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Abstract. We prove that the question of whether a given linear partial
differential or difference equation with polynomial coefficients has non-zero
polynomial solutions is algorithmically undecidable. However, for equations
with constant coefficients this question can be decided very easily since such
an equation has a non-zero polynomial solution iff its constant term is zero.
We give a simple combinatorial proof of the fact that in this case the equa-
tion has polynomial solutions of all degrees. For linear partial q-difference
equations with polynomial coefficients, the question of decidability of exis-
tence of non-zero polynomial solutions remains open. Nevertheless, for such
equations with constant coefficients we show that the space of polynomial so-
lutions can be described algorithmically. We present examples which demon-
strate that, in contrast with the differential and difference cases where the
dimension of this space is either infinite or zero, in the q-difference case it
can also be finite and non-zero.

1 Introduction

Polynomial solutions of linear differential and (q-)difference equations often serve as
a building block in algorithms for finding other types of closed-form solutions. Com-
puter algebra algorithms for finding polynomial (see, for example, [4]) and rational
(see [1, 2, 7, 10, 8] etc.) solutions of linear ordinary differential and difference equa-
tions with polynomial coefficients are well known. Note, however, that relatively few
results about rational solutions of partial linear differential and (q-)difference equa-
tions can be found in the literature. Only recently, M. Kauers and C. Schneider [11,
12] have started work on the algorithmic aspects of finding universal denominators
for rational solutions in the difference case. Once such a denominator is obtained,
one needs to find polynomial solutions of the equation satisfied by the numerators
of the rational solutions of the original equation. This is our motivation for consid-
ering polynomial solutions of linear partial differential and (q-)difference equations
with polynomial coefficients in the present paper.

Let K be a field of characteristic 0, and let x1, . . . , xm be independent variables
where m ≥ 2. In Section 2, using an argument similar to the one given in [9, Thm.
4.11], we show that there is no algorithm which, for an arbitrary linear differential
or difference operator L with coefficients from K[x1, . . . , xm], determines whether
or not there is a non-zero polynomial y ∈ K[x1, . . . , xm] such that L(y) = 0 (Theo-
rem 1). The proof is based on the Davis-Matiyasevich-Putnam-Robinson (DMPR)
theorem which states that the problem of solvability of Diophantine equations is
algorithmically undecidable, i.e., that there is no algorithm which, for an arbitrary
polynomial P (t1, . . . , tm) with integral coefficients, determines whether or not the
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equation P (t1, . . . , tm) = 0 has an integral solution [14, 17]. In fact, we use the
equivalent form which states that existence of non-negative integral solutions of
P (t1, . . . , tm) = 0 is undecidable as well.

Of course, by limiting the class of operators considered, the corresponding prob-
lem may become decidable. For example, it is well known that a partial linear
differential or difference operator L with coefficients in K (a.k.a. an operator with
constant coefficients) has a non-zero polynomial solution iff L(1) = 0 (see, for ex-
ample, [20, Lemma 2.3]). In addition, in Section 3 we show that in this case, the
equation L(y) = 0 has polynomial solutions of degree d for all d ∈ N (Theorem 2).
This is contrasted with the univariate case m = 1, where the degree of a polynomial
solution cannot exceed ordL (but note that, when a univariate L is considered to be
m-variate with m ≥ 2, and L(1) = 0, equation L(y) = 0 does have solutions of all de-
grees). In the differential case, when the affine algebraic variety defined by σ(L) = 0
(where σ : K[∂/∂x1, . . . , ∂/∂xn] → K[x1, . . . , xn] is the ring homomorphism given
by σ|K = idK , σ(∂/∂xj) = xj) is not singular at 0, and for d large enough, Theorem
2 follows from [20, Prop. 3.3(e)]. Here we present a short direct proof based on a
simple counting argument. For a given d ∈ N, all solutions of degree d of such an
equation can be found, e.g., by the method of undetermined coefficients. Of course,
there exist more efficient ways to do that: in [19], the application of Janet bases
to the computation of (formal) power series and polynomial solutions is consid-
ered; in [19, Ex. 4.6], the command PolySol for computing polynomial solutions
from the Janet Maple package is illustrated. Computing polynomial solutions using
Gröbner bases is described in [22, Sect. 10.3, 10.4] and [19, Sect. 10.8]. The more
general problem of finding polynomial solutions of holonomic systems with polyno-
mial coefficients (if they exist) is treated in [16, 21], and the resulting algorithms
are implemented in Macaulay2 [13].

Our attention was drawn to these problems by M. Kauers. In a letter to the
first author he presented a proof of undecidability of existence of non-zero poly-
nomial solutions of partial differential equations with polynomial coefficients, and
attributed it to mathematical folklore. In our paper a simple common proof for
the differential and difference cases is proposed. The situation when coefficients are
constant is clarified as well.

In Section 4 we consider the q-difference case, assuming that K = k(q) where k is
a subfield of K and q is transcendental over k (q-calculus, as well as the theory and
algorithms for q-difference equations, are of interest in combinatorics, especially in
the theory of partitions [5, Sect. 8.4], [6]). The question of decidability of existence of
non-zero polynomial solutions of an arbitrary q-difference equation with polynomial
coefficients is still open. As for the equations with constant coefficients, we formulate
and prove a necessary condition for existence of a non-zero polynomial solution:
if L(1) = p(q) ∈ K[q], then p(1) = 0, or, more succinctly: (L(1))(1) = 0. We
also show that the dimension of the space of polynomial solutions of a linear q-
difference equation with constant coefficients can be, in contrast with the differential
and difference cases, not only zero or infinite, but also finite positive. An explicit
description of this space can be obtained algorithmically. We consider this as one
of the first steps in the program to find wider classes of closed-form solutions of
multivariate q-difference equations.

Terminology and notation. We write x = (x1, . . . , xm) for the variables, D =
(D1, . . . , Dm) for partial derivatives (Di = ∂

∂xi
), and ∆ = (∆1, . . . ,∆m) for partial

differences (∆i = Ei − 1 where Eif(x) = f(x1, . . . , xi + 1, . . . , xm)). Multiindices
from Nm

(where N = {0, 1, 2, . . .}) are denoted by lower-case Greek letters, so that
a partial linear operator of order at most r with polynomial coefficients is written
as

L =
∑
|µ|≤r

aµ(x)Dµ (1)
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in the differential case, and

L =
∑
|µ|≤r

aµ(x)∆µ (2)

in the difference case, with aµ(x) ∈ K[x1, . . . , xm] in both cases. We denote the dot
product of multiindices µ, α ∈ Nm

by µ · α = µ1α1 + · · ·+ µmαm.
We call y(x) ∈ K[x1, . . . , xm] a solution of L if L(y) = 0.
Let c ∈ K \ {0}. As usual, we define

degxi
(cxn1

1 · · ·xnm
m ) = ni

for i = 1, . . . ,m, and

deg(cxn1
1 · · ·xnm

m ) = n1 + · · ·+ nm.

For p(x) ∈ K[x1, . . . , xm] \ {0} we set degxi
p(x) for i = 1, . . . ,m to be equal to

max degxi
t, and deg p(x) to be equal to max deg t where the maximum is taken

over all the terms t of the polynomial p(x). We define degxi
0 = deg 0 = −∞ for

i = 1, . . . ,m.
We denote the rising factorial by

an =

n−1∏
i=0

(a+ i).

2 Equations with polynomial coefficients

Theorem 1 There is no algorithm to decide whether an arbitrary linear partial
differential resp. difference operator L with polynomial coefficients in an arbitrary
number m of variables, of the form (1) resp. (2), has a non-zero polynomial solution.

Proof. Let P (t1, . . . , tm) ∈ Z[t1, . . . , tm] be arbitrary. For i = 1, . . . ,m write θi =
xiDi and σi = xi∆i. Then

θi(x
n1
1 · · ·xnm

m ) = nix
n1
1 · · ·xnm

m (3)

and
σi(x

n1
1 · · ·xnm

m ) = nix
n1
1 · · ·xnm

m , (4)

for i = 1, . . . ,m. Define an operator L of the form (1) resp. (2) by setting L =
P (θ1, . . . , θm) in the differential case, and L = P (σ1, . . . , σm) in the difference case.
Let f(x1, . . . , xm) ∈ K[x1, . . . , xm] be a polynomial over K. From (3) and (4) it
follows that L annihilates f iff it annihilates each term of f separately, so L has a
non-zero polynomial solution iff it has a monomial solution (where in the difference
case we assume that the polynomial f is expanded in terms of the rising factorial
basis). But we have

L(xn1
1 · · ·xnm

m ) = P (n1, . . . , nm)xn1
1 · · ·xnm

m

in the differential case, and

L(xn1
1 · · ·xnm

m ) = P (n1, . . . , nm)xn1
1 · · ·xnm

m

in the difference case. So L has a monomial solution iff there exist n1, . . . , nm ∈ N
such that P (n1, . . . , nm) = 0. Hence an algorithm for deciding existence of non-
zero polynomial solutions of linear partial differential or difference operators with
polynomial coefficients would give rise to an algorithm for deciding existence of
non-negative integral solutions of polynomial equations with integral coefficients, in
contradiction to the DMPR theorem.
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Remark 1 In [9, Thm. 4.11], it is shown that there is no algorithm for deciding
existence of formal power series solutions of an inhomogeneous partial differential
equations with polynomial coefficients and right-hand side equal to 1 (see also Prob-
lem 13 in [15, p. 62] and Problem 3 in [18, p. 27]). Even though the same polynomial
P in θi is used in the proof of Theorem 1 as in the proof of [9, Thm. 4.11], it is not
at all clear whether the former follows from the latter.

Remark 2 Since the DMPR theorem holds for any fixed number m ≥ 9 of variables
as well (cf. [17]), the same is true of Theorem 1.

3 Equations with constant coefficients

In this section we assume that L is an operator of the form (1), (2) with coefficients
aµ ∈ K.

For i = 1, . . . ,m, let

δi =

{
Di, in the differential case,
∆i, in the difference case.

Lemma 1 Let L ∈ K[δ1, . . . , δm] and let the equation

L(y) = 0 (5)

have a polynomial solution of degree k ≥ 0. Then this equation has a polynomial
solution of degree j for j = 0, 1, . . . , k.

Proof. By induction on j from k down to 0.

j = k: This holds by assumption.

0 ≤ j ≤ k − 1: By inductive hypothesis, equation (5) has a polynomial solution
y(x) = p(x1, . . . , xm) of degree j+1. Let t = cxn1

1 · · ·xnm
m be a term of the polynomial

p such that deg t = j+1, and let i ∈ {1, . . . ,m} be such that degxi
t > 0. Then δi(p)

has the desired properties. Indeed, deg δi(p) = deg p − 1 = j and, since operators
with constant coefficients commute, L(δi(p)) = δi(L(p)) = δi(0) = 0.

Theorem 2 Let m ≥ 2, and let L ∈ K[δ1, . . . , δm] be a linear partial differen-
tial or difference operator with constant coefficients. The following assertions are
equivalent:

(a) For each k ∈ N, L has a polynomial solution of degree k.
(b) L has a non-zero polynomial solution.
(c) L(1) = 0.

Proof. (a) ⇒ (b): Obvious.
(b)⇒ (c): Assume that L has a non-zero polynomial solution p(x). Then deg p ≥

0, and by Lemma 1, L has a solution of degree 0. Hence L(1) = 0 as well.
(c) ⇒ (a): It is well known that, in m variables, the number of monomials of

degree d is
(
d+m−1
m−1

)
, and the number of monomials of degree at most d is

(
d+m
m

)
.

Set

d =

(
k + 1

2

)
and denote byM the set of all monomials in the variables x1, . . ., xm of degrees k,
k + 1, . . ., d. Then

|M| =

(
d+m

m

)
−
(
k − 1 +m

m

)
.
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Let P = L(M). From (c) it follows that the free term c0 of L is equal to 0, hence
degL(t) < deg t for any t ∈ M, and so the degrees of polynomials in P do not
exceed d− 1.

If M contains two distinct monomials m1 and m2 such that L(m1) = L(m2)
then p = m1 −m2 is a non-zero polynomial solution of L of degree at least k.

Otherwise, L is injective on M, and so |P| = |M|. From d + 1 > k(k + 1)/2,
d ≥ k and m ≥ 2 it follows that

(d+ 1)m − dm = m(d+ 1)m−1

= m(d+ 1) (d+ 2)m−2

> m
k(k + 1)

2
(k + 2)m−2

≥ km,

hence (d+ 1)m − km > dm. Dividing this by m! we see that

|P| = |M| =
(
d+m

m

)
−
(
k − 1 +m

m

)
>

(
d− 1 +m

m

)
.

Since the dimension of the space of polynomials of degrees at most d−1 is
(
d−1+m
m

)
,

it follows that the set P is linearly dependent. Hence there is a nontrivial linear
combination p of the monomials in M such that L(p) = 0. Clearly, p is a non-zero
polynomial solution of L of degree at least k.

In either case (if L is injective on M or not) we have obtained a non-zero
polynomial solution of L of degree at least k. By Lemma 1 it follows that L has a
non-zero polynomial solution of degree k.

4 q-Difference equations with constant coefficients

The question of decidability of the existence of non-zero polynomial solutions of
an arbitrary q-difference equation with polynomial coefficients is still open. In this
section we consider equations with coefficients from K, assuming that K = k(q)
where k is a subfield of K and q is transcendental over k.

We write Q = (Q1, . . . , Qm) for partial q-shift operators where

Qif(x) = f(x1, . . . , qxi, . . . , xm),

so that a partial linear q-difference operator with constant coefficients of order at
most r is written as

L =
∑
|µ|≤r

aµQ
µ (6)

with aµ ∈ K. Clearly, for multiindices µ and α,

Qµxα = Qµ1

1 · · ·Qµm
m xα1

1 · · ·xαm
m

= Qµ1

1 xα1
1 · · ·Qµm

m xαm
m

= (qµ1x1)α1 · · · (qµmxm)αm

= qµ1α1+···+µmαmxα1
1 · · ·xαm

m

= qµ·αxα. (7)

Lemma 2 An operator L of the form (6) has a nonzero polynomial solution iff it
has a monomial solution.
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Proof. If L has a monomial solution xα, then xα is also a non-zero polynomial
solution of L.

Conversely, assume that p(x) ∈ K[x] is a non-zero polynomial solution of L.
Write

p(x) =
∑
α

cαx
α

where only finitely many cα are non-zero, and define its support by

supp p = {α ∈ Nm
; cα 6= 0}.

Then

L(p) =
∑
µ

aµ
∑
α

cαQ
µxα

=
∑
µ

aµ
∑
α

cαq
µ·αxα (by (7))

=
∑
α

cα

(∑
µ

aµq
µ·α

)
xα,

hence from L(p) = 0 it follows that∑
µ

aµq
µ·α = 0

whenever cα 6= 0. Therefore, by (7),

L(xα) =
∑
µ

aµQ
µxα =

∑
µ

aµq
µ·αxα = 0

for all such α, so xα is a monomial solution of L for each α ∈ supp p.

By clearing denominators in the equation L(y) = 0, we can assume that the
coefficients of L are in k[q], hence we can rewrite

L =
∑
µ

∑
i

aµ,iq
iQµ (8)

where only finitely many aµ,i ∈ k are non-zero. Define

suppL = {(µ, i) ∈ Nm+1
; aµ,i 6= 0}.

Let P be a partition of suppL. We call such a partition balanced if∑
(µ,i)∈B

aµ,i = 0

for every block B ∈ P . To any α ∈ Nm
we assign the partition PL,α of suppL

induced by the equivalence relation

(µ, i) ∼ (ν, j) iff µ · α+ i = ν · α+ j.

Lemma 3 L(xα) = 0 iff PL,α is balanced.
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Proof.

L(xα) =
∑

(µ,i)∈suppL

aµ,iq
iQµxα

=
∑

(µ,i)∈suppL

aµ,iq
µ·α+ixα,

hence L(xα) = 0 iff
∑

(µ,i)∈suppL aµ,iq
µ·α+i = 0. Since q is transcendental over k,

the latter equality holds iff
∑

(µ,i)∈B aµ,i = 0 for every block B ∈ PL,α, i.e., iff PL,α
is balanced.

Corollary 1 L in (8) has a non-zero polynomial solution iff there is an α ∈ Nm

such that PL,α is balanced.

Proof. This follows from Lemmas 2 and 3.

Corollary 2 If L in (8) has a non-zero polynomial solution then
∑
µ aµ = 0.

Proof. This follows from Corollary 1 since if PL,α is balanced then
∑
µ aµ = 0.

From Corollary 1 we obtain the following algorithm for deciding existence of
non-zero polynomial solutions of L in (8):

for each balanced partition P of suppL do
let S be the system of |suppL| linear equations

µ · α+ i = vB , (µ, i) ∈ B ∈ P

for the unknown vectors α and v = (vB)B∈P
if S has a solution (α, v) with α ∈ Nm

then
return “yes” and stop

return “no”.

Corollary 3 The problem of the existence of non-zero polynomial solutions of par-
tial linear q-difference operators with constant coefficients is decidable.

Note that one can convert the above decision algorithm into a procedure for pro-
viding a finite description of a (possibly infinite) basis for the space of all polynomial
solutions of equation L(y) = 0.

The following simple examples demonstrate that, in contrast with the differential
and difference cases, there are partial linear q-difference equations with constant
coefficients such that the dimension of their space of polynomial solutions is: a)
infinite, b) finite positive, c) zero.

Example 1 Let L1 = Q2
1Q2 + qQ1Q

2
2 − 2q2Q3

2. Then

L1(xα1
1 xα2

2 ) = (q2α1+α2 + qα1+2α2+1 − 2q3α2+2)xα1
1 xα2

2

and suppL1 = {(2, 1, 0), (1, 2, 1), (0, 3, 2)}. The only balanced partition of this set
is the single-block partition P = {suppL1}, and we obtain the system of linear
equations

2α1 + α2 = α1 + 2α2 + 1 = 3α2 + 2

for α1 and α2. This system has infinitely many non-negative integer solutions of the
form α1 = t+ 1, α2 = t where t ∈ N. Therefore every non-zero linear combination
of monomials of the form xt+1

1 xt2 where t ∈ N, is a non-zero polynomial solution of
the operator L1.
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Example 2 Let L2 = Q4
1Q2 +Q2

1Q
3
2 − 2q2Q3

1. Then

L2(xα1
1 xα2

2 ) = (q4α1+α2 + q2α1+3α2 − 2q3α1+2)xα1
1 xα2

2

and suppL2 = {(4, 1, 0), (2, 3, 0), (3, 0, 2)}. Again the only balanced partition of this
set is the single-block partition, and we obtain the system of linear equations

4α1 + α2 = 2α1 + 3α2 = 3α1 + 2

for α1 and α2. The only solution of this system is α1 = α2 = 1, so the operator L2

has a 1-dimensional space of polynomial solutions spanned by x1x2.

Example 3 Let L3 = Q2
1Q2 +Q1Q

2
2 − 2qQ3

2. Then

L3(xα1
1 xα2

2 ) = (q2α1+α2 + qα1+2α2 − 2q3α2+1)xα1
1 xα2

2

and suppL3 = {(2, 1, 0), (1, 2, 0), (0, 3, 1)}. Once again the only balanced partition
of this set is the single-block partition, and we obtain the system of linear equations

2α1 + α2 = α1 + 2α2 = 3α2 + 1

for α1 and α2. Since this system has no solution, the operator L3 has no non-zero
polynomial solution.

5 Conclusion

In this paper, we have investigated the computational problem of existence of non-
zero polynomial solutions of linear partial differential and difference equations with
polynomial coefficients. We have shown that the problem is algorithmically unde-
cidable. This means that there is no hope of having a general algorithm for deciding
existence of such solutions in a computer algebra system now or ever in the future.

However, we have shown that the existence problem is decidable in the case
of partial linear differential or difference equations with constant coefficients: such
an equation L(y) = 0 has non-zero polynomial solutions iff L(1) = 0. Moreover,
when the latter condition is satisfied, this equation has polynomial solutions of any
desired degree. A number of methods exist to search for such solutions efficiently
(see, e.g., [19, 22]).

For partial equations with constant coefficients in the q-difference case which is
of interest in combinatorics, we have formulated and proved a necessary condition
for existence of non-zero polynomial solutions: (L(1))(1) = 0 (note that L(1) is a
polynomial in q). We have also shown that when the latter condition is satisfied, the
dimension of the space of polynomial solutions in some particular cases can be finite
and even zero (then no non-zero polynomial solutions exist). An explicit description
of this space can be obtained algorithmically, and the corresponding algorithm is
straightforward to implement in any computer algebra system.

The following interesting problems remain open:

1. (Un)decidability of existence of non-zero polynomial solutions of a given lin-
ear partial differential or difference equation with polynomial coefficients when the
number of variables m is between 2 and 8.

2. (Un)decidability of existence of non-zero polynomial solutions of a given linear
partial q-difference equation with polynomial coefficients (both the general problem
when the number m of variables is arbitrary, and the problems related to particular
numbers of variables).

Problem 1 seems to be very hard since the problem of solvability of Diophantine
equations in m variables with m between 2 and 8 is still open (cf. [17]). Concerning
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Problem 2, note that in the ordinary case (m = 1), certain existence problems in the
q-difference case are decidable although the analogous problems in the differential
and difference cases are not (see, e.g., [3]). An example of an open problem which
might be easier than Problems 1 or 2 is the existence problem of non-zero polynomial
solutions for q-differential equations.

We will continue to pursue this line of inquiry.
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