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1. Introduction

Let M and N be groups acting on each other on the left. The action of M on N
is written mn, and the action of N on M is written nm, where m ∈ M , n ∈ N .
The groups M and N are assumed to act upon themselves by conjugation
yx = yxy−1. These actions are said to be compatible if

mnm′ = m(n(m−1
m′)),

nmn′ = n(m(n−1
n′)),

for m,m′ ∈ M and n, n′ ∈ N . The non-abelian tensor product M ⊗ N is the
group generated by the symbols m⊗ n with defining relations

mm′ ⊗ n = (mm′ ⊗ mn)(m⊗ n),

m⊗ nn′ = (m⊗ n)(nm⊗ nn′),

where m,m′ ∈ M and n, n′ ∈ N . When M = N and all actions are conjuga-
tions, the group M ⊗ M is called the non-abelian tensor square of M . Note
also that whenever the groups M and N act trivially on each other, then their
tensor product M ⊗N is isomorphic to the usual tensor product Mab⊗Nab of
the abelianisations. The concept of the non-abelian tensor product of groups
was introduced by Brown and Loday in [3], following the ideas of Dennis [5].
This construction has its origins in algebraic K-theory as well as in homotopy
theory, and it has become interesting from a purely group-theoretical point of
view since the paper of Brown, Johnson and Robertson [4].

Non-abelian tensor products of groups subject to various finiteness conditions
have been studied by several authors. Ellis [6] proved that if M and N are
finite, then M⊗N is also finite. Nakaoka [9] showed that if the group [M,N ] =
〈m nm−1 : m ∈ M,n ∈ N〉 is solvable, then so is M ⊗N . In [2], Blyth, Morse
and Redden proved that tensor squares of polycyclic groups are also polycyclic.
The purpose of this note is to extend this result to arbitrary non-abelian tensor
products of groups. Our main result goes as follows.

Theorem. Let M and N be polycyclic groups acting on each other in a com-
patible way. Then the group M ⊗N is also polycyclic.
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2 PRIMOŽ MORAVEC

This theorem is proved in Section 2. In Section 3 we obtain a generating set
for M ⊗ N in the case when M and N are normal polycyclic subgroups of a
common overgroup, in terms of polycyclic generating sequences of M and N .

2. Proof of the main theorem

Let G and H be groups. A crossed module is a group homomorphism µ : G → H
together with an action of H on G satisfying µ(hg) = hµ(g)h−1 and µ(g)g′ =
gg′g−1 for all g, g′ ∈ G and h ∈ H. An immediate consequence of the above
definition is that if µ : G → H is a crossed module, then im µ is a normal
subgroup of H and kerµ is central in G.

Now we proceed to the proof of Theorem. Let M and N be polycyclic groups
acting compatibly on each other. Let G be the Peiffer product [10] of M and N .
To be more precise, let G = M ∗N/IJ , where I an J are the normal closures in
M ∗N of 〈nmnm−1n−1 : m ∈ M,n ∈ N〉 and 〈mnmn−1m−1 : m ∈ M,n ∈ N〉,
respectively. Note that G is an image of the semidirect product M o N , hence
G is polycyclic. Let µ : M → G and ν : N → G be the natural maps and
denote M̄ = µ(M) and N̄ = ν(N). Then M̄ and N̄ are normal subgroups of G
and G = M̄N̄ . As µ : M → G and ν : N → G are crossed modules, it follows
that kerµ is central in M and ker ν is central in N . A similar argument as in
the proof of [4, Proposition 9] shows that we have an exact sequence

(M ⊗ ker ν)× (ker µ⊗N) ι−−→ M ⊗N −→ M̄ ⊗ N̄ −→ 1,

where ι is induced by (m ⊗ n′,m′ ⊗ n) 7→ (m ⊗ n′)(m′ ⊗ n). Furthermore,
it can be seen that im ι is a central subgroup of M ⊗ N , and that ker µ and
ker ν act trivially on N and M , respectively. We thus have [6] that M ⊗
ker ν ∼= I(M) ⊗ZM ker ν and kerµ ⊗ N ∼= ker µ ⊗ZN I(N), where I(M) and
I(N) are the augmentation ideals in ZM and ZN , respectively. Consider the
homomorphism κ : I(M)⊗ZM ker ν → ker ν induced by (m− 1)⊗ a 7→ maa−1,
where m ∈ M , a ∈ ker ν. Note that kerκ ∼= H1(M, ker ν) [8], hence ker κ
is finitely generated by a result of Baumslag, Cannonito and Miller [1]. We
thus have that the group I(M) ⊗ZM ker ν is finitely generated, and the same
conclusion holds true for ker µ ⊗ZN I(N). It follows from here that the group
(M ⊗ ker ν) × (ker µ ⊗ N) is finitely generated, whence im ι is also finitely
generated. As M̄ ⊗ N̄ ∼= (M ⊗ N)/ im ι, it suffices to show that M̄ ⊗ N̄ is
polycyclic. Thus from now on we may assume that M and N are normal
subgroups of G and G = MN . Define

M ∧N = (M ⊗N)/D,

where D = 〈x ⊗ x : x ∈ M ∩ N〉, and let K be the kernel of the commutator
map M ∧ N → [M,N ]. In order to finish the proof of Theorem it suffices to
show that K and D are finitely generated. By [3, Theorem 4.5] we have an
exact sequence

−→ H3(G/M)⊕H3(G/N) −→ K −→ H2(G) −→ .

Since G, G/M and G/N are polycyclic, H2(G), H3(G/M) and H3(G/N) are
finitely generated by [1]. From here we conclude that K is polycyclic. As for
the group D, consider the map φ : (M ∩N) × (M ∩N) → M ⊗N defined by
φ(g, h) = (g⊗h)(h⊗ g). It is straightforward to verify that φ is a bilinear map.



NON-ABELIAN TENSOR PRODUCTS 3

Thus, if (M ∩ N)/[M,N ] = 〈x1[M,N ], . . . , xr[M,N ]〉, then D is generated by
the set {(xi ⊗ xj)(xj ⊗ xi), xi ⊗ xi : i, j = 1, . . . , r}. This conludes the proof.

3. Generating sets

Let M and N be polycyclic groups acting compatibly on each other. For com-
putational reasons it would be convenient to obtain a generating set for M ⊗N
in terms of polycyclic generating sequences of M and N . For the non-abelian
tensor squares of polycyclic groups this has been done in [2]. Here we use a
similar approach, following Ellis and Leonard [7]. Let J denote the normal
subgroup of M ∗ N normally generated by the elements x[m,n]x−1[n̄, m̄] for
m ∈ M , n ∈ N , x ∈ M ∪N , where m̄ = xmx−1 and n̄ = xnx−1. Then there is
an isomorphism [7]

((M ⊗N) o N) o M ∼= (M ∗N)/J.

This isomorphism restricts to an isomorphism M ⊗N ∼= [M̄, N̄ ], where M̄ and
N̄ are the normal closures in (M ∗ N)/J of M and N . Thus the algorithm
is the following. First note that M̄ and N̄ are polycyclic, since they can be
embedded into the group ((M ⊗N) o N) o M which is polycyclic by our main
theorem. Thus one can obtain polycyclic generating sequences m̄1, . . . , m̄k and
n̄1, . . . , n̄l of M̄ and N̄ , respectively. By [2, Lemma 22], the group [M̄, N̄ ],
which is isomorphic to M ⊗N , can be generated by the set

{[m̄εi
i , n̄

δj

j ] : 1 ≤ i ≤ k, 1 ≤ j ≤ l}
where

εi =
{

1 : |m̄i| < ∞
±1 : |m̄i| = ∞ and δj =

{
1 : |n̄j | < ∞
±1 : |n̄j | = ∞ .
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