THE NON-ABELIAN TENSOR PRODUCT OF POLYCYCLIC GROUPS IS POLYCYCLIC

PRIMOŽ MORAVEC

1. INTRODUCTION

Let M and N be groups acting on each other on the left. The action of M on N is written ${}^{m}n$, and the action of N on M is written ${}^{n}m$, where $m \in M$, $n \in N$. The groups M and N are assumed to act upon themselves by conjugation ${}^{y}x = yxy^{-1}$. These actions are said to be *compatible* if

$${}^{m}{}^{m}m' = {}^{m}({}^{n}({}^{m^{-1}}m')),$$

 ${}^{n}{}^{m}n' = {}^{n}({}^{m}({}^{n^{-1}}n')),$

for $m, m' \in M$ and $n, n' \in N$. The non-abelian tensor product $M \otimes N$ is the group generated by the symbols $m \otimes n$ with defining relations

$$mm' \otimes n = (^mm' \otimes ^mn)(m \otimes n),$$

$$m \otimes nn' = (m \otimes n)(^nm \otimes ^nn'),$$

where $m, m' \in M$ and $n, n' \in N$. When M = N and all actions are conjugations, the group $M \otimes M$ is called the *non-abelian tensor square* of M. Note also that whenever the groups M and N act trivially on each other, then their tensor product $M \otimes N$ is isomorphic to the usual tensor product $M^{ab} \otimes N^{ab}$ of the abelianisations. The concept of the non-abelian tensor product of groups was introduced by Brown and Loday in [3], following the ideas of Dennis [5]. This construction has its origins in algebraic K-theory as well as in homotopy theory, and it has become interesting from a purely group-theoretical point of view since the paper of Brown, Johnson and Robertson [4].

Non-abelian tensor products of groups subject to various finiteness conditions have been studied by several authors. Ellis [6] proved that if M and N are finite, then $M \otimes N$ is also finite. Nakaoka [9] showed that if the group $[M, N] = \langle m^n m^{-1} : m \in M, n \in N \rangle$ is solvable, then so is $M \otimes N$. In [2], Blyth, Morse and Redden proved that tensor squares of polycyclic groups are also polycyclic. The purpose of this note is to extend this result to arbitrary non-abelian tensor products of groups. Our main result goes as follows.

Theorem. Let M and N be polycyclic groups acting on each other in a compatible way. Then the group $M \otimes N$ is also polycyclic.

Date: 28th December 2006.

This work was supported by the Ministry of Higher Education, Science and Technology of Slovenia. The author would like to thank the referee for providing helpful comments.

PRIMOŽ MORAVEC

This theorem is proved in Section 2. In Section 3 we obtain a generating set for $M \otimes N$ in the case when M and N are normal polycyclic subgroups of a common overgroup, in terms of polycyclic generating sequences of M and N.

2. Proof of the main theorem

Let G and H be groups. A crossed module is a group homomorphism $\mu : G \to H$ together with an action of H on G satisfying $\mu({}^{h}g) = h\mu(g)h^{-1}$ and ${}^{\mu(g)}g' = gg'g^{-1}$ for all $g, g' \in G$ and $h \in H$. An immediate consequence of the above definition is that if $\mu : G \to H$ is a crossed module, then im μ is a normal subgroup of H and ker μ is central in G.

Now we proceed to the proof of Theorem. Let M and N be polycyclic groups acting compatibly on each other. Let G be the Peiffer product [10] of M and N. To be more precise, let G = M * N/IJ, where I an J are the normal closures in M * N of $\langle {}^{n}mnm^{-1}n^{-1}: m \in M, n \in N \rangle$ and $\langle {}^{m}nmn^{-1}m^{-1}: m \in M, n \in N \rangle$, respectively. Note that G is an image of the semidirect product $M \rtimes N$, hence G is polycyclic. Let $\mu : M \to G$ and $\nu : N \to G$ be the natural maps and denote $\overline{M} = \mu(M)$ and $\overline{N} = \nu(N)$. Then \overline{M} and \overline{N} are normal subgroups of Gand $G = \overline{MN}$. As $\mu : M \to G$ and $\nu : N \to G$ are crossed modules, it follows that ker μ is central in M and ker ν is central in N. A similar argument as in the proof of [4, Proposition 9] shows that we have an exact sequence

$$(M \otimes \ker \nu) \times (\ker \mu \otimes N) \xrightarrow{\iota} M \otimes N \longrightarrow \overline{M} \otimes \overline{N} \longrightarrow 1,$$

where ι is induced by $(m \otimes n', m' \otimes n) \mapsto (m \otimes n')(m' \otimes n)$. Furthermore, it can be seen that im ι is a central subgroup of $M \otimes N$, and that ker μ and ker ν act trivially on N and M, respectively. We thus have [6] that $M \otimes$ ker $\nu \cong I(M) \otimes_{\mathbb{Z}M} \ker \nu$ and $\ker \mu \otimes N \cong \ker \mu \otimes_{\mathbb{Z}N} I(N)$, where I(M) and I(N) are the augmentation ideals in $\mathbb{Z}M$ and $\mathbb{Z}N$, respectively. Consider the homomorphism $\kappa : I(M) \otimes_{\mathbb{Z}M} \ker \nu \to \ker \nu$ induced by $(m-1) \otimes a \mapsto {}^m aa^{-1}$, where $m \in M$, $a \in \ker \nu$. Note that ker $\kappa \cong H_1(M, \ker \nu)$ [8], hence ker κ is finitely generated by a result of Baumslag, Cannonito and Miller [1]. We thus have that the group $I(M) \otimes_{\mathbb{Z}M} \ker \nu$ is finitely generated, and the same conclusion holds true for ker $\mu \otimes_{\mathbb{Z}N} I(N)$. It follows from here that the group $(M \otimes \ker \nu) \times (\ker \mu \otimes N)$ is finitely generated, whence im ι is also finitely generated. As $\overline{M} \otimes \overline{N} \cong (M \otimes N)/\operatorname{im} \iota$, it suffices to show that $\overline{M} \otimes \overline{N}$ is polycyclic. Thus from now on we may assume that M and N are normal subgroups of G and G = MN. Define

$$M \wedge N = (M \otimes N)/D,$$

where $D = \langle x \otimes x : x \in M \cap N \rangle$, and let K be the kernel of the commutator map $M \wedge N \to [M, N]$. In order to finish the proof of Theorem it suffices to show that K and D are finitely generated. By [3, Theorem 4.5] we have an exact sequence

$$\longrightarrow H_3(G/M) \oplus H_3(G/N) \longrightarrow K \longrightarrow H_2(G) \longrightarrow .$$

Since G, G/M and G/N are polycyclic, $H_2(G)$, $H_3(G/M)$ and $H_3(G/N)$ are finitely generated by [1]. From here we conclude that K is polycyclic. As for the group D, consider the map $\phi : (M \cap N) \times (M \cap N) \to M \otimes N$ defined by $\phi(g,h) = (g \otimes h)(h \otimes g)$. It is straightforward to verify that ϕ is a bilinear map. Thus, if $(M \cap N)/[M, N] = \langle x_1[M, N], \dots, x_r[M, N] \rangle$, then D is generated by the set $\{(x_i \otimes x_j)(x_j \otimes x_i), x_i \otimes x_i : i, j = 1, \dots, r\}$. This concludes the proof.

3. Generating sets

Let M and N be polycyclic groups acting compatibly on each other. For computational reasons it would be convenient to obtain a generating set for $M \otimes N$ in terms of polycyclic generating sequences of M and N. For the non-abelian tensor squares of polycyclic groups this has been done in [2]. Here we use a similar approach, following Ellis and Leonard [7]. Let J denote the normal subgroup of M * N normally generated by the elements $x[m, n]x^{-1}[\bar{n}, \bar{m}]$ for $m \in M, n \in N, x \in M \cup N$, where $\bar{m} = xmx^{-1}$ and $\bar{n} = xnx^{-1}$. Then there is an isomorphism [7]

$$((M \otimes N) \rtimes N) \rtimes M \cong (M * N)/J.$$

This isomorphism restricts to an isomorphism $M \otimes N \cong [\overline{M}, \overline{N}]$, where \overline{M} and \overline{N} are the normal closures in (M * N)/J of M and N. Thus the algorithm is the following. First note that \overline{M} and \overline{N} are polycyclic, since they can be embedded into the group $((M \otimes N) \rtimes N) \rtimes M$ which is polycyclic by our main theorem. Thus one can obtain polycyclic generating sequences $\overline{m}_1, \ldots, \overline{m}_k$ and $\overline{n}_1, \ldots, \overline{n}_l$ of \overline{M} and \overline{N} , respectively. By [2, Lemma 22], the group $[\overline{M}, \overline{N}]$, which is isomorphic to $M \otimes N$, can be generated by the set

$$\{[\bar{m}_i^{\epsilon_i}, \bar{n}_j^{\delta_j}] : 1 \le i \le k, 1 \le j \le l\}$$

where

$$\epsilon_i = \begin{cases} 1 & : & |\bar{m}_i| < \infty \\ \pm 1 & : & |\bar{m}_i| = \infty \end{cases} \quad \text{and} \quad \delta_j = \begin{cases} 1 & : & |\bar{n}_j| < \infty \\ \pm 1 & : & |\bar{n}_j| = \infty \end{cases}$$

REFERENCES

- G. Baumslag, F.B. Cannonito, and C.F. Miller III, Computable algebra and group embeddings, J. Algebra 69 (1981), no. 1, 186–212.
- [2] R. D. Blyth, R. F. Morse, and J. L. Redden, Computing the nonabelian tensor square of polycyclic groups, preprint.
- [3] R. Brown and J.-L. Loday, Van Kampen theorems for diagrams of spaces, Topology 26 (1987), no. 3, 311–335.
- [4] R. Brown, D. L. Johnson, and E. F. Robertson, Some computations of non-abelian tensor products of groups, J. Algebra 111 (1987), no. 1, 177–202.
- [5] R. K. Dennis, In search of new "homology" functors having a close relationship to Ktheory, Preprint, Cornell University, Ithaca, NY, 1976.
- [6] G. Ellis, The non-abelian tensor products of finite groups is finite, J. Algebra 111 (1987), no. 1, 203–205.
- [7] G. Ellis and F. Leonard, Computing Schur multipliers and tensor products of finite groups, Proc. Royal Irish Academy (95A) 2 (1995), 137-147.
- [8] P. J. Hilton and U. Stammbach, A course in homological algebra, Springer-Verlag, New York, 1997.
- [9] I. Nakaoka, Non-abelian tensor products of solvable groups, J. Group Theory 3 (2000), 157–167.
- [10] J. H. C. Whitehead, A certain exact sequence, Ann. of Math. (2) 52 (1950), 51–110.

PRIMOŽ MORAVEC, ODDELEK ZA MATEMATIKO, INŠTITUT ZA MATEMATIKO, FIZIKO IN MEHANIKO, JADRANSKA 19, 1000 LJUBLJANA, SLOVENIA