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Abstract

Hypergeometric sequences are such that the quotient of

two successive terms is a fixed rational function of the

index. We give a generalization of M. Petkov6ek’s algo-

rithm to find all hypergeometric sequence solutions of

linear recurrences, and we describe a program to find all

hypergeometric functions that solve a linear differential

equation.

Introduction

Most of the effort on finding closed-form solutions to

linear differential equations has been focused on finding

liouvillian solutions, i.e., functions built over rational

functions by application of exp, log, J, algebraic closure,

and field operations (see [9] for a bibliography on this).

While Iiouvillian functions correspond more or less

to the intuitive notion of ‘(elementary” functions and

their integrals, it is natural to try to extend the existing

algorithms to special functions. One reason for doing

this is that special functions do arise in practice; another

reason is that finding any solution permits to reduce the

order of the equation under study. This may bring the

equation within reach of existing algorithms since their

complexity increases dramatically with the order of the

equation. (Factorisation of linear differential operators

is currently hopeless on equations of large order, see [4].)

The special functions we consider in this article are

generalized hypergeometric functions. A hypergeometric
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series is a power series in z with p + q parameters:

where (a)k = a(a + 1) . . (a + k – 1) = r(a + k)/r(a)

is Pochhammer’s symbol. It is easy to see that a se-

ries F = ~k>o fk is hypergeometric if and only if

fo = 1 and the ~atio fk+l/ fk is a rational function of k.
The ai’s (resp. bi ‘s) are the negatives of the zeros (resp.

poles) of this function, counted with their multiplicities,

and z is the leading coefficient. If —1 is not a pole we

append it to the list of zeros in order to cancel out the

factor k!.

In general (see [2, Ch. IV]), this series converges for

all finite z when p < q, and for IzI < 1 when p = q+ 1

so that one can talk of the hypergeometric function in

these cases. The series diverges for all .z # O when p >

g + 1. In all cases, (1) satisfies the following differential
equation

[Ofi(d+bi - l)-zfi(O+aj)]y(z) =0, (2)

i=l jzl

where 6 = z(d/d.z). This equation makes it possible to

give a meaning to (1) even when p > q + 1 through the

introduction of Meijer’s G-functions (see [2, Ch. V]).

Special cases of hypergeometric functions include

exp(z), (1 — Z)a, —w (see [7, ch VII] for an ex-

tensive list of such special cases). While all the exam-

ples we have given are also liouvillian, there is no strict

inclusion between the set of hypergeometric functions

and the set of liouvillian functions. Thus the Bessel

function Jo(2i@) is hypergeometric but not liouvillian,

and exp(eZ ) is liouvillian but not hypergeometric (be-

cause of the type of its singularity at infinity).

The purpose of this paper is to describe an algorithm

and a Maple version of it that finds all hypergeometric

solutions of linear differential equations with rational
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coefficients, In other words, given a linear differential

operator L c Q [z] [d/rt.z], we find whether there exists

a factorisation L = L1 LZ with L2 as in (2), and the

values of the parameters involved. In Section 1, we de-

scribe a generalization of algorithm HYPER [6] to find

rn-hypergeometric solutions to linear recurrences. In

Section 2, we use this algorithm to find hypergeometric

functions satisfying a linear differential equation. Sec-

tion 3 describes several natural extensions of our al-
gorithm that widen the class of solutions it finds. In

Section 4, we conclude with a detailed example.

1 m-hypergeometric sequences

Definition 1 Let F be a field of characteristic zero. A

sequence Un is m-hypergeometric over IF if there exasts

a rational function r(n) over F and an integer no > 0

such that, for all n > no, un+m/un = r(n).

An m-hypergeornetric sequence Un w primitive zf zt
sattsjies no linear homogeneous recurrence wdh polyno-

mial coeficienis of order less than m.

When m = 1, this corresponds to the usual definition of

hypergeometric sequences. In this section, we describe

an algorithm to find m-hypergeometric solutions to a

linear recurrence equation. It reduces to algorithm HY-

PER [6] when m = 1. The reader who is not familiar

with algorithm HYPER is encouraged to read this sec-

tion focusing on the case m = 1,in order to get a feeling

of how this algorithm works.

Let E denote the shift operator, Es(n) = a(n + 1),

and let po(n), pl (n), . . .. pal(n) be rational functions of

n such that p., pd ~ O. Then

L := ~p@E~

k=o

(3)

is a linear recurrence operator of order d. With com-

position defined in the usual way, such operators form

a ring, and they can be divided as polynomials in the

indeterminate E except, that factors do not commute.

An operator L is reduczble if it is a product of two op-

erators L1 and L2, both of positive degree. Note that

m-hypergeometric sequences are those which are anni-

hilated by operators of the form Lm,r := Em – r(n)
where r(n) is a rational function of n. Clearly, if a m-

quence u satisfies Lm,Tu = O and L = LILm,r then u

is an m-hypergeometric solution of recurrence Ly = O.

Therefore it is desirable to have an algorithm which will

find all right factors of the form Lm,r of a given recur-

rence operator L.

Fix m ~ 1. Let L be as in (3), normalized in

such a way that its coefficients are polynomials, and

assume that L = LILm,T. Denote d. = [(d – s)/mJ.

Computing directly the division of L by L,,,,,, we ob-

tain L = LILm,, + S, where

(
m-l d, j–l

)

s= ~ ~P@+. (n)~r(n+mk+s) Es
S=o j=o k=o

is the remainder. Hence for s = O, 1, . . . . m—1, r satisfies

d. j-1

~Prnj+s(n) _J_Jr(n + mk + S) = O. (4)
J=o knO

Fix s and write tj(n) = p~j+$(n), R(n) = r(n + s).

Then (4) can be rewritten as

‘j’jtj(.)~~R(n+mk)=O. (5)
J’=o k=o

For m = 1, this nonlinear equation for the unknown

rational sequence R is solved in [6]. The algorithm

described there generalises to arbitrary m, as we now

show .

Lemma 1 Let IF be a jield of characteristic zero and

m a positive Integer, Every non-zero rational function

R(x) over IF has a factorisation of the form

A(x) C(Z + m)
R(z) = Z—

B(x) C(x)
(6)

where

1.

2.

3.

4.

5.

zEIF, z#o,

A(x), B(x), C(x) are rnonac polynomials over IF,

A(z), C(z) are relatively prime,

l?(z), C(Z + m) are relatively prime,

A(*), E(z + km) are relatzveiy prime for every

non-negative Integer k.

We omit the proof which is analogous to the one

given in [6] for the special case m = 1 (see also [3]).

Let
A(n) C(n + m)

R(n) = Z—
l?(n) c(n)

where R is from (5) and Z, A, B, C are as in Lemma 1.
Inserting this into (5) and clearing denominators gives

~ z’~j(n)c(n + mj) = O
j=(l

where

j–l d,-1

Pj(n) := tj(n) ~ A(n + mk) ~ B(n + mk) ,

k=O k =J

(7)
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forj=O, l,..., d,. From this it follows by the proper-

ties of A, B, C that

A(n) I to(n)

and

B(n) I td, (n – m(d. – 1)).

This leaves us with a finite choice for A(n) and B(n)

- they are monic factors of polynomials to(n) and

td, (n – rn(d$ – 1)), respectively. Given the choice of

A and B, a glance at the leading coefficient of (7) shows

that Z satisfies an algebraic equation over F of degree

at most d$, so the set of possible values for Z is finite as

well. For a fixed choice of A, B, and Z, we can use an al-

gorithm for finding polynomial solutions of recurrences

with polynomial coefficients (see [1] or [6]) to determine

if (7) has any non-zero polynomial solution C.

After all rational solutions of (4) have been found

for one value of s, those which satisfy (4) for all s, O ~

s ~ m – 1, have to be selected. This requires solving

linear algebraic equations for the unknown constants.

Running this algorithm for m = 1,2,. ... d will give

us all m-hypergeometric right factors of operator L

from (3), and hence all primitive m-hypergeometric so-

lutions of recurrence Ly = O.

2 Basic Algorithm

In this section we apply algorithm HYPER — the al-

gorithm of the previous section with m = 1 — to find

hypergeometric solutions of linear differential equations.

Our algorithm consists of three steps which we now de-

scribe.

Step 1. Recurrence for formal power series solu-

tions. We start from a homogeneous linear differential

equation of the form

r d,

X(Z )
pij %3 y(’)(z) = o, (8)

i=o jzO

where we assume that the leading coefficients p$d, are

different from O. Suppose the formal power series ~(.z) =

~.20 ~~zn satisfies (8). Then by substituting ~ into (8)
and equating coefficients of z“, it is well known (see [10])

that one gets a linear recurrence with polynomial coef-

ficients:

~~Pi,(n+i-j)... (j+l)fn+i+j-j =0, (9)

,

i=o j=o

valid for all n, with the convention that fk = Owhen k <

0. We shall denote A4 = max({di–i; i = 1, ..., r}), then

the order of the recurrence (9) is r + lkf. What makes

our algorithm useful is that it is not restricted to the

caser+ll=l.

Step 2. Solving the recurrence. Algorithm HY-

PER [6] finds hypergeometric-sequence solutions of equa-

tions of the form (9). Given a linear recurrence

like (9) with coefficients in Q [n], it outputs an algebraic

number Z a~d three monic polynomials A(n), B(n),

and C’(n) in Q[n] such that there exists a solution of (9)

verifying

B(n) C(n)fn+l = ZA(n)C(n + l) f., (lo)

with (Z, A, B, C) as in Lemma 1. It is shown in [6] that

algorithm HYPER can actually produce a basis of such

solutions. Our step 2 thus consists first in computing

this basis for (9).

For each element of this basis {(ZP, AP, BP, CP)}, we

have to compute the first values of the sequence. Let no

be the smallest non-negative integer such that A(no +

k), B(no + k), C(no + k) are different from O for every,. ,.
integer k ~ O. Then for any constant

f. = ~~zn-fl.c ‘-1 A(i)
(“)1-l~!

i=no

satisfies (9) for all n ~ no + M.

K, the sequence”

n~no,

If no >0, we still have to determine fo, . . . . f~O_l.
To get these values, we write down the linear system

of no equations obtained by setting n = M, . . . . M+no –

1 in (9), and solve this system for fo, . . . . f~O--l and K.

If the dimension of the solution is greater than 1, we can

then isolate solutions with finite support. Note that the

dimension of the solution may also be O, when A(no –

1) = O. In this case the trailing coefficient of(9) vanishes

at n = no + M – 1 (this can be seen from the way

HYPER works) and the recurrence (9) then gives rise to

a linear combination of { f~O+~– 1, . . . . fnO} which is an

extra constraint on the f~’s that may be O or not.

Once this has been done for each element of

{(.Zp, AP, BP, C’P)}, we have a family of solutions of two
types:

{f~,P = a~,f) O S ~ < ~O,p; f~,P =0, ~O,p S n}

and

{~n,P = an,P, O S n < nO,P;

‘-1 AP(i)~_nO,pCP(n) ~ BP(i) ‘
fn,p = z, no,P < n},

i=no,p

for some constants an ,P. Any linear combination of these

sequences is also a solution of (9) for n ~ M.

29



We now have to match the condition that j~ = O

when k < 0 in (9). In other words we are looking for a

basis of the subspace of the vector space generated by

our solutions where fk = O when k <0. This is done by

solving a linear system of M equations obtained by sub-

stituting a generic linear combination of our solutions

into (9) fern =0,..., M – 1. If M ~ O, then all linear

combinations are solutions of (9) for all n.

Step 3. Definite summation of hypergeometric

sequences. We enter this step with a sequence U.

which is a linear combination (where the coefficients

may be symbolic) of hypergeometric terms of the types

above, We now compute the definite sum from O to

infinity of Unzn. Note that definite summation of the

sequence corresponds to .z = 1.

Obviously sequences of the first type above corre-

spond to polynomial solutions of (8), of which we get

a basis. To deal with solutions of the second type, we

first rewrite A(n) = ~(n -t- ~~), B(n) = ~(n + ~j)

and C(n + no) = ~~~~(c) c;n(n - 1) . . (n – i + 1),

and then it is not difficult to see that the corresponding

series is

should be used instead of looking for solutions of the

recurrence with finite support.

3 Extensions

In this section we examine simple modifications of the

algorithm which make it find solutions in larger classes

of expressions.

3.1 rn-hypergeometric series

Many special functions can be expressed in terms of gen-

eralized hypergeometric functions evaluated at the m-th

power .zm of the argument. The sequence of Taylor coef-

ficients of these functions are often of m-hypergeometric

type, and it is therefore desirable to extend our algo-

rithm to find these.

For instance,

‘in’=z0F1(v2;-:)]
and

where 8 = z~, dA = degn(A), dB = degn(l?), dc =

degn(C’). This expression can be further reduced to a

linear combination of hypergeometric series with poly-

nomial coefficients by the usual formula for the deriva-

tive of an hypergeometric series.

Theorem 1 Let M(z) be the vector space of hypergeo-

meiric series tn z over@, then Steps 1–3 find a basis of

solutions of (8) an the vector space ~[z]?i(z),

Proof. Let S = {Fl(z), . . . . ~k(~)} be the set of solu-

tions found by the algorithm. It is clear from the de-

scription of the algorithm that S C ~[z]fi(z). That S

is linearly independent follows from translating a linear

combination of the Fi’s into a linear combination of the

coefficient sequences. The last thing to prove is that

any solution belonging to ~[.z]~(z) can be written as

a linear combination of the l’i ‘s. Let F be a solution

in Q[z]H(z). Then there exists a positive integer N
such that for n ~ N, the sequence of Taylor coeffi-

cients of F is a hnear combination of hypergeometric

sequences which satisfy (9). We can group together se-

quences whose ratios are rational functions of the index.

Then by [6, Corollary 5. 1], each of these hypergeometric

sequences is also a solution of (9) and thus will be found

by HYPER. This concludes the proof. ❑

Note that fast algorithms exist to find polynomial

solutions of linear differential equations [1], and these

If sin z = ~~=0 u~zk, and e’resin z = ~~=0 ~kzk, the

corresponding recurrences are

‘“+2 = -(n+ l)’(n + 2)un ‘
Ulj=o, ul=l,

and

n2+l

‘“”+2= (n+l)(n+2) v”’ ‘0=”’=1

(see [5, (9.3)]), and both of them are primitive 2-

hypergeometric.

Using the algorithm described in Section 1 instead

of HYPER in Step 2 of our algorithm gives us all prim-

itive m-hypergeometric solutions of recurrence (9). A

m-hypergeometric solution (Z, A, B, C) actually con-

tributes for m solutions in the basis, corresponding to

the sequences jkrn, . . . . fk~+~_l, We then proceed as
before to compute the initial values of the sequence,

and this may add extra constraints on the coefficients

of the linear combination of these sequences. Once
this has been done for all the m-hypergeometric solu-

tions (Z, A, El, C), we compute as previously the basis

of those solutions that also satisfy fk = O when k < 0.

The definite summation is exactly as before, except

that when translating the sequence f~~+i, z is replaced

by Zm and an extra factor of Zi has to be taken into
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account. One can check that the result must satisfy the

following generalization of (2)

[fi(6+~i-~)-Zmfi(O+Uj)]?@)=0.
i=l j=l

3.2 Translating the origin.

Once it is reordered, Equation (2) has

.

the form

~(%z + G)Z’!P(Z)= o,
i=o

with ~i and q rational constants. This means that,

unless the equation has the special form

(az + 6)$’)(z) + y(’-’)(z) = O, (11)

the point O is always a singular point of the operator.

In particular, it is useless to look for solutions of hy-

pergeometric type when O is not a root of the leading

coefficient of the differential equation. (Solutionsof(11)

can be checked independently. ) An algorithm for finding

all hypergeometric solutions of a linear differential equa-

tion consists in first changing the variable z into z – a,

where CYis a root of the leading coefficient of the equa-

tion, and then applying our algorithm. Iterating this

over all the roots of the leading coefficient, as well as

the change of variable z w l/z to deal with the sin-

gularity at infinity, one will get a generating set of the

hypergeometric solutions. However, since the equation

is not supposed to be irreducible, it is difficult in general

to isolate a basis from this generating set.

When m >1, (11) becomes

r+m

y(r)(z) + ~ (ajzm + bj)z”+~-j y(j)(%) = o,
j=r+l

but apart from this special case, O is still always a sin-

gular point.

Another operation which it is natural to perform

after having translated the origin is to compute the in-

dicial equation. Then for each of the roots v of the

indicial equation we change the unknown function y(z)

into z“ u(z), and look for an hypergeometric solution of

this new equation. This should allow us to find solutions

of the type za~FP(.; z) with a an algebraic number, and

a convergent ~FP when the singularity is regular.

3.3 Initial conditions.

There are several issues in the use of initial conditions.
If the initial conditions are of the form yI~)(0) = c~ E ~,

then obviously solving a linear system of equations will

give the proper linear combination of the basis (if any).

If the initial conditions are given at points different from

the origin, then there is still a linear system to solve,

but one has to decide when a coefficient is O in a class

of hypergeometric constants. This seems to be a very

difficult problem at the time.

3.4 Non-homogeneous equations.

If the right-hand side of (8) is a polynomial, there

must be a polynomial solution of the equation [1], One

should first look for it and then apply our algorithm

to the homogeneous part. If the right-hand side is not

in ~[z]fi(z), then there are no solutions in ~[z]li(z).

This follows from noticing that applying a linear differ-

ential operator with polynomial coefficients to an ele-

ment of ~[z]7f(z) yields another element of ~[.z]7f(z).

The last case to consider is when the right-hand side

belongs to ~[z]ti(z). Then a simple solution is to trans-

late the equation at the level of coefficients and then use

the extension of HYPER to non-homogeneous equations.

Step 3 remains unchanged.

3.5 Reduction of order

As usual, once a solution of a linear differential equation

has been found, it is possible to reduce the order by

changing the unknown function. The new equation has

coefficients that are polynomials in the algebraic closure

of the coefficient field of the original equation, and any

algorithm can be applied to it. Recursive application of

our algorithm should yield solutions that are products

of hypergeometric functions.

4 Detailed examples

We start with a simple example of order 3:

(:x’ - 3z2)y(3)(z) + (YZ2 – :)y’’(z)

+(207z – :)y’(z) + 45y(z) = O.

The associated recurrence is then of order 1:

(27k2 + 81k + 60)u~ = (4k2 + 22k + 30)u~+l,

It is then trivial to find an hypergeometric sequence
solution, and there are no initial conditions to satisfy.
We thus get with our program:

> dsolvehyper(eqn, y(x)) ;
_Cl hypergeom( [4/3, 5/3, I] , [5/2, 3] , 2i’/4 X)
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The following equation of order 3 is more compli-

cated:

(2’ - 2.22 + 2)y(3)(~) + (722 – 152 + $)y’’(z)

+(102 – 13)y’(z) – 2y(%) = o.

When translated into a recurrence, this equation gives

a recurrence of order 2:

(n2 + 10n + 16)Un+Q – (2922 + 13n + 13)un+l

+(n2 – 3n – 2)un = O.

This is where HYPER becomes necessary. It finds a basis

of hypergeometric solutions which consists of only one

vector:

2=1, A(n)= n+2, l?(n) =n+7, C(n)=l.

Since in this case M = O and no <0, this solution yields

an hypergeometric series and this is what the program

gets:

> dsolvehyper(eqn2, y(z) ) ;

_Cl hypergeom( [1, 2] , [7] , z)

Conclusion

The algorithm we describe in this paper is a first step to-

wards a better use of hypergeometric functions in com-

puter algebra. In many cases, a linear differential equa-

tion contains all the information which is needed to work

with a function. However, when one is interested in us-

ing the function globally, then it becomes useful to have

any kind of “closed-form”. Hypergeometric functions

are one class of such closed-forms.

To complete this work, it will be useful to delimit

precisely the class of solutions that the extensions of

Section 3 can find. Another point is that although it is

possible to extend the algorithm in many directions, all

these computations are rather expensive. It would be

interesting to determine heuristically which of these ex-

tensions are worth the computation, and in which order.

All of this will hopefully be the object of a subsequent

paper.

The program implementing both the algorithm of

Section 1 and the algorithm of Section 2 will soon

be part of the Maple share library. Combinatorialists

might use it fruitfully in conjunction with the GFUN

package which provides tools for manipulating linear re-

current sequences and linear differential equations [8].

Another useful application of this program is in con-

junction with Zeilberger’s technique of “creative tele-

scoping” [11]. Thus one could get a closed-form solution

to some definite hypergeometric summations.

As a final note, our algorithms extend without any

modification to fields of coefficients containing Q. The

only difficulty is that the computation of integer solution

of polynomials over the field has to be effective, as well

aa the decomposition of polynomials into linear factors.
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