
A CONTINUATION METHOD FOR A RIGHT DEFINITETWO-PARAMETER EIGENVALUE PROBLEMBOR PLESTENJAKyAbstract. The continuation method has been successfully applied to the classical Ax = �x andto the generalized Ax = �Bx eigenvalue problem. Shimasaki applied the continuation method to theright de�nite two-parameter problem which results as a discretization of a two-parameter Sturm{Liouville problem. We show that the continuation method can be used for a general right de�nitetwo-parameter problem and we give a sketch of the algorithm. For a local convergent method we usethe Tensor Rayleigh Quotient Iteration (TRQI), which is a generalization of the Rayleigh iterativemethod to two-parameter problems. We show its convergence and compare it with Newton's methodand with the Generalized Rayleigh Quotient Iteration (GRQI), studied by Ji, Jiang and Lee.Key words. right de�nite two-parameter problem, continuation method, Newton's method,Rayleigh quotient iterationAMS subject classi�cations. 65F15, 65H20, 15A69, 15A181. Introduction. We consider a two-parameter eigenvalue problemA1x = �B1x+ �C1x;(1.1) A2y = �B2y + �C2y;where Ai; Bi; Ci are symmetric ni � ni matrices over R, i = 1; 2. We also require ade�niteness condition D(x; y) := ����xTB1x xTC1xyTB2y yTC2y ���� � �1 > 0(1.2)for all vectors kxk = kyk = 1. We call the problem (1.1) right de�nite [27] if thecondition (1.2) holds. If in addition the matrices B1 and C2 are positive de�nite, thenwe call the problem diagonal right de�nite.We say that (�; �) is an eigenvalue of the problem (1.1) ifker(Ai � �Bi � �Ci) 6= f0g; i = 1; 2:If dimker(Ai � �Bi � �Ci) = 1 for i = 1; 2 then (�; �) is a simple eigenvalue of (1.1).On the tensor product space V := Rn1 
 Rn2 of the dimension N := n1n2 wede�ne operator determinants�0 = �����By1 Cy1By2 Cy2 ����� ; �1 = �����Ay1 Cy1Ay2 Cy2 ����� ; �2 = �����By1 Ay1By2 Ay2 ����� ;where Ay1; Ay2; By1; By2; Cy1 ; Cy2 are the induced linear transformations on V . For in-stance, Ay1 is de�ned on a decomposable tensor x 
 y by Ay1(x 
 y) = A1x 
 yand this de�nition is extended to all of V by linearity and continuity. Similarly,Ay2(x
 y) = x
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2 B. PLESTENJAKA two-parameter system (1:1) is called nonsingular if the corresponding operatordeterminant �0 is invertible. In the case of a nonsingular two-parameter system, theproblem (1.1) is equivalent to the simultaneous problem in V�1z = ��0z;(1.3) �2z = ��0z;for decomposable tensors z (see Atkinson [3] for details). Atkinson [3, Theorem 7.8.2]also showed that right de�niteness is equivalent to the condition that the operatordeterminant �0 is positive de�nite.Several numerical algorithms can be applied to the right de�nite two-parametereigenvalue problem (1.1). Bohte [9] uses Newton's method to �nd an eigenvaluepair. The simultaneous problem (1.3) of the right de�nite problem (1.1) can betreated by standard numerical methods [25, 16]. M�uller [21] uses the continuationmethod to compute eigenvalue curves starting from a given eigenvalue and Browneand Sleeman [11] use the gradient method [7, 8]. Blum and Chang [6] derived theMinimum Residual Quotient Iteration (MRQI) for the problem Ax = �Bx + �Cxsubject to kxk = 1 and f(x) = 0, where f is a real functional. Ji, Jiang and Lee[18] generalized their approach to the right de�nite two-parameter problem (1.1) andderived the Generalized Rayleigh Quotient Iteration (GRQI).Multiparameter eigenvalue problems arise in a variety of applications [2], partic-ularly in mathematical physics when the method of separation of variables is usedto solve boundary value problems [27]. When the separation constants cannot bedecoupled, two-parameter Sturm{Liouville problems of the form��pi(xi)y0i(xi)�0 + qi(xi)yi(xi) = ��ai1(xi) + �ai2(xi)�yi(xi);where xi 2 [ai; bi], with boundary conditionsyi(ai) cos�i � y0i(ai) sin�i = 0; 0 � �i � �;yi(bi) cos�i � y0i(bi) sin�i = 0; 0 � �i � �;will arise, where �i 2 [0; �), �i 2 (0; �] and p0i; qi; ai1; ai2 are real valued and con-tinuous, for i = 1; 2. Many numerical methods for two-parameter Sturm{Liouvilleproblems have been proposed, see for example [4, 5, 14, 15].By using �nite di�erences the problem (1) can be converted into a right de�niteproblem (1.1), where matrices Ai; Bi; Ci satisfy the following conditions: Ai is anirreducible tridiagonal matrix and Bi, Ci are diagonal matrices, such that diagonalelements are all strictly positive or all strictly negative, for i = 1; 2. We will denotethese conditions by TBC as in [17]. Some numerical methods have been developedspecially for problems which satisfy TBC: Ji [17] uses the two-dimensional bisectionmethod and Shimasaki [23] uses the continuation method with quadratic convergencerate [24] (cf. [1] for details about the continuation method).The continuation method has been successfully applied to the one-parametereigenvalue problems, see for example [12, 13, 19, 20]. We show that the continua-tion method with a homotopy similar to the one used in [23] can be applied to ageneral two-parameter problem (1.1), which does not necessarily satisfy TBC.In x2 we show that every right de�nite problem can be transformed to a diagonalright de�nite problem by only a simple linear substitution of parameters � and �.



RIGHT DEFINITE TWO-PARAMETER EIGENVALUE PROBLEM 3In x3 we construct a homotopy, derive bounds for the minimum distance betweeneigenvectors and give a sketch of the algorithm based on the continuation method.For a local convergent method in the continuation method we use Tensor RayleighQuotient Iteration (TRQI). We derive TRQI in x4, show its convergence and compareit with another generalization of the Rayleigh quotient, suggested by Ji, Jiang andLee [18]. In x5 we give a numerical example which re
ects the behaviour of ourcontinuation method.2. Transformation to a diagonal right de�nite problem.Lemma 2.1. If (1.1) is a right de�nite problem, then(i) at least one of the matrices B1 and B2 is de�nite (positive or negative)(ii) at least one of the matrices C1 and C2 is de�nite (positive or negative)Proof. First we show that at least one of the matrices B1; B2 is de�nite.If not, there exist vectors x0; y0 6= 0 such that xT0 B1x0 = 0 and yT0 B2y0 = 0,which gives the counterexample D(x0; y0) = 0. It follows that at least one of thematrices B1,B2 is de�nite. In the same manner we show that at least one of thematrices C1; C2 is de�nite.Since the problem (1.1) is right de�nite, there exist i; j 2 f1; 2g such that Bi andCj are de�nite matrices (positive or negative). This is enough to transform the rightde�nite problem (1.1) to a diagonal right de�nite problem.Lemma 2.2. If the problem (1.1) is right de�nite, then it is possible to transformit to a diagonal right de�nite problem by a linear substitution of parameters � and �.Proof. Let us �rst consider all possibilities with the positive de�nite matrix B1.(i) The matrix C2 is positive de�nite. This is already the situation we arelooking for, so no transformation is needed.(ii) The matrix C2 is negative de�nite. Since for all vectors x; y 6= 0 we have(xTB1x)(yTC2y) < 0 and D(x; y) > 0, it follows that both matrices C1 and B2 arede�nite. If not, there would exist a pair x0; y0 6= 0 such that (xT0 C1x0)(yT0 B2y0) = 0and D(x0; y0) < 0, but this is not possible. Since B2 is a de�nite matrix, there existsk 2 R, such that C2 + kB2 is a positive de�nite matrix.It is easy to see that the substitution � 7! �+ k� givesA1x = �B1x+ �(C1 + kB1)xA2y = �B2y + �(C2 + kB2)y;which is a desired situation.(iii) The matrix C1 is de�nite (positive or negative). From D(x; y) > 0 and(xTB1x) > 0 for all vectors x; y 6= 0 it follows(yTC2y)� (xTC1x)(xTB1x) (yTB2y) > 0:As a consequence for an arbitrarily chosen vector x0 6= 0 the matrixC2 � (xT0 C1x0)(xT0 B1x0)B2is positive de�nite and the substitution � 7! �� k� givesA1x = �B1x+ �(C1 � kB1)x



4 B. PLESTENJAKA2y = �B2y + �(C2 � kB2)y;where k = (xT0 C1x0)(xT0 B1x0) :If B1 is a negative de�nite matrix, we multiply both equations in (1.1) by �1.This turns B1 into a positive de�nite matrix while the determinant D(x; y) remainsthe same. Once B1 is a positive de�nite matrix, we can use (i), (ii) or (iii). Similarly,if B2 is de�nite, we exchange equations in (1.1) and multiply one of the equationsby �1 so that D(x; y) remains unchanged. This shows that it is enough to prove thelemma only for the case when the matrix B1 is de�nite.3. A continuation method. As shown in the previous section, we can assumethat the matrices B1 and C2 in (1.1) are positive de�nite. In this case we constructthe following homotopy:H : Rn1 � Rn2 � R � R � [0; 1] �! Rn1 � Rn2 � R � R;
H(x; y; �; �; t) := 26664 (1� t)W1x+ tA1x� �B1x� t�C1x(1� t)W2y + tA2y � t�B2y � �C2y12 (1� xTx)12 (1� yT y) 37775 ;(3.1)where Wi are symmetric ni � ni matrices, such that eigenproblemsW1x = �B1x(3.2)and W2y = �C2y(3.3)have n1 and n2 distinct eigenvalues, respectively.It is obvious that a solution of H(x; y; �; �; t) = 0 is a solution of the two-parameter problem (1� t)W1x+ tA1x = �B1x+ �tC1x;(3.4) (1� t)W2y + tA2y = �tB2y + �C2y;which is equal to (1.1) for t = 1 and equal to (3.2), (3.3) for t = 0. Associated withthe problem (3.4) are operator determinants�0(t) = ����� By1 tCy1tBy2 Cy2 ����� ;�1(t) = ����� (1� t)W y1 + tAy1 tCy1(1� t)W y2 + tAy2 Cy2 ����� ;



RIGHT DEFINITE TWO-PARAMETER EIGENVALUE PROBLEM 5�2(t) = ����� By1 (1� t)W y1 + tAy1tBy2 (1� t)W y2 + tAy2 ����� ;where y denotes the induced linear transformation on V .For a start we will show that the problem (3.4) is right de�nite for all t 2 [0; 1].We denote the determinant ���� xTB1x txTC1xtyTB2y yTC2y ����by D(x; y; t). It is easy to see that for arbitrary vectors x; y and t 2 [0; 1] we havemin fD(x; y; 0); D(x; y; 1)g � D(x; y; t):(3.5)Lemma 3.1. The problem (3.4) is right de�nite for all t 2 [0; 1].Proof. As B1 and C2 are positive de�nite matrices and the problem (1.1) is rightde�nite, it follows D(x; y; 0); D(x; y; 1) > 0for all vectors x; y 6= 0. Now (3.5) yieldsD(x; y; t) > 0for all x; y 6= 0.A simple consequence of Lemma 3.1 is that there exists a constant �2 > 0 suchthat D(x; y; t) � �2(3.6)for all vectors kxk = kyk = 1 and t 2 [0; 1]. It is easy to see from (3.5) that�2 := min� minkxk=kyk=1D(x; y; 0); minkxk=kyk=1D(x; y; 1)�(3.7)satis�es (3.6).Let� := f(x; y; �; �; t) 2 Rn1 � Rn2 � R � R � [0; 1] j H(x; y; �; �; t) = 0gdenote a solution set for the homotopy (3.1).If we denote S1(t) = (1� t)W1 + tA1 � �B1 � t�C1;S2(t) = (1� t)W2 + tA2 � t�B2 � �C2;then we can write the Jacobian of the homotopy (3.1) asJ(x; y; �; �; t) = 264S1(t) 0 �B1x �tC1x0 S2(t) �tB2y �C2y�xT 0 0 00 �yT 0 0 375 :(3.8)Definition 3.2. We say that (x; y; �; �; t) 2 � is a singular point of the homotopy(3.1) if the Jacobian J(x; y; �; �; t) is singular.



6 B. PLESTENJAKLemma 3.3. Singular points of the homotopy (3.1) are precisely those points(x; y; �; �; t) 2 � where (�; �) is a multiple eigenvalue of (3.4).Proof. First we prove that if (x; y; �; �; t) 2 � and (�; �) is a simple eigenvalue of(3.4), then the Jacobian (3.8) is nonsingular. Let (z; w; a; b) 2 Rn1 � Rn2 � R � R besuch that J(x; y; �; �; t)264 zwab 375 = 0:It follows that S1(t)z � aB1x� btC1x = 0;(3.9) S2(t)w � atB2y � bC2y = 0;(3.10) xT z = 0;(3.11) yTw = 0:(3.12)Since H(x; y; �; �; t) = 0, S1(t)x = 0;(3.13) xTx = 1;(3.14) S2(t)y = 0;(3.15) yT y = 1:(3.16)From (3.13), (3.9) and S1(t) = ST1 (t) it follows that0 = zTS1(t)x = xTST1 (t)z = xTS1(t)z = axTB1x+ btxTC1x:(3.17)Similarly it follows from (3.15) and (3.10) that0 = wTS2(t)y = yTST2 (t)w = yTS2(t)w = atyTB2y + byTC2y:(3.18)Equations (3.17) and (3.18) form a 2� 2 homogeneous linear system for a and b.Lemma 3.1 implies that this linear system is nonsingular, thus the only solution isa = b = 0:From (3.9) and (3.10) it now follows S1(t)z = 0 and S2(t)w = 0. Since (�; �) is asimple eigenvalue for (3.4) we have rank(Si(t)) = ni� 1 and there exist �; � 2 R suchthat z = �xand w = �y:It follows from (3.11), (3.12), (3.14) and (3.16) that � = � = 0.For the second part, let (�; �) be a multiple eigenvalue of (3.4). Without anyloss of the generality we can assume that rank(S1(t)) < n1 � 1. There exists a vectorz 2 Rn1 such that z 6= 0, S1(t)z = 0 and xT z = 0. It follows thatJ(x; y; �; �; t)264 z000375 = 0



RIGHT DEFINITE TWO-PARAMETER EIGENVALUE PROBLEM 7and the Jacobian J(x; y; �; �; t) is singular.If the problem (1.1) satis�es the TBC condition, then it is easy to see that thehomotopy (3.1) has no singular points. The reason for this is the well known fact thatirreducible tridiagonal matrices can not have multiple eigenvalues [22]. Shimasaki [23]makes use of this in his algorithm.Since the problem (3.4) is right de�nite it hasN real eigenvalues for every t 2 [0; 1].Therefore there exist N homotopy curves#i(t) := (xi(t); yi(t); �i(t); �i(t); t); i = 1; : : : ; N;parametrizable with respect to t, such that #i(t) 2 �. The following theorem, whichis a result of Browne and Sleeman, is of major importance as it shows that #i(t) is aholomorphic function of t.Theorem 3.4 (Browne and Sleeman, [10]). Eigenvalues �i(t); �i(t) and vectorsxi(t); yi(t), for i = 1; : : : ; N , are holomorphic functions of t on the interval [0; 1] andxi(t)
 yi(t) form a �0(t)-orthogonal basis of eigenvectors for (3.4), i.e. if i 6= j then(xi(t)
 yi(t))T�0(t)(xj(t)
 yj(t)) = 0:Theorem 3.4 implies that we have N disjoint homotopy curves #i(t). This allowseasy tracking of each curve from t = 0 to t = 1.Eigenvalues of the problem (3.4) are not necessarily distinct (except for t = 0), sothe eigenvalue curves 
i(t) := (�i(t); �i(t)), i = 1; : : : ; N , can intersect. It follows fromLemma 3.3 that whenever at least two eigenvalue curves 
i(t) intersect, we have asingular point. When we trace an eigenvalue curve from t = 0 to t = 1 numerically, wemust be aware that there is a danger of switching to another curve whenever we hit asingular point. A numerical method �nds one eigenvector from the eigensubspace andsince the eigensubspace at a singular point is at least two-dimensional, the methodcan accidentally pick an eigenvector from another homotopy curve.Since we choose the matrices W1 and W2 in such a way that the homotopy hasno singular points at t = 0, the homotopy has a singular point only at �nitely manyvalues t 2 (0; 1]. The continuity of the eigenvalue curves assures that we can jumpover the singular point at t using #i(t� h) as an initial approximation for #i(t+h) ifh is small enough.In order to prevent switching from one homotopy curve to another, we will derivea bound for the constant � > 0, independent of t, such that if xi(t) 
 yi(t) andxj(t)
 yj(t) are eigenvectors for (3.4) and unit vectors xi(t); yi(t) and xj(t); yj(t) areparts of homotopy curves #i(t) and #j(t), respectively, thenmax(kxi(t)� xj(t)k2; kyi(t)� yj(t)k2) � �for all i 6= j and t 2 [0; 1]. Then we will write the sketch of an algorithm for calculatingall eigentuples of the problem (1.1) using the continuation method.Before we can state the theorem about the existence of such an �, we have toprove some auxiliary results.Lemma 3.5. Let A 2 Rn�n be a positive de�nite symmetric matrix and let x andy be unit vectors, such that xTAy = 0: It follows thatkx� yk2 � 4�n�1 + �n ;



8 B. PLESTENJAKwhere �1 and �n are the greatest and the smallest eigenvalue of A, respectively.Proof. Since matrix A is symmetric, there exists an orthonormal basis of eigen-vectors xi, such that Axi = �ixi, i = 1; : : : ; n, where �1 � �2 � � � � � �n > 0 and wecan write vectors x and y as: x = nXi=1 �ixi;y = nXi=1 �ixi:The condition xTAy = 0 is now equivalent tonXi=1 �i�i�i = 0:(3.19)We are searching for the minimum of kx � yk2. Under conditions Pni=1 �2i = 1 andPni=1 �2i = 1 we havekx� yk2 = nXi=1(�i � �i)2 = 2� 2 nXi=1 �i�i:(3.20)It follows from (3.19) and from the fact that matrix A is positive de�nite that in(3.20) not all terms in the sum on the right-hand side can be of equal sign. It is easyto see that candidates for which the minimum is attained have the formx = �1x1 + �nxny = ��1x1 + �nyn:The equation (3.19) together with kxk = kyk = 1 gives�21 = �n�1 + �n ; �2n = �1�1 + �nand kx� yk2 = 4�n�1 + �n :Lemma 3.6. If x1; x2; y1; y2 are unit vectors such thatk(x1 
 y1)� (x2 
 y2)k2 � �2;then max(kx1 � x2k2; ky1 � y2k2) � 2(1�r1� �22 ):Proof. Since vectors x1; x2; y1; y2 are all normalized, we havek(x1 
 y1)� (x2 
 y2)k2 = 2� 2hx1; x2ihy1; y2i � �2:



RIGHT DEFINITE TWO-PARAMETER EIGENVALUE PROBLEM 9It follows that hx1; x2ihy1; y2i � 1� �22and min(hx1; x2i; hy1; y2i) �r1� �22 :Finally, from kx1 � x2k2 = 2� 2hx1; x2i;ky1 � y2k2 = 2� 2hy1; y2i;we get max(kx1 � x2k2; ky1 � y2k2) � 2(1�r1� �22 ):Now we are able to prove a theorem on the minimum distance between eigenvec-tors of the homotopy curves #i(t).Theorem 3.7. Let xi(t) 
 yi(t) and xj(t)
 yj(t) be eigenvectors of (3.4), i 6= jand t 2 [0; 1], where unit vectors xi(t); yi(t) and xj(t); yj(t) are parts of homotopycurves #i(t) and #j(t), respectively. Then there exists a constant � > 0, independentof t, such that max(kxi(t)� xj(t)k2; kyi(t)� yj(t)k2) � �for all i 6= j and t 2 [0; 1].Proof. By Lemma 3.1, the matrix �0(t) is symmetric and positive de�nite for allt 2 [0; 1]. From Theorem 3.4 we have(xi(t)
 yi(t))T�0(t)(xj(t)
 yj(t)) = 0and we can apply Lemma 3.5. It follows that for every t 2 [0; 1] there exists a constant�(t) > 0, such that kxi(t)
 yi(t)� xj(t)
 yj(t)k2 � �2(t):By Lemma 3.6 we havemax(kxi(t)� xj(t)k2; kyi(t)� yj(t)k2) � 2(1�r1� �22 );where � := maxt2[0;1] �(t)and the constant we are looking for is� := 2(1�r1� �22 ):



10 B. PLESTENJAKIn order to use Theorem 3.7 to obtain a bound � on the minimum distancebetween the eigenvectors for di�erent eigenvalues of (3.4) we need information aboutthe extreme eigenvalues of �0(t). Since �0(t) is a matrix of order N , the exactcomputation would demand too much computational work. Therefore it is better toobtain an upper and a lower bound for the maximum and the minimum eigenvalue of�0(t), respectively.The upper bound is easily obtained from the fact thatk�0(t)k = kB1 
 C2 � t2C1 
B2k � kB1kkC2k+ kC1kkB2k:It follows that � � kB1kkC2k + kC1kkB2k for an arbitrary eigenvalue � of �0(t),t 2 [0; 1].It is not so trivial to obtain a lower bound for the minimum eigenvalue of �0(t).Let �(t) := minkxk=kyk=1D(x; y; t):Volkmer [26, Theorem 4.5] showed that�(t) �min(fn1; n2g)�1 � �for an arbitrary eigenvalue � of �0(t).If follows from (3.6) that �2 � �(t) for every t 2 [0; 1]. We summarize these resultsin the following lemma.Lemma 3.8. We consider the right de�nite problem (3.4) where the assumption(3.6) is valid. Let � be an eigenvalue of �0(t), t 2 [0; 1]. Then�2 �min(fn1; n2g)�1 � � � kB1kkC2k+ kC1kkB2k:(3.21)Since xi(t) and yi(t) are holomorphic functions of t, for each � > 0 there existsh > 0, such that kxi(t)� xi(t0)k; kyi(t)� yi(t0)k � �when jt� t0j � h and t; t0 2 [0; 1]. If we take h small enough, then #i(t) will be a goodapproximation for #i(t+ h). If we use a numerical method which converges from theinitial approximation #i(t) to the nearest solution of (3.4) at t + h, then switchingfrom one curve to another is possible only when passing through a singular point.We propose the following continuation method for tracing a homotopy curve#(t) = #i(t) from t = 0 to t = 1.Algorithm 1.Initialization(i) Solve (3.2) and (3.3) to obtain an initial eigenvalue (�(0); �(0)) and initialeigenvectors x(0), y(0).(ii) Set t = 0 and set the initial step size h.Main loopRepeat:1) If t+ h > 1 then set h = 1� t.2) Use a numerical method to calculate #(t+ h) using #(t) as an initial approx-imation.



RIGHT DEFINITE TWO-PARAMETER EIGENVALUE PROBLEM 113) Calculate M := max(k(x(t+ h)� x(t)k2; ky(t+ h)� y(t)k2)4) If a) M � c1�, where c1 2 (0; 1] is a prescribed constant and � is the constantfrom Theorem 3.7, orb) t+ h = 1 and the Jacobian J(x(1); y(1); �(1); �(1); 1) is singularthen set t to the last good value, set h = 2h=3 and go to step 2).5) If M � c2�, where 0 < c2 < c1 is a prescribed constant then set h = 3h=2.6) Set t = t+ h.Until t � 1� �1, where �1 > 0 is a prescribed constant.The criterion in step 4a) detects if the point #(t+h) still lies on the same homotopycurve. If M � c1�, then it is possible that we have switched to another curve. Thereason is that either the step size h is too large either we have passed a singular point.The solution is to decrease the step size h and start again from the last good pointt. Instead of halving the step size we choose to multiply it with 2=3 in order to avoidanother calculation at the point where the problem was detected in step 4). By usingthis approach we jump over all singular points.When checking for singular points we could use Lemma 3.3 and check the singu-larity of the Jacobian J(x(t); y(t); �(t); �(t); t): These checks are necessary only whent = 1 as we can not jump over t = 1. The jump is not possible since the problem (3.4)is not necessarily positive de�nite for t = 1 + h. The solution at t = 1 is to alwayscheck the singularity of the Jacobian in addition to the criterionM � c1�. We do thisin step 4b). In case of a singular point at t = 1 a recipe is to successfully decrease thestepsize h and take #(t) for the solution at t = 1 when t is close enough to 1.In step 1) we adjust the step size if t + h is greater than 1 and in step 5) weincrease the step size when the homotopy curve is 
at. The constants c1 and c2 haveto be suitably chosen to balance the computational time and the precision of the �nalresults.4. Numerical methods. The main principle of the continuation method is thatas the parameter t changes from 0 to 1, #(t) is always a good initial approximation for#(t+h). In order to follow a homotopy curve from t = 0 to t = 1 numerically, we needa local convergent method, which will converge to the eigentuple of a right de�nitetwo-parameter eigenvalue problem (1.1) providing a good initial approximation isgiven. For such a method we can take Newton's method.We view u = (x; y; �; �) as a (K +2)-dimensional vector where K := n1+n2 andde�ne F (u) := 26664A1x� �B1x� �C1xA2y � �B2y � �C2y12 (xTx� 1)12 (yT y � 1) 37775 :Newton's method applied to the equation F (u) = 0 givesF 0(uk)(uk+1 � uk) = �F (uk);(4.1)where F 0(u) = 264A1 � �B1 � �C1 0 �B1x �C1x0 A2 � �B2 � �C2 �B2y �C2yxT 0 0 00 yT 0 0 375 :



12 B. PLESTENJAKTo perform one step (4.1) of Newton's method, we have to solve the linear system264A1 � �kB1 � �kC1 0 �B1xk �C1xk0 A2 � �kB2 � �kC2 �B2yk �C2ykxTk 0 0 00 yTk 0 0 375264�xk�yk��k��k 375(4.2) = 26664�(A1 � �kB1 � �kC1)xk�(A2 � �kB2 � �kC2)yk12 (1� xTk xk)12 (1� yTk yk) 37775and to calculate new approximationsxk+1 = xk +�xk ;yk+1 = yk +�yk;�k+1 = �k +��k ;�k+1 = �k +��k:The following equations can be derived from (4.2)(A1 � �kB1 � �kC1)xk+1 = ��kB1xk +��kC1xk;(4.3) (A2 � �kB2 � �kC2)yk+1 = ��kB2yk +��kC2yk;(4.4) xTk xk+1 = 12 (xTk xk + 1);yTk yk+1 = 12 (yTk yk + 1):To solve for ��k;��k we denotevk = (A1 � �kB1 � �kC1)�1B1xk;wk = (A1 � �kB1 � �kC1)�1C1xk ;(4.5) pk = (A2 � �kB2 � �kC2)�1B2yk;qk = (A2 � �kB2 � �kC2)�1C2yk:We multiply the above equalities with xTk and yTk and obtain the following linearsystem �xTk vk xTkwkyTk pk yTk qk � ���k��k � = � 12 (xTk xk + 1)12 (yTk yk + 1) �(4.6)for ��k and ��k. After we solve the system (4.6) for ��k ;��k we calculate xk+1and yk+1 from (4.3) and (4.4).To improve the convergence we use the following generalization of Rayleigh quo-tient to two-parameter problem (1.1). Remember that in the classical eigenvalueproblem Ax = �x the formula for the Rayleigh quotient is�(x) = xTAxxTx :



RIGHT DEFINITE TWO-PARAMETER EIGENVALUE PROBLEM 13If instead of the problem (1.1) we consider the related system (1.3) than we de�nethe Rayleigh quotient �(xk; yk; A1; A2; B1; B2; C1; C2) as a pair (�1; �2), where�1 = h�1z; zih�0z; zi ;(4.7) �2 = h�2z; zih�0z; zi :We call (4.7) a tensor Rayleigh quotient. Since the two-parameter problem (1.1) isright de�nite, all tensor Rayleigh quotients are well de�ned.Although it looks at �rst sight that a computation with �0;�1, �2, which are allof order N , will increase the computational work and make this method ine�cient,it is possible to compute the tensor Rayleigh quotient quite e�ciently. The reason isthat we are always dealing only with the decomposable tensors z = x
 y. Then it iseasy to see from the structure of �i that�1 = (xTC1x)(yTA2y)� (xTA1x)(yTC2y)(xTB1x)(yTC2y)� (xTC1x)(yTB2y) ;(4.8) �2 = (xTA1x)(yTB2y)� (xTB1x)(yTA2y)(xTB1x)(yTC2y)� (xTC1x)(yTB2y) :This shows that we do not have to work explicitly with matrices �i.In a modi�cation of Newton's method with the tensor Rayleigh quotient we re-spectively replace �k and �k with �k;1 and �k;2 in equations (4.3),(4.4) and (4.5).Let x0 and y0 be two initial approximations for the eigenvector of (1.1). An initialapproximation for the eigenvalue is not needed, since we can calculate one using thetensor Rayleigh quotient. The following algorithm is called Tensor Rayleigh QuotientIteration (TRQI):Repeat for k = 0; 1; : : ::1) Calculate the tensor Rayleigh quotient(�k;1; �k;2) = �(xk; yk; A1; A2; B1; B2; C1; C2):2) If any of the matrices A1��k;1B1��k;2C1 or A2��k;1B2��k;2C2 is singular,give (�k;1; �k;2) a small perturbation.3) Calculate the vectorsvk = (A1 � �k;1B1 � �k;2C1)�1B1xk ;wk = (A1 � �k;1B1 � �k;2C1)�1C1xk;pk = (A2 � �k;1B2 � �k;2C2)�1B2yk;qk = (A2 � �k;1B2 � �k;2C2)�1C2yk:4) Calculate ��k and ��k from the linear system�xTk vk xTk wkyTk pk yTk qk � ���k��k � = � 12 (xTk xk + 1)12 (yTk yk + 1) � :5) Calculate the vectors exk+1 = ��kvk +��kwk;eyk+1 = ��kpk +��kqk;xk+1 = exk+1=kexk+1k;yk+1 = eyk+1=keyk+1k:



14 B. PLESTENJAK6) Set k = k + 1.Until �k(A1 � �k;1B1 � �k;2C1)xk+1k2 + k(A2 � �k;1B2 � �k;2C2)yk+1k2� 12 � �2:To justify the terminating criterion we have to prove some results. Let us de�nethe residual r(x; y; �; �) := � (A1 � �B1 � �C1)x(A2 � �B2 � �C2)y � :(4.9)Lemma 4.1 (Ji, Jiang and Lee, [18]). Let �; � be arbitrary scalars and x; yarbitrary unit vectors. Let (x�; y�; ��; ��) be an eigentuple of (1.1). If the matrix�xTB1x� xTC1x�yTB2y� yTC2y� �is nonsingular, thenp(�� � �)2 + (�� � �)2 � 




�xTB1x� xTC1x�yTB2y� yTC2y� ��1




 krk2;(4.10)where r = r(x; y; �; �) is the residual (4.9).Proof. Since (x�; y�; ��; ��) is an eigentuple, we haveA1x� � ��B1x� � ��C1x� = 0;(4.11) A2y� � ��B2y� � ��C2y� = 0:From (4.9) it follows xTA1x� � xT�B1x� � xT�C1x� = x�T r1;(4.12) yTA2y� � yT�B2y� � yT�C2y� = y�T r2;where r = [r1 r2]T . If we multiply relations (4.11) by xT and yT and subtract themfrom (4.12), we obtain the following linear system�xTB1x� xTC1x�yTB2y� yTC2y� �� �� � ��� � � � = �x�T r1y�T r2 � :The bound (4.10) follows readily.Corollary 4.2 (Ji, Jiang and Lee, [18]). If the sequence (xk; yk; �k;1; �k;2)converges to the eigentuple (x�; y�; ��; ��) of (1.1), then for a su�ciently large k wehave q(�� � �k;1)2 + (�� � �k;2)2 � c ��11 krkk2;where rk = r(xk ; yk; �k;1; �k;2) is the residual (4.9), c is a constant independent of r; kand �1 is the constant from (1.2).Proof. For a su�ciently large k we have xk = x� + o(1) and yk = y� + o(1). Itfollows that ����xTkB1x� xTk C1x�yTk B2y� yTk C2y� ���� = D(x�; y�) + o(1):



RIGHT DEFINITE TWO-PARAMETER EIGENVALUE PROBLEM 15Since D(x�; y�) � �1 we can apply Lemma 4.1. It is easy to see that there exists aconstant c such that 




�xTkB1x� xTkC1x�yTk B2y� yTk C2y� ��1




 � ��11 c:We will show that when TRQI converges, its convergence rate is quadratic. Wedenote by uk = (xk ; yk; �k;1; �k;2) the sequence generated by TRQI with the initialvectors x0 and y0. Here kxkk = kykk = 1, k = 0; 1; : : :. Let u� = (x�; y�; ��1; ��2)stands for a true solution of the problem, �k for (�k;1; �k;2) and �� for (��1; ��2).We need the following lemma on the error bound for the Rayleigh quotient.Lemma 4.3. Let A be a symmetric matrix with eigenpairs Axi = �ixi, fori = 1; : : : ; n. Let a unit vector x be an approximation for the eigenvector x1 and let� = xTAx be the Rayleigh quotient for x. Thenj�� �1j � 2kAkkx� x1k2:(4.13)Proof. Since matrix A is symmetric, its eigenvectors form an orthogonal basis. Inthis basis we can write x = �1x1 + �2x2 + � � �+ �nxn; where �21 + � � �+ �2n = 1. It iseasy to see that � = xTAx = �1�21 + �2�22 � � �+ �n�2nand kx� x1k2 = (1� �1)2 + �22 + � � �+ �2n = 2(1� �1):It follows that �� �1 = nXi=2(�i � �1)�2i :Finally, k�i � �1k � 2kAkyields j�� �1j � 2kAk(1� �21) � 4kAk(1� �1) = 2kAkkx� x1k2:Theorem 4.4. Suppose that F 0(u�) is nonsingular. If the sequence fukg con-verges to u� as k !1, then for k large enough there exists a constant c such thatkuk+1 � u�k � ckuk � u�k2:Proof. We notice that we obtain u0k+1 := (exk+1; eyk+1; �k;1 + ��k; �k;2 + ��k)by Newton's method using the initial approximation uk. Since F 0(u�) is nonsingular,Newton's method has a quadratic convergence rate and for k large enough there existsa constant c1, such thatkexk+1 � x�k; keyk+1 � y�k � c1kuk � u�k2:



16 B. PLESTENJAKIt is easy to see that there exists a constant c2, such thatkxk+1 � x�k; kyk+1 � y�k � c2kuk � u�k2:(4.14)In order to complete the proof we have to �nd a suitable bound for k�k+1 � ��k:We can write the system (1.3) in the formG1w = �w;G2w = �w;where Gi = ��1=20 �i��1=20 for i = 1; 2 and w = �1=20 z. Let us writezk+1 = xk+1 
 yk+1;wk+1 = �1=20 zk+1;z� = x� 
 y�;w� = �1=20 z�:The tensor Rayleigh quotient (�k+1;1; �k+1;2) = �(xk+1; yk+1; A1; A2; B1; B2; C1; C2)is equal to �k+1;1 = hG1wk+1; wk+1ihwk+1; wk+1i ;�k+1;2 = hG2wk+1; wk+1ihwk+1; wk+1i :The matrices G1; G2 are symmetric and we can apply Lemma 4.3. It follows thatk�k+1 � ��k � c3kwk+1 � w�k2 � c3k�1=20 k2kzk+1 � z�k2;(4.15)where c3 := 2max(kG1k; kG2k). Together with (4.14) this gives a constant c4, suchthat k�k+1 � ��k � c4kuk � u�k4:(4.16)The proof follows from the bounds (4.14) and (4.16).Let us remark that the bound (4.16) shows that in TRQI the eigenvalue partconverges faster than in Newton's method. This justi�es the numerical results in thenext section.Another generalization of Rayleigh quotient was studied by Blum and Chang in[6] and by Ji, Jiang and Lee in [18]. In the classical eigenvalue problem Ax = �x theRayleigh quotient �(x) = xTAxxTxminimizes the residual kAx � �xk for a given x 6= 0 over all � 2 R. Based on thisproperty we de�ne the generalized Rayleigh quotient e�(x; y; A1; A2; B1; B2; C1; C2) forthe two-parameter problem (1.1) to be a pair (e�1; e�2) which minimizes the norm ofthe residual  k(A1 � s1B1 � s2C1)xk2 + k(A2 � s1B2 � s2C2)yk2!1=2(4.17)



RIGHT DEFINITE TWO-PARAMETER EIGENVALUE PROBLEM 17for a given x; y 6= 0 over all s1; s2 2 R.Lemma 4.5. The generalized Rayleigh quotient e�(x; y; A1; A2; B1; B2; C1; C2) isequal to e�1 = hAz;BzihCz;Czi � hAz;CzihBz;CzihBz;BzihCz;Czi � hBz;Czi2 ;(4.18) e�2 = hAz;CzihBz;Bzi � hAz;BzihBz;CzihBz;BzihCz;Czi � hBz;Czi2 :where z = �xy � ; A = �A1 00 A2 � ; B = �B1 00 B2 � ; C = �C1 00 C2 � :Proof. We consider the least squares problemmin(e�1;e�2)2R2 kAz � e�1Bz � e�2Czk(4.19)and the corresponding overdetermined linear system�B1x C1xB2y C2y � � e�1e�2 � = �A1xA2y � :(4.20)It is obvious that the norm (4.17) is equal to the norm of the residual (4.19). Let usshow that the overdetermined system (4.20) has rank 2. Namely, if the K � 2 matrix�B1x C1xB2y C2y �(4.21)has rank smaller than 2, then if follows that����xTB1x xTC1xyTB2y yTC2y ���� = D(x; y) = 0which contradicts the fact that the problem (1.1) is right de�nite.Since the matrix (4.21) has rank 2, the least squares solution of (4.20) can beexpressed as the solution of the normal equations� (B1x)T (B2y)T(C1y)T (C2y)T � �B1x C1xB2y C2y � � e�1e�2 � = � (B1x)T (B2y)T(C1y)T (C2y)T ��A1xA2y � :(4.22)Using Cramer's rule it is easy to see that the solution of the system (4.22) is identicalto (4.18).If we compare the formulas (4.8) and (4.18) then we see that the tensor Rayleighquotient requires less operations to compute than the generalized Rayleigh quotient.If we use the generalized Rayleigh quotient instead of the tensor Rayleigh quotientin Step 1 of TRQI algorithm, then we call this method the Generalized RayleighQuotient Iteration algorithm (GRQI).



18 B. PLESTENJAK5. Numerical example. For a numerical example we take the following two-parameter system24 1 0 00 0 00 0 035 x� �24 2 1 11 3 �0:51 �0:5 2 35x� �24 0 1 11 0 11 1 035x = 0;24 0 0 00 1 00 0 035 y � �24 1 1 11 0 11 1 135 y � �24 3 1 �11 3 1�1 1 4 35 y = 0:Matrices are chosen in such a way that (0; 0) is a quadruple eigenvalue. For theconstruction of the homotopy (3.1) we take matricesW1 = 24 0 1 11 1 11 1 135 and W2 = 24 1 1 11 0 11 1 135 :It is easy to see that (0; 0) is a quadruple eigenvalue for the homotopy (3.1) at t = 1=2.Thus the homotopy has a singular point at t = 1=2 which some of the homotopy curves#i(t) have to pass.Using the gradient method we calculate the value�2 = minf minkxk=kyk=1D(x; y; 0); minkxk=kyk=1D(x; y; 1)gand obtain �2 = 0:2188. It follows from Lemma 3.8 that the smallest eigenvalue of �0is greater or equal to �2=3 = 0:0729 (for a comparison, the exact smallest eigenvalueof �0 is 0:2112). The upper bound kB1kkC2k + kC1kkB2k from (3.21) is equal to22:6292 (for a comparison, the exact largest eigenvalue of �0 is 18:8374). Now weuse Theorem 3.7 to obtain � = 0:0064. This is the value we use in the continuationmethod.For the initial eigentuple #(0) we take�(0) = �1:0445;�(0) = �0:4529;x(0) = (0:8067;�0:3435;�0:4808)T ;y(0) = (0:4326;�0:8326; 0:3460)T :We choose h = 0:02 as the initial step size and set c1 = 0:5 and c2 = 0:1. Weset �1 = �2 = 10�8 for the constants in the continuation method and TRQI (GRQI)algorithm, respectively. As a result, the continuation method using these initial valuestakes 94 steps to reach t = 1 from t = 0. In each step maximum 3 steps of TRQIalgorithm and maximum 4 steps of GRQI algorithm are needed to reach the prescribedprecision.Next �gures present the behaviour of the continuation method for these initialvalues. In Figure 5.1 we see the graphs of �(t) and �(t). We see that the homotopycurve passes the singular point (0; 0) at t = 1=2. As it can be seen from Figures5.2 and 5.3, where we see graphs of x(t) and y(t), no curve switching occurs in thesingular point. Figure 5.4 depicts how the step size h changes from t = 0 to t = 1. If



RIGHT DEFINITE TWO-PARAMETER EIGENVALUE PROBLEM 19we compare Figure 5.4 with the previous ones, then it is clearly seen how the adaptivealgorithm appropriately reduces or increases the step size h. We also notice that thestep size h reduces near t = 1, where we have another singular point. It is clearly seenthat the algorithm slows down in sensitive areas and speeds up when the homotopycurve is 
at.
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Fig. 5.1. Eigenvalue pair (�; �) versus t. Solid curve: �(t); dashed curve: �(t).
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Fig. 5.2. Eigenvector x versus t. Solid curve: x1(t); dashed curve: x2(t); dotted curve: x3(t).Similar results can be shown for the remaining 8 homotopy curves. Table 5.1presents the number of steps it takes the continuation method to calculate the eigen-tuples from t = 0 to t = 1. In all homotopy curves the majority of steps is calculatedon the interval [0:6; 0:7]. The only exception is i = 6 where the number of steps isso small because #6(t) is a constant. As it can be seen from Table 5.1 and also fromFigure 5.4, the large number of steps is a result of a steep homotopy curve and not aresult of passing a singular point.
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Fig. 5.3. Eigenvector y versus t. Solid curve: y1(t); dashed curve: y2(t); dotted curve: y3(t).
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Fig. 5.4. Step size h versus t.We also tested Newton's method without tensor or generalized Rayleigh quotient.The numbers in the fourth, the �fth and the sixth column of Table 5.1. represent thenumber of calculated Newton iterations, tensor and generalized Rayleigh quotients,respectively. As predicted in Theorem 4.4 TRQI converges faster than Newton'smethod. On the other hand, GRQI is most expensive to compute and has the slowestconvergence among these three methods. Usually two steps of TRQI and three stepsof GRQI are needed for one step of the continuation method. Based on these resultsand based on the theory from the previous section we recommend the use of TRQIalgorithm instead of Newton's method or GRQI.The number of steps could be further reduced by using better bounds for thenorm of the di�erence between two distinct eigenvectors of the two-parameter rightde�nite problem (1.1).
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