It is straightforward to see that every group satisfying the laws
xa1+a2−1 = xb1+b2−1 = 1 and [y, x] = [ya2 , xb1 ] belongs to Ta1,b1,a2,b2 .
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Denote
d = gcd{a1 + a2 − 1, b1 + b2 − 1}.

Note that Ta1,b1,a2,b2 ⊆ Bd. Let G ∈ Ta1,b1,a2,b2 . If d = 1, then G is a trivial group
by Lemma 2.2 (a). If d = 2, then G has exponent dividing 2, and is thus abelian.
Thus we assume from here on that d > 2. We also denote

g = gcd{a1, b2, d}.
Then Lemma 2.2 gives
(2.3.1) [x, y]g ∈ Z(〈x, y〉)
and
(2.3.2) [x, y, xg] = [x, y, yg] = 1
for all x, y ∈ G, where G ∈ Ta1,b1,a2,b2 . Furthermore, we have the following:

Lemma 2.4. Every G ∈ Ta1,b1,a2,b2 satisfies the identity [yg, xd/g] = 1.

Proof. Write d = gδ. Then the Tamura identity implies yxδ = yb1xa2δyb2 . This
can be rewritten as yb2xδ = x(1−a1)δyb2 = xδyb2 . Therefore G satisfies the identity
[yb2 , xδ] = 1. Similarly, G also satisfies [ya1 , xδ] = 1. This gives the result. �

In some cases this can be strengthened as follows:

Proposition 2.5. If a2 = 1 or b1 = 1, then Ta1,b1,a2,b2 = Bd ∩ CBg.

Proof. We only prove the case when a2 = 1, the other one is similar. If G ∈ Ta1,b1,1,b2 ,
then Lemma 2.2 implies that G also satisfies the laws xd = xa1 = 1 and yx = yb1xyb2 .
The latter implies the law yb2x = xyb2 , thus G ∈ Bd ∩ CBg.

Conversely, let G ∈ Bd ∩ CBg. Then xa1yb1xyb2 = yb1+b2xa1+1 = yx, hence
G ∈ Ta1,b1,1,b2 . �

From now on suppose that a2 6= 1 and b1 6= 1. We separate two main cases:
Case 1. Assume g = 1. Then Lemma 2.2 (d) implies that every two-generator
subgroup of G is nilpotent of class ≤ 2 and thus, in particular, G is nilpotent of
class ≤ 3 [5, p. 373, 12.3.6]. Take x, y ∈ G, and denote

c = a2b1 − 1.
Then Lemma 2.2 (a) gives that G ∈ Bd, whereas (b) yields [y, x]c = 1. Conversely,
note that the laws [x, y, y] = [x, y]c = xd = 1 imply the Tamura law (1.1.1). For,

xa1yb1xa2yb2 = x · x−a2yb1xa2y · y−b1

= xy[y, x−a2yb1xa2 ][xa2 , y−b1 ]
= xy[x, y−1]a2b1

= xy[y, x]a2b1

= xy[y, x]
= yx.

Now, the expansion 1 = (xy)d = xdyd[y, x](
d
2), see [5, p. 141, 5.3.5], implies

[y, x](
d
2) = 1. Thus the order of [y, x] divides gcd{d,

(
d
2
)
, c} = gcd{d̃, c}, where

d̃ =
{

d : d odd
d/2 : d even .

It is straightforward to check that

Gc,d = pc〈g1, g2, g3 | gd1 = gd2 = g
gcd{d̃,c}
3 = 1, [g2, g1] = g3〉
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provides a consistent polycyclic presentation of the group Gc,d; the notation pc
means that other commutator relations between the generators are trivial. Note
that Gc,d satisfies the laws [x, y, y] = [x, y]c = xd = 1, therefore Gc,d ∈ Ta1,b1,a2,b2 .
We conclude that, in this case, all groups satisfying (1.1.1) are abelian if and only if
gcd{d̃, c} = 1.
Case 2. From here on we assume that
(2.5.1) g 6= 1.

If gcd{d̃, c} 6= 1, then the above argument shows that there exist groups in Ta1,b1,a2,b2

which are nilpotent of class precisely 2, hence non-abelian. Thus we may additionally
assume that
(2.5.2) gcd{d̃, c} = 1.
In this case, every group in Ta1,b1,a2,b2 that is nilpotent of class ≤ 2 is actually
abelian. It is easy to see that this implies that every residually nilpotent group in
Ta1,b1,a2,b2 is abelian.

Proposition 2.6. Suppose (2.5.1) and (2.5.2) hold. Then every finite group in
Ta1,b1,a2,b2 is abelian.

Proof. Let G be a counterexample of smallest possible order. Then all proper
sections of G are abelian; in particular, every proper subgroup of G is abelian.
By the above, G is not nilpotent and thus Z(G) is trivial. It now follows from a
result of Miller and Moreno [2] that G = 〈t〉 n Q, where t is an element of order
pn, and Q = G′ = 〈x1, x2, . . . , xm〉 is an elementary abelian q-group of order qm;
here p and q are different primes. The action of t on Q can be chosen in the
following way: xti = xi+1 for i = 1, 2, . . . ,m1, and xtm = x−c0

1 x−c1
2 · · ·x−cm−1

m , where
p(u) = c0 + c1u+ . . .+ cm−1u

m−1 + um is an irreducible divisor of (up − 1)/(u− 1)
in Fq[u]. We have that expG = pnq. This implies that pnq divides d. As G is not
nilpotent, we conclude that q divides gcd{a1, b2}. Therefore we may write a1 = qα1,
b1 = qβ1 + 1, a2 = qα2 + 1, b2 = qβ2 for some positive integers α1, β1, α2, β2. We
get

txi = xqα1
i tqβ1+1xqα2+1

i tqβ2 = t−qβ2 · txi · tqβ2 ,

therefore tqβ2 ∈ Z(G) = 1. This shows that pn divides β2 and, as pn divides β1 +β2,
it follows that pn divides β1 as well. Similarly, both α1 and α2 are divisible by pn.
This shows that a1 ≡ 0 mod pnq, b1 ≡ 1 mod pnq, a2 ≡ 1 mod pnq and b2 ≡ 0
mod pnq. As pnq > 2, this contradicts the assumption made at the beginning of
this section. �

Corollary 2.7. Suppose (2.5.1) and (2.5.2) hold. Then every residually finite or
locally finite group in Ta1,b1,a2,b2 is abelian.

In particular, the above corollary shows that if (2.5.1) and (2.5.2) hold, and if
X is any class of groups with the property that X ∩ Bd ⊆ Rd, then every group in
Ta1,b1,a2,b2 ∩ X is abelian. Thus, if d ∈ {2, 3, 4, 6}, then every group in Ta1,b1,a2,b2 is
abelian, see [9]. An example of such a variety is T2,3,3,4.

We also have that, under the above conditions, every solvable group in Ta1,b1,a2,b2

is abelian. From here it is easy to see that the same holds for the elementary
amenable groups.

Proposition 2.8. Let G ∈ Ta1,b1,a2,b2 and suppose that (2.5.1) and (2.5.2) hold.
Assume that g ∈ {2, 3, 4, 6} and that d/g is a prime. Then G is abelian.

Proof. Without loss of generality we may assume that G is a two-generator group.
Denote δ = d/g, and let H = G/Gδ. We claim that H is nilpotent of class ≤ 2. We
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may assume that δ > 2. For a non-negative integer k, define k̄ to be k reduced mod δ.
ThenH ∈ T (ā1, b̄1, ā2, b̄2), and ā1+ā2−1, b̄1+b̄2−1 ∈ {0, δ}. If one of these values is
equal to δ, and if one of ā1, b̄2 is non-zero, then gcd{ā1 +ā2−1, b̄1 + b̄2−1, ā1, b̄2} = 1,
and thus H is nilpotent of class ≤ 2 by Case 1. The remaining case, ā1 = b̄2 = 0,
ā2 = b̄1 = 1 shows that G ∈ Tα1δ,β1δ+1,α2δ+1,β2δ, but this case was excluded from
the consideration. This proves our statement, that is, γ3(G) ≤ Gδ.

By [9], G/Gg is solvable, thus there exists a positive integer i such that G(i) ≤ Gg.
We may assume that i ≥ 2. Then G(i+1) = [G(i), G(i)] ≤ [Gg, Gδ] = 1. Thus G is
solvable and therefore abelian. �
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