THE NON-ABELIAN TENSOR PRODUCT OF POLYCYCLIC
GROUPS IS POLYCYCLIC

PRIMOZ MORAVEC

1. INTRODUCTION

Let M and N be groups acting on each other on the left. The action of M on N
is written ™n, and the action of N on M is written "m, where m € M, n € N.
The groups M and N are assumed to act upon themselves by conjugation
Yr = yay~!. These actions are said to be compatible if

mn/ — n(m(n_ln/))7

for m,m’ € M and n,n’ € N. The non-abelian tensor product M ® N is the
group generated by the symbols m ® n with defining relations

mm' @n = ("m' @ "™n)(m @ n),

m@nn = (men)("me"n),

where m,m’ € M and n,n’ € N. When M = N and all actions are conjuga-
tions, the group M ® M is called the non-abelian tensor square of M. Note
also that whenever the groups M and N act trivially on each other, then their
tensor product M @ N is isomorphic to the usual tensor product M?2P @ N2P of
the abelianisations. The concept of the non-abelian tensor product of groups
was introduced by Brown and Loday in [3], following the ideas of Dennis [5].
This construction has its origins in algebraic K-theory as well as in homotopy
theory, and it has become interesting from a purely group-theoretical point of
view since the paper of Brown, Johnson and Robertson [4].

Non-abelian tensor products of groups subject to various finiteness conditions
have been studied by several authors. Ellis [6] proved that if M and N are
finite, then M ® N is also finite. Nakaoka [9] showed that if the group [M, N| =
(m™m~!:m € M,n € N) is solvable, then so is M ® N. In [2], Blyth, Morse
and Redden proved that tensor squares of polycyclic groups are also polycyclic.
The purpose of this note is to extend this result to arbitrary non-abelian tensor
products of groups. Our main result goes as follows.

Theorem. Let M and N be polycyclic groups acting on each other in a com-
patible way. Then the group M ® N is also polycyclic.
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This theorem is proved in Section 2. In Section 3 we obtain a generating set
for M ® N in the case when M and N are normal polycyclic subgroups of a
common overgroup, in terms of polycyclic generating sequences of M and N.

2. PROOF OF THE MAIN THEOREM

Let G and H be groups. A crossed module is a group homomorphism p : G — H
together with an action of H on G satisfying u("g) = hu(g)h~! and #9) g/ =
gg'g ! for all g,¢’ € G and h € H. An immediate consequence of the above
definition is that if 4 : G — H is a crossed module, then im y is a normal
subgroup of H and ker i is central in G.

Now we proceed to the proof of Theorem. Let M and N be polycyclic groups
acting compatibly on each other. Let G be the Peiffer product [10] of M and N.
To be more precise, let G = M « N/I.J, where I an J are the normal closures in
M N of "mnm~n"t:m € M,n € N) and ("nmn~tm=1 :m e M,n € N),
respectively. Note that G is an image of the semidirect product M x N, hence
G is polycyclic. Let p: M — G and v : N — G be the natural maps and
denote M = (M) and N = v(N). Then M and N are normal subgroups of G
and G = MN. As pp: M — G and v : N — G are crossed modules, it follows
that ker p is central in M and ker v is central in N. A similar argument as in
the proof of [4, Proposition 9] shows that we have an exact sequence

(M @kerv) x (kerp@N) — M@N — M@ N — 1,

where ¢ is induced by (m ® n/,m' ® n) — (m ® n’)(m’ @ n). Furthermore,
it can be seen that im: is a central subgroup of M ® N, and that ker ; and
kerv act trivially on N and M, respectively. We thus have [6] that M ®
kerv = I(M) ®zn kerv and kerp @ N = ker p ®zn [(N), where I(M) and
I(N) are the augmentation ideals in ZM and ZN, respectively. Consider the
homomorphism # : I(M) ®zys ker v — ker v induced by (m — 1) ® a — ™aa™?,
where m € M, a € kerv. Note that kerx = H;(M, kerv) [8], hence kerk
is finitely generated by a result of Baumslag, Cannonito and Miller [1]. We
thus have that the group I(M) ®zys ker v is finitely generated, and the same
conclusion holds true for ker y ®@zn I(N). It follows from here that the group
(M @ kerv) x (kerpp @ N) is finitely generated, whence im¢ is also finitely
generated. As M ® N = (M ® N)/im, it suffices to show that M ® N is
polycyclic. Thus from now on we may assume that M and N are normal
subgroups of G and G = M N. Define

MAN = (M®N)/D,

where D = (x ® x : © € M N N), and let K be the kernel of the commutator
map M AN — [M,N]. In order to finish the proof of Theorem it suffices to
show that K and D are finitely generated. By [3, Theorem 4.5] we have an
exact sequence

— H3(G/M) @ H3(G/N) — K — Ho(G) — .

Since G, G/M and G/N are polycyclic, Ha(G), H3(G/M) and H3(G/N) are
finitely generated by [1]. From here we conclude that K is polycyclic. As for
the group D, consider the map ¢ : (M N N) x (M NN) — M ® N defined by
#(g,h) = (g®@h)(h®g). Tt is straightforward to verify that ¢ is a bilinear map.
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Thus, if (M N N)/[M,N] = (xi[M,N],...,z.[M,N]), then D is generated by
the set {(z; ® zj)(z; ® x;),x; ®x; : 4,5 = 1,...,r}. This conludes the proof.

3. GENERATING SETS

Let M and N be polycyclic groups acting compatibly on each other. For com-
putational reasons it would be convenient to obtain a generating set for M @ N
in terms of polycyclic generating sequences of M and N. For the non-abelian
tensor squares of polycyclic groups this has been done in [2]. Here we use a
similar approach, following Ellis and Leonard [7]. Let J denote the normal
subgroup of M x N normally generated by the elements x[m,n]x~![n,m] for
meM,neN,ze MUN, where m = zma~" and 7 = znz~'. Then there is
an isomorphism [7]

(M ®N) x N)x M= (Mx*N)/J.

This isomorphism restricts to an isomorphism M @ N 2 [M, N], where M and
N are the normal closures in (M * N)/J of M and N. Thus the algorithm
is the following. First note that M and N are polycyclic, since they can be
embedded into the group ((M ® N) x N) x M which is polycyclic by our main
theorem. Thus one can obtain polycyclic generating sequences my, . .., my and
f1,...,n; of M and N, respectively. By [2, Lemma 22|, the group [M, N],
which is isomorphic to M ® N, can be generated by the set
{mg Y] 1<i<k1<j<l}
where

. 1 : |77_"Lz|<OO . 1 : |77Lj|<OO
62_{:tl DM =00 and 57_{ : gl =00
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