A CONTINUATION METHOD FOR A RIGHT DEFINITE
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Abstract. The continuation method has been successfully applied to the classical Az = Az and
to the generalized Ax = ABz eigenvalue problem. Shimasaki applied the continuation method to the
right definite two-parameter problem which results as a discretization of a two-parameter Sturm-—
Liouville problem. We show that the continuation method can be used for a general right definite
two-parameter problem and we give a sketch of the algorithm. For a local convergent method we use
the Tensor Rayleigh Quotient Iteration (TRQI), which is a generalization of the Rayleigh iterative
method to two-parameter problems. We show its convergence and compare it with Newton’s method
and with the Generalized Rayleigh Quotient Iteration (GRQI), studied by Ji, Jiang and Lee.
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1. Introduction. We consider a two-parameter eigenvalue problem

A1z = AByx + uChz,

(1.1)
Ay = ABay + pCay,

where A;, B;, C; are symmetric n; X n; matrices over R, i = 1,2. We also require a
definiteness condition

2Bz 2TCz

1.2 D(x,y) :=
(12) (=:9) y"'Byy  yTCay

>0 >0

for all vectors ||z]| = |ly|]] = 1. We call the problem (1.1) right definite [27] if the
condition (1.2) holds. If in addition the matrices By and C5 are positive definite, then
we call the problem diagonal right definite.

We say that (A, ) is an eigenvalue of the problem (1.1) if

ker(Ai - )\Bl - ,LLCl) 75 {0}, 1= ]., 2.

If dimker(A; — AB; — puC;) = 1 for i = 1,2 then (\, ) is a simple eigenvalue of (1.1).
On the tensor product space V := R™ ® R of the dimension N := nin. we
define operator determinants

Bl of
B} C}

Ay = 4 Ay =
Al o

Bf 4]
Ro = toat
By A
where AJ{,A;,BI,B;,CLC; are the induced linear transformations on V. For in-
stance, AJ{ is defined on a decomposable tensor z ® y by AJ{ (z®y) = Aiz®y

and this definition is extended to all of V' by linearity and continuity. Similarly,
Ag(a: RyY) =z ® Asy.
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A two-parameter system (1.1) is called nonsingular if the corresponding operator
determinant Ag is invertible. In the case of a nonsingular two-parameter system, the
problem (1.1) is equivalent to the simultaneous problem in V'

A1Z = /\A()Z,

(1.3)
Asz = ulgz,

for decomposable tensors z (see Atkinson [3] for details). Atkinson [3, Theorem 7.8.2]
also showed that right definiteness is equivalent to the condition that the operator
determinant Ag is positive definite.

Several numerical algorithms can be applied to the right definite two-parameter
eigenvalue problem (1.1). Bohte [9] uses Newton’s method to find an eigenvalue
pair. The simultaneous problem (1.3) of the right definite problem (1.1) can be
treated by standard numerical methods [25, 16]. Miiller [21] uses the continuation
method to compute eigenvalue curves starting from a given eigenvalue and Browne
and Sleeman [11] use the gradient method [7, 8]. Blum and Chang [6] derived the
Minimum Residual Quotient Iteration (MRQI) for the problem Az = ABz + uCz
subject to ||z]] = 1 and f(x) = 0, where f is a real functional. Ji, Jiang and Lee
[18] generalized their approach to the right definite two-parameter problem (1.1) and
derived the Generalized Rayleigh Quotient Iteration (GRQI).

Multiparameter eigenvalue problems arise in a variety of applications [2], partic-
ularly in mathematical physics when the method of separation of variables is used
to solve boundary value problems [27]. When the separation constants cannot be
decoupled, two-parameter Sturm—Liouville problems of the form

- (pi(xny;(xi))' (oo = (Naa (@) + paia(as) )i (o0).

where z; € [a;,b;], with boundary conditions

yi(a;) cosa; — yi(a;)sina; =0, 0<aq; <,

yi(b;) cos B; —yi(bi)sin8; =0, 0<p3; <,

will arise, where «; € [0,7), 8; € (0,7] and p}, ¢;,a;1,a;2 are real valued and con-
tinuous, for ¢ = 1,2. Many numerical methods for two-parameter Sturm-Liouville
problems have been proposed, see for example [4, 5, 14, 15].

By using finite differences the problem (1) can be converted into a right definite
problem (1.1), where matrices A;, B;, C; satisfy the following conditions: A; is an
irreducible tridiagonal matrix and B;, C; are diagonal matrices, such that diagonal
elements are all strictly positive or all strictly negative, for i = 1,2. We will denote
these conditions by TBC as in [17]. Some numerical methods have been developed
specially for problems which satisfy TBC: Ji [17] uses the two-dimensional bisection
method and Shimasaki [23] uses the continuation method with quadratic convergence
rate [24] (cf. [1] for details about the continuation method).

The continuation method has been successfully applied to the one-parameter
eigenvalue problems, see for example [12, 13, 19, 20]. We show that the continua-
tion method with a homotopy similar to the one used in [23] can be applied to a
general two-parameter problem (1.1), which does not necessarily satisfy TBC.

In §2 we show that every right definite problem can be transformed to a diagonal
right definite problem by only a simple linear substitution of parameters A and pu.
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In §3 we construct a homotopy, derive bounds for the minimum distance between
eigenvectors and give a sketch of the algorithm based on the continuation method.
For a local convergent method in the continuation method we use Tensor Rayleigh
Quotient Iteration (TRQI). We derive TRQI in §4, show its convergence and compare
it with another generalization of the Rayleigh quotient, suggested by Ji, Jiang and
Lee [18]. In §5 we give a numerical example which reflects the behaviour of our
continuation method.

2. Transformation to a diagonal right definite problem.

LEMMA 2.1. If (1.1) is a right definite problem, then
(i) at least one of the matrices By and B, is definite (positive or negative)
(ii) at least one of the matrices C1 and Cy is definite (positive or negative)

Proof. First we show that at least one of the matrices By, Bs is definite.

If not, there exist vectors zg,yo # 0 such that I Bizg = 0 and yl Bayo = 0,
which gives the counterexample D(zg,y0) = 0. It follows that at least one of the
matrices By,By is definite. In the same manner we show that at least one of the
matrices C1, Cs is definite. d

Since the problem (1.1) is right definite, there exist i,j € {1,2} such that B; and
C; are definite matrices (positive or negative). This is enough to transform the right
definite problem (1.1) to a diagonal right definite problem.

LEMMA 2.2. If the problem (1.1) is right definite, then it is possible to transform
it to a diagonal right definite problem by a linear substitution of parameters A and p.

Proof. Let us first consider all possibilities with the positive definite matrix Bj.

(i) The matrix Cy is positive definite. This is already the situation we are
looking for, so no transformation is needed.

(if) The matrix C5 is negative definite. Since for all vectors z,y # 0 we have
(z7 B12)(y' Cay) < 0 and D(z,y) > 0, it follows that both matrices C; and By are
definite. If not, there would exist a pair zg,yo # 0 such that (z Cyz0)(yd Bayo) =0
and D(zg,yo) < 0, but this is not possible. Since Bs is a definite matrix, there exists
k € R, such that Cs + kB> is a positive definite matrix.
It is easy to see that the substitution A — X\ + ku gives

Ala: = )\Blaf + /.L(Cl + kBl)a:
Ay = ABay + pu(Cs + kBo)y,

which is a desired situation.
(iii) The matrix C; is definite (positive or negative). From D(z,y) > 0 and
(zT Byz) > 0 for all vectors z,y # 0 it follows

As a consequence for an arbitrarily chosen vector xzg # 0 the matrix

(zf Cizo)

C _
" (2] Bizo)

B;

is positive definite and the substitution A — A — ku gives

Ala: = )\Bla: + /.,L(Cl - kBl)a:
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Asy = ABay + u(Cy — kBs)y,

where

(z§ Crzo)

k= .
(2§ Bio)

If B; is a negative definite matrix, we multiply both equations in (1.1) by —1.
This turns B; into a positive definite matrix while the determinant D(z,y) remains
the same. Once By is a positive definite matrix, we can use (i), (ii) or (iii). Similarly,
if By is definite, we exchange equations in (1.1) and multiply one of the equations
by —1 so that D(z,y) remains unchanged. This shows that it is enough to prove the
lemma only for the case when the matrix B is definite. d

3. A continuation method. As shown in the previous section, we can assume
that the matrices By and C3 in (1.1) are positive definite. In this case we construct
the following homotopy:

H:R" xR” xRxRx[0,1] — R™ xR" xR xR,

(1—t)Wiz +tA1x — ABix — tuChx

1 — )Way + t Aoy — tABoy — uC

(3.1 H(z,y,\, u,t) := ( YWay ; QZ/T 2y — nChy ,
s(1—2"x)
3(1-y"y)

where W; are symmetric n; X n; matrices, such that eigenproblems

(32) Wl.’lf = /\3117
and
(3.3) Way = pCy

have n; and n» distinct eigenvalues, respectively.
It is obvious that a solution of H(z,y, A, u,t) = 0 is a solution of the two-
parameter problem

(1 —-t)Wiz +tA1x = AByz + pitC x,

(3.4)
(1= t)Way + tAzy = AtBsyy + uChy,

which is equal to (1.1) for ¢ = 1 and equal to (3.2), (3.3) for t = 0. Associated with
the problem (3.4) are operator determinants

Bf tof
A()(t): 1Jr Jrl ’

tB} O}
At) = (1—tW, +tAl ]
T la—owd Al o |
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Bl (1 —t)W +tAl

As(t) =
29 tBY (1 —t)W] +tAl

)

where T denotes the induced linear transformation on V.

For a start we will show that the problem (3.4) is right definite for all ¢ € [0, 1].
We denote the determinant
z2TByz tzTChz

ty"Bay  yTCoy

by D(z,y,t). It is easy to see that for arbitrary vectors z,y and ¢ € [0,1] we have
(3.5) min {D(z,y,0), D(z,y,1)} < D(z,y,1).

LEMMA 3.1. The problem (3.4) is right definite for all t € [0,1].
Proof. As By and C> are positive definite matrices and the problem (1.1) is right
definite, it follows

D(z,y,0), D(z,y,1) > 0
for all vectors z,y # 0. Now (3.5) yields
D(z,y,t) >0

for all z,y # 0. O
A simple consequence of Lemma 3.1 is that there exists a constant d > 0 such
that

for all vectors ||z|| = ||yl = 1 and ¢ € [0,1]. It is easy to see from (3.5) that

(3.7 09 = min{ min  D(z,y,0), min D(a:,y,l)}
lzl[=llyll=1 llzll=llyl=1

satisfies (3.6).
Let

I:={(z,y,\, u,t) ER™ xR" xRx R x[0,1] | H(z,y, A\, p,t) =0}

denote a solution set for the homotopy (3.1).
If we denote

Sy (t) = (1 — t)W1 +tA; — \B; — t,uCl,
S2(t) = (]. - t)W2 + tAQ - tABQ - /JCQ,
then we can write the Jacobian of the homotopy (3.1) as

Si(t) 0 —Bix —-tCix
_| 0 St) —tBay —Coy
(38) J(x,y,/\,,u,t) - —.’ET 0 0 0
0 —yT 0 0
DEFINITION 3.2. We say that (z,y, \, u,t) € T is a singular point of the homotopy
(8.1) if the Jacobian J(z,y, A, u,t) is singular.
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LEMMA 3.3. Singular points of the homotopy (3.1) are precisely those points
(z,y,\, 1, t) € T where (X, p) is a multiple eigenvalue of (3.4).

Proof. First we prove that if (z,y, A, u,t) € I’ and (A, p) is a simple eigenvalue of
(3.4), then the Jacobian (3.8) is nonsingular. Let (z,w,a,b) € R" x R x R x R be
such that

z
J(z,y, A, p, t) 1;) =0.
b
It follows that
. 1(t)z —aByx — btChx =
(3.9 Si(t) B btC 0,
(3.10) Sa(t)w — atBay — bCay = 0,
(3.11) T2 =0,
(3.12) yTw=0
Since H(z,y, A, u,t) =0,
(3.13) S1(t)x =0,
(3.14) ele =1,
(3.15) Sa(t)y =0,
(3.16) yTy =1.

From (3.13), (3.9) and S;(t) = S{(¢) it follows that
(317) 0 = 7S (t)x = "ST(t)z = 27S,(t)z = az” Byz + btz" C, z.
Similarly it follows from (3.15) and (3.10) that
(318) 0 = wl'Sy(t)y = yI'ST(t)w = y'So(t)yw = aty” Byy + by’ Coy.
Equations (3.17) and (3.18) form a 2 x 2 homogeneous linear system for a and b.
Lemma 3.1 implies that this linear system is nonsingular, thus the only solution is
a=b=0.

From (3.9) and (3.10) it now follows S;(t)z = 0 and Sy (t)w = 0. Since (A, p) is a
simple eigenvalue for (3.4) we have rank(S;(t)) = n; — 1 and there exist o, 3 € R such
that

and

w = By.
It follows from (3.11), (3.12), (3.14) and (3.16) that « = 8 = 0.
For the second part, let (A, ) be a multiple eigenvalue of (3.4). Without any

loss of the generality we can assume that rank(S;(t)) < ny — 1. There exists a vector
z € R™ such that z # 0, Si(t)z = 0 and 272 = 0. Tt follows that

J(x,y, A, u, t) =0

O O oW
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and the Jacobian J(z,y, A\, u, t) is singular. 0

If the problem (1.1) satisfies the TBC condition, then it is easy to see that the
homotopy (3.1) has no singular points. The reason for this is the well known fact that
irreducible tridiagonal matrices can not have multiple eigenvalues [22]. Shimasaki [23]
makes use of this in his algorithm.

Since the problem (3.4) is right definite it has N real eigenvalues for every ¢ € [0, 1].
Therefore there exist N homotopy curves

197,(t) = (xl(t)ayl(t)a/\z(t)aul(t)at)a i = 17' . '7N7

parametrizable with respect to ¢, such that 9;(¢) € I'. The following theorem, which
is a result of Browne and Sleeman, is of major importance as it shows that ¥;(t) is a
holomorphic function of ¢.

THEOREM 3.4 (Browne and Sleeman, [10]). Figenvalues A;(t), ui(t) and vectors
xi(t),yi(t), fori=1,...,N, are holomorphic functions of t on the interval [0,1] and
z;(t) @ y;(t) form a Ag(t)-orthogonal basis of eigenvectors for (3.4), i.e. if i # j then

(z:(t) @ yi()" Ao(t)(z; (1) @ y;(2)) = 0.

Theorem 3.4 implies that we have N disjoint homotopy curves 9;(¢). This allows
easy tracking of each curve from t =0 to ¢t = 1.

Eigenvalues of the problem (3.4) are not necessarily distinct (except for t = 0), so
the eigenvalue curves v;(t) := (\i(¢), ui(t)), ¢ = 1,..., N, can intersect. It follows from
Lemma 3.3 that whenever at least two eigenvalue curves +;(t) intersect, we have a
singular point. When we trace an eigenvalue curve from ¢ = 0 to ¢t = 1 numerically, we
must be aware that there is a danger of switching to another curve whenever we hit a
singular point. A numerical method finds one eigenvector from the eigensubspace and
since the eigensubspace at a singular point is at least two-dimensional, the method
can accidentally pick an eigenvector from another homotopy curve.

Since we choose the matrices W; and Ws in such a way that the homotopy has
no singular points at ¢ = 0, the homotopy has a singular point only at finitely many
values ¢t € (0,1]. The continuity of the eigenvalue curves assures that we can jump
over the singular point at ¢ using ;(¢t — h) as an initial approximation for ¥;(t + h) if
h is small enough.

In order to prevent switching from one homotopy curve to another, we will derive
a bound for the constant n > 0, independent of ¢, such that if z;(t) ® y;(t) and
z;(t) @ y;(t) are eigenvectors for (3.4) and unit vectors z;(t),y;(t) and z;(t),y;(t) are
parts of homotopy curves ¥;(t) and 9;(¢), respectively, then

max([|zi(t) — z; I, lys(t) — y;O%) > n

foralli # j and t € [0,1]. Then we will write the sketch of an algorithm for calculating
all eigentuples of the problem (1.1) using the continuation method.

Before we can state the theorem about the existence of such an 7, we have to
prove some auxiliary results.

LEMMA 3.5. Let A € R™™™ be a positive definite symmetric matriz and let x and
y be unit vectors, such that x7 Ay = 0. It follows that

4X,

2
T — > —
S ww
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where A\ and )\, are the greatest and the smallest eigenvalue of A, respectively.

Proof. Since matrix A is symmetric, there exists an orthonormal basis of eigen-
vectors z;, such that Az; = \jz;, i =1,...,n, where \{ > Xy > .-+ > X, > 0 and we
can write vectors x and y as:

n

T = E QT
i=1
n

Y= E Bix;.
i=1

The condition 27 Ay = 0 is now equivalent to
n
(3.19) > Xiaif; = 0.
=1

We are searching for the minimum of ||z — y||>. Under conditions )., , o7 = 1 and
>or, 87 =1 we have

n

(3.20) o= yl2 =Y (i - B2 =223 aifh.

i=1 =1

It follows from (3.19) and from the fact that matrix A is positive definite that in
(3.20) not all terms in the sum on the right-hand side can be of equal sign. It is easy
to see that candidates for which the minimum is attained have the form

r=a1T1 + apTy
Y = —1T1 + apYn.

The equation (3.19) together with ||z|| = ||y|| = 1 gives

N An N A1
o= —, o, ="
)\1 +An )\1 +An
and
4\
2 n
T — = — O
lo=ul = 55
LeMMA 3.6. If x1,x2,y1,y2 are unit vectors such that
(1 @ y1) — (22 @ y2)||” > €,
then
2 2 €
max([lz1 — z2[% [ly1 = :2l7) 2 2(1 —/1 - ).

Proof. Since vectors x1, 2, y1,y2 are all normalized, we have

(z1 @ y1) — (22 @ Y2)||* = 2 — 2(x1, 22) (Y1, Y2) > €.
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It follows that

2
(w1, 2)(y1,12) <1— 5
and
. €2
min((r1,22), ) < 11 5.

Finally, from

lz1 — 22| = 2 = 2(z1, 22),

||y1 - y2||2 =2- 2<y17y2>7

62
max(|lzr - 22[%, [l = 12l”) 2 20— [1-5). O

Now we are able to prove a theorem on the minimum distance between eigenvec-
tors of the homotopy curves 9;(t).

THEOREM 3.7. Let z;(t) ® y;(t) and z;(t) ® y;(t) be eigenvectors of (3.4), i # j
and t € [0,1], where unit vectors x;(t),y:(t) and z;(t),y;(t) are parts of homotopy
curves ¥;(t) and ¥;(t), respectively. Then there exists a constant n > 0, independent
of t, such that

we get

max([|zi(t) — z; I, lys(t) — ;%) > n

for alli # j and t € [0,1].
Proof. By Lemma 3.1, the matrix Ag(¢) is symmetric and positive definite for all
t € [0,1]. From Theorem 3.4 we have

(:(t) @ yi(H)" Do(t)(; (1) @ y;()) = 0

and we can apply Lemma 3.5. Tt follows that for every t € [0, 1] there exists a constant
e(t) > 0, such that

l2i(t) ® yi(t) — z;(t) @ y; (B)]I* > €*(2).

By Lemma 3.6 we have

€2
max(|i () — x; (017, lyi(t) — y;(B)I7) > 2(1 —4/1 - )
where
= t
€= e <)

and the constant we are looking for is
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In order to use Theorem 3.7 to obtain a bound 1 on the minimum distance
between the eigenvectors for different eigenvalues of (3.4) we need information about
the extreme eigenvalues of Ag(t). Since Ag(t) is a matrix of order N, the exact
computation would demand too much computational work. Therefore it is better to
obtain an upper and a lower bound for the maximum and the minimum eigenvalue of
Ay(t), respectively.

The upper bound is easily obtained from the fact that

180l = 1B ® Co = 2C1 @ Ba|| < [|Bulll|C| + [|C1[[[| Bell-

It follows that A < ||By||||C2|| + ||Ci||||Bz|| for an arbitrary eigenvalue A of Ag(t),
t €10,1].
It is not so trivial to obtain a lower bound for the minimum eigenvalue of Ay(t).
Let
o(t)

= min D(x,y,t).
llzll=lyll=1 ( )

Volkmer [26, Theorem 4.5] showed that
§(t) -min({n1,n2})"t < A

for an arbitrary eigenvalue A of Ag(t).

If follows from (3.6) that d2 < §(t) for every ¢ € [0, 1]. We summarize these results
in the following lemma.

LEMMA 3.8. We consider the right definite problem (3.4) where the assumption
(8.6) is valid. Let \ be an eigenvalue of Ao(t), t € [0,1]. Then

(3.21) 0y - min({ny,n2}) " < X < [IBil[|Cal + [|C1l[| Ba |-

Since z;(t) and y;(t) are holomorphic functions of ¢, for each n > 0 there exists
h > 0, such that

i () = 2 (t)], [l () — wi ()] < m

when |t —t'| < h and t,t' € [0,1]. If we take h small enough, then J;(¢) will be a good
approximation for 9;(t + h). If we use a numerical method which converges from the
initial approximation ¥;(t) to the nearest solution of (3.4) at t + h, then switching
from one curve to another is possible only when passing through a singular point.

We propose the following continuation method for tracing a homotopy curve
I(t) = 9;(t) from ¢t =0 to ¢t = 1.

ALGORITHM 1.
Initialization
(i) Solve (3.2) and (3.3) to obtain an initial eigenvalue (A(0), (0)) and initial
eigenvectors z(0), y(0).
(ii) Set ¢ = 0 and set the initial step size h.
Main loop
Repeat:
1) ft+h>1thenset h=1-—¢.
2) Use a numerical method to calculate 9(¢ + h) using ¥(¢) as an initial approx-
imation.
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3) Calculate M := max(||(z(t + h) — z(t)||?, [|y(t + h) — y(t)[|?)
4) If

a) M > e¢m, where ¢; € (0,1] is a prescribed constant and 7 is the constant

from Theorem 3.7, or
b) t+ h =1 and the Jacobian J(z(1),y(1), A(1), u(1),1) is singular
then set t to the last good value, set h = 2h/3 and go to step 2).
5) If M < cam, where 0 < ¢y < ¢ is a prescribed constant then set h = 3h/2.
6) Set t =t + h.
Until ¢ > 1 — €;, where €; > 0 is a prescribed constant.

The criterion in step 4a) detects if the point ¥(¢+h) still lies on the same homotopy
curve. If M > ¢y, then it is possible that we have switched to another curve. The
reason is that either the step size h is too large either we have passed a singular point.
The solution is to decrease the step size h and start again from the last good point
t. Instead of halving the step size we choose to multiply it with 2/3 in order to avoid
another calculation at the point where the problem was detected in step 4). By using
this approach we jump over all singular points.

When checking for singular points we could use Lemma 3.3 and check the singu-
larity of the Jacobian J(x(t),y(t), A(t), u(t),t). These checks are necessary only when
t = 1 as we can not jump over ¢ = 1. The jump is not possible since the problem (3.4)
is not necessarily positive definite for £ = 1 + h. The solution at t = 1 is to always
check the singularity of the Jacobian in addition to the criterion M > ¢1n. We do this
in step 4b). In case of a singular point at ¢ = 1 a recipe is to successfully decrease the
stepsize h and take ¥(t) for the solution at ¢ = 1 when ¢ is close enough to 1.

In step 1) we adjust the step size if ¢ + h is greater than 1 and in step 5) we
increase the step size when the homotopy curve is flat. The constants ¢; and ce have
to be suitably chosen to balance the computational time and the precision of the final
results.

4. Numerical methods. The main principle of the continuation method is that
as the parameter ¢ changes from 0 to 1, ¥(t) is always a good initial approximation for
J(t+h). In order to follow a homotopy curve from ¢ = 0 to ¢ = 1 numerically, we need
a local convergent method, which will converge to the eigentuple of a right definite
two-parameter eigenvalue problem (1.1) providing a good initial approximation is
given. For such a method we can take Newton’s method.

We view u = (z,y, A\, ) as a (K + 2)-dimensional vector where K := n; + ns and
define

Arx — ABy1x — pChzx

Asy — ABsy — uC
F(u) — 2y 2y — pl2y

%(a:Ta: -1)
sy —1)
Newton’s method applied to the equation F(u) = 0 gives
(4.1) F'(ug) (g1 —ug) = —F(uy),
where
A1 - )\Bl - /J,Cl 0 —Blil',' —Clill'
N 0 Az = ABy —uCs  —Boy —Chy
Fiu) = zT 0 0 0

0 yT 0 0
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To perform one step (4.1) of Newton’s method, we have to solve the linear system

A1 — /\kBl — ukC’l 0 —Bla:k —C’la:k A:L‘k
0 As — ABy — pCo>  —Boyr,  —Chys Ay,
zi 0 0 0 AN,
0 yr 0 0 Apy

4.2
(+2) —(A1 = A Br — i Ch) g,

—(A2 = X\ By — i Ca) yi,
%(1 —xlxy)
31— yfyr)

and to calculate new approximations

Tpy1 = Tp + Axy,

Ye+1 = Yr + Ayr,
Akt1 = A + AN,

P41 = pr + Apig.
The following equations can be derived from (4.2)

(4.3) (A1 — A\ B1 — ukcl)zk+1 = ANy Bray, + AppCray,
(4.4) (A = A B2 — e Co)yrs1 = AN Bayr + App Coyg,
zh wp1 = 3 (oo + 1),

Yl yk+1 = 2 (yilye + 1).

To solve for AXg, Auy, we denote

vp = (41 — M B1 — ueCh) ' By g,
(4.5) wi = (A1 — M\ By — e Ch) ™' Cray,
pr = (As — A Ba — 11,C2) ™' Bay,
ar = (As — A B2 — i Co) ™' Coyp.

We multiply the above equalities with z] and y] and obtain the following linear
system

(4.6) V;‘ka Ty, wk] [AM] _ [%%(x;fa:k + 1)]

yipr  yiaw ] [Ape (yiyr + 1)

for A\, and Apy. After we solve the system (4.6) for AN, Apy we calculate x4
and yg+1 from (4.3) and (4.4).

To improve the convergence we use the following generalization of Rayleigh quo-
tient to two-parameter problem (1.1). Remember that in the classical eigenvalue
problem Az = Az the formula for the Rayleigh quotient is

zT Ax
2Ty’

pz) =
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If instead of the problem (1.1) we consider the related system (1.3) than we define
the Rayleigh quotient p(zy,yx, A1, A2, B1, B2, C1,C5) as a pair (p1, p2), where

= (A1z,2)

(47 (Aoz,2)’
' Py = (Asz,2)
(Aoz,z)

We call (4.7) a tensor Rayleigh quotient. Since the two-parameter problem (1.1) is
right definite, all tensor Rayleigh quotients are well defined.

Although it looks at first sight that a computation with Ag, A;, Ay, which are all
of order N, will increase the computational work and make this method inefficient,
it is possible to compute the tensor Rayleigh quotient quite efficiently. The reason is
that we are always dealing only with the decomposable tensors z = z ® y. Then it is
easy to see from the structure of A; that

” (27 Ci2)(y" Asy) — (2" A1) (y" Cay)

(4.8) (2T Bi1z)(yT Coy) — (27 Ciz)(y" Bay)’
oy = (27 A1) (y" Boy) — (2" Biz) (y" Azy)

* 7 (@TBix)(y" Cay) — (27 Cha) (y" Bay)

This shows that we do not have to work explicitly with matrices A;.

In a modification of Newton’s method with the tensor Rayleigh quotient we re-
spectively replace Ay and pp with p; and pr2 in equations (4.3),(4.4) and (4.5).
Let zo and yp be two initial approximations for the eigenvector of (1.1). An initial
approximation for the eigenvalue is not needed, since we can calculate one using the
tensor Rayleigh quotient. The following algorithm is called Tensor Rayleigh Quotient
Iteration (TRQI):

Repeat for £ = 0,1, ...
1) Calculate the tensor Rayleigh quotient

(pk717pk72) = p(xkayk7A17A27B17B2701502)'

2) If any of the matrices Ay — pg 181 — pi,2C1 or As — pg 1 Bo — pi, 2C> is singular,
give (pg,1,pr,2) a small perturbation.
3) Calculate the vectors

v = (A1 — pr1B1 — pr2C1)” lek,
wk = (A1 — pr,1B1 — pr2Ci)~ ka,
= (As — pr,1 B> — pr,2Co) "' Bayi,
= (As — pr,1Bo — pr2Cs) * Coyy.

4) Calculate A\ and A,uk from the linear system
zfop xiwp] [AM]  [3(zfze +1)
T T A = 1.,T Nl
YDk Ui Gk [k 5 Ypyr + 1)
5) Calculate the vectors
1 = AXgug + Appwy,
Uk+1 = ANppr + Apgqr,

Trr1 = Trp1 /|[Thralls
Ykt1 = Ukt1 /| Ukt ll-



14 B. PLESTENJAK

6) Set k =k + 1.

=

Gt (I = pra B = praCidansa P + (2 = puas B = praColmen ) < o
To justify the terminating criterion we have to prove some results. Let us define
the residual

S =)

LEMMA 4.1 (Ji, Jiang and Lee, [18]). Let A, pu be arbitrary scalars and xz,y
arbitrary unit vectors. Let (z*,y*, \*, u*) be an eigentuple of (1.1). If the matrix

2TBz* 2TCix*
T * T *
Yy  Bay* y  Cay

is nonsingular, then

(410) VO N (- P <

2T Byz* zTCLz* -t
lI7[]2,

yTBQy* yTCQy*

where r = r(x,y, \, u) is the residual (4.9).
Proof. Since (x*,y*, \*, u*) is an eigentuple, we have

Arz® — N*Bix* — p*Ciz* =0,

(411) * * * * *
Agy - Bgy — K ng =0.

From (4.9) it follows

2T Az — 2T AByz* — xT,uCla:* =2Tr,,
(412) T * T * T * *T
Yy Asy” —y AB2y” —y pCay™ =y* ' ra,

where 7 = [r; ro]T. If we multiply relations (4.11) by #7 and yT and subtract them
from (4.12), we obtain the following linear system

{xTBla:* a:TClz*] {/\* — /\] . {x*Trl}
yTB2y* yTCQy* ,U,* —u y*Tr2 -
The bound (4.10) follows readily. O

COROLLARY 4.2 (Ji, Jiang and Lee, [18]). If the sequence (T, Yk, Pr1,Pk2)
converges to the eigentuple (x*,y*, \*, u*) of (1.1), then for a sufficiently large k we
have

VO =i+ 7 = e <07 Il

where 1, = (T, Yk, P15 Pk,2) 15 the residual (4.9), ¢ is a constant independent of r, k
and 01 is the constant from (1.2).

Proof. For a sufficiently large k we have z = z* + o(1) and y, = y* + o(1). Tt
follows that

T * T *

z: Biz* ziCizx

R =Dty +o(1).
Y Bay™  y;, Cay
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Since D(z*,y*) > 01 we can apply Lemma 4.1. Tt is easy to see that there exists a
constant ¢ such that

We will show that when TRQI converges, its convergence rate is quadratic. We
denote by ur = (zk, Yk, pr,1,Pr,2) the sequence generated by TRQI with the initial
vectors xo and yo. Here ||zk|| = |lykll = 1, k = 0,1,.... Let u* = (z*,y*, p}, p3)
stands for a true solution of the problem, p; for (pg.1,pr,2) and p* for (p7, p}).

We need the following lemma on the error bound for the Rayleigh quotient.

LEMMA 4.3. Let A be a symmetric matriz with eigenpairs Ax; = \x;, for
t=1,...,n. Let a unit vector x be an approximation for the eigenvector x1 and let
w=aT Az be the Rayleigh quotient for x. Then

—1
{x;‘:le* z%Clz* }

<é'e. O
Yl Boy*  yf Coy®

(4.13) = M| < 20| Alllle — |

Proof. Since matrix A is symmetric, its eigenvectors form an orthogonal basis. In
this basis we can write * = a171 + a2T2 + -+ - + apTy,, where af +---+ a2 = 1. It is
easy to see that

W= 2T Az = Ala% + )\2043 -4 Anafb
and
le —zi|P =1 -a)?+al +--+a2=2(1—-ay).

It follows that

n

o — /\1 = Z(/\l — /\1)0&?.

i=2
Finally,
[1Ai = Al < 20| Al
yields
=] <241 - af) <AANA - ar) = 2[|Allllz — 2> O

THEOREM 4.4. Suppose that F'(u*) is nonsingular. If the sequence {u} con-
verges to u* as k — oo, then for k large enough there exists a constant ¢ such that

llursr = ul] < cllug —u*1*.

Proof. We notice that we obtain uj_ , = (Zp41,Yk+1,Pk,1 + ANk, pr2 + Apg)
by Newton’s method using the initial approximation uy. Since F'(u*) is nonsingular,
Newton’s method has a quadratic convergence rate and for k large enough there exists
a constant ¢, such that

|Zkr — 2|, [Tk — ¥ < e llug — w*]|?
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It is easy to see that there exists a constant ca, such that

(4.14) ks = "Il My =y || < eallur — w™||*.

In order to complete the proof we have to find a suitable bound for ||pg+1 — p*||-
We can write the system (1.3) in the form

Giw = \w,
Gow = pw,

where G; = AJI/QA,'AJI/Q fori=1,2and w = A(l)/2z. Let us write

Zkt1 = Th4+1 @ Ykt1,
1/2
Wit1 = Ay “Zky1,
Y=y,
1/2
w* = AO/ z".

The tensor Rayleigh quotient (pg41,1,pk+1,2) = P(Tht1,Yrt1, A1, Az, B1, B2, C1,Cy)
is equal to

(G1wpg1, Wri1)
<wk+1, wk+1>
(Gowpi1, Wri1)
<wk+1, wk+1>

Pk+1,1 =

Pk+1,2 =

The matrices Gy, Gy are symmetric and we can apply Lemma 4.3. It follows that

* * 1/2 *
(4.15) ok = 7Nl < callwisr —w*|I” < esl| AF*Pl2nr1 — 27|12,
where ¢3 := 2max(||G1]|, ||G2]|)- Together with (4.14) this gives a constant ¢4, such
that

(4.16) lowsr = o7l < eallur — w1

The proof follows from the bounds (4.14) and (4.16). O

Let us remark that the bound (4.16) shows that in TRQI the eigenvalue part
converges faster than in Newton’s method. This justifies the numerical results in the
next section.

Another generalization of Rayleigh quotient was studied by Blum and Chang in
[6] and by Ji, Jiang and Lee in [18]. In the classical eigenvalue problem Az = Az the
Rayleigh quotient

xT Az
p(z) =

T

minimizes the residual ||Az — pz|| for a given = # 0 over all p € R. Based on this
property we define the generalized Rayleigh quotient p(x,y, A1, As, By, By, C1,C2) for
the two-parameter problem (1.1) to be a pair (p,p2) which minimizes the norm of
the residual

1/2
(417) (”(Al — 81B1 — 8201)21'“2 + ||(A2 — 3132 — 8202)y||2>
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for a given x,y # 0 over all s1,s2 € R.
LEMMA 4.5. The generalized Rayleigh quotient p(x,y, A1, As, By, B2, C1,C3) is
equal to

.~ (Az,Bz)(Cz,Cz) — (Az,Cz)(Bz,Cz)
(4.18) p= (Bz,Bz)(Cz,Cz) — (Bz,Cz)?>
' -~ (Az,0z)(Bz,Bz) — (Az, Bz)(Bz,C%)
P2 = (Bz,Bz)(Cz,Cz) — (Bz,Cz)?
where

Proof. We consider the least squares problem

(4.19) min _||Az — p1Bz — p2Cz||
(P1,p2)ER?

and the corresponding overdetermined linear system
B1 X 01 xr ,51 :| [ Al.’lf :|
4.20 = .
(4.20) [Bw C'QZ/] [P2 Asy

It is obvious that the norm (4.17) is equal to the norm of the residual (4.19). Let us
show that the overdetermined system (4.20) has rank 2. Namely, if the K x 2 matrix

Bz Cizx
4.21
(421) {Bzy C2y]

has rank smaller than 2, then if follows that

2Bz zTCx

=D(z,y) =0
y"Boy yTCay (=)

which contradicts the fact that the problem (1.1) is right definite.
Since the matrix (4.21) has rank 2, the least squares solution of (4.20) can be
expressed as the solution of the normal equations

w (& @l [ &1 (R1-Tes @i ][]

Using Cramer’s rule it is easy to see that the solution of the system (4.22) is identical
to (4.18). O

If we compare the formulas (4.8) and (4.18) then we see that the tensor Rayleigh
quotient requires less operations to compute than the generalized Rayleigh quotient.
If we use the generalized Rayleigh quotient instead of the tensor Rayleigh quotient
in Step 1 of TRQI algorithm, then we call this method the Generalized Rayleigh
Quotient Iteration algorithm (GRQI).
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5. Numerical example. For a numerical example we take the following two-
parameter system

1 00 2 1 1 0 1 1
0 0 Ojlz—X |1 3 —05(z—p|1 0 1|2=0,
0 00 1 -05 2 1 10
0 00 1 11 3 1 -1
{0 1 0-|y—)\[1 0 1-| — [1 3 l-ly:().

[OOOJ [111Jy u[—11 4J

Matrices are chosen in such a way that (0,0) is a quadruple eigenvalue. For the
construction of the homotopy (3.1) we take matrices

011 1 11
Wi=1|111 and We=1]1 0 1
1 11 1 11

It is easy to see that (0, 0) is a quadruple eigenvalue for the homotopy (3.1) at t = 1/2.
Thus the homotopy has a singular point at ¢ = 1/2 which some of the homotopy curves
9;(t) have to pass.

Using the gradient method we calculate the value

do =min{ min D(z,y,0), min D(z,y,1)}

llzll=llyll=1 llzll=llyll=1

and obtain d, = 0.2188. It follows from Lemma 3.8 that the smallest eigenvalue of Ag
is greater or equal to d2/3 = 0.0729 (for a comparison, the exact smallest eigenvalue
of Ag is 0.2112). The upper bound ||B:]|||C2]| + ||C1||||Bz2]| from (3.21) is equal to
22.6292 (for a comparison, the exact largest eigenvalue of Ag is 18.8374). Now we
use Theorem 3.7 to obtain n = 0.0064. This is the value we use in the continuation
method.

For the initial eigentuple 9¥(0) we take

A(0) =

1(0) = —0.4529,
2(0) = (0.8067, —0.3435, —0. 4808)
y(0) = (0.4326, —0.8326,0.3460)” .

We choose h = 0.02 as the initial step size and set ¢; = 0.5 and ¢; = 0.1. We
set €, = €2 = 10~® for the constants in the continuation method and TRQI (GRQI)
algorithm, respectively. As a result, the continuation method using these initial values
takes 94 steps to reach ¢ = 1 from ¢t = 0. In each step maximum 3 steps of TRQI
algorithm and maximum 4 steps of GRQI algorithm are needed to reach the prescribed
precision.

Next figures present the behaviour of the continuation method for these initial
values. In Figure 5.1 we see the graphs of \(¢) and u(t). We see that the homotopy
curve passes the singular point (0,0) at ¢ = 1/2. As it can be seen from Figures
5.2 and 5.3, where we see graphs of z(t) and y(t), no curve switching occurs in the
singular point. Figure 5.4 depicts how the step size h changes from t =0 to t = 1. If
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we compare Figure 5.4 with the previous ones, then it is clearly seen how the adaptive
algorithm appropriately reduces or increases the step size h. We also notice that the
step size h reduces near ¢t = 1, where we have another singular point. It is clearly seen
that the algorithm slows down in sensitive areas and speeds up when the homotopy
curve is flat.

1.2 s s s s s s s s s
o] 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

t

Fic. 5.1. Eigenvalue pair (X, p) versus t. Solid curve: A(t); dashed curve: p(t).

0.8

0.6

0.4

0.2

-0.2F

-0.4F

-0.6[

-0.8F

Fi1G. 5.2. Eigenvector x versus t. Solid curve: z1(t); dashed curve: x2(t); dotted curve: x3(t).

Similar results can be shown for the remaining 8 homotopy curves. Table 5.1
presents the number of steps it takes the continuation method to calculate the eigen-
tuples from t = 0 to ¢ = 1. In all homotopy curves the majority of steps is calculated
on the interval [0.6,0.7]. The only exception is ¢ = 6 where the number of steps is
so small because Jg(t) is a constant. As it can be seen from Table 5.1 and also from
Figure 5.4, the large number of steps is a result of a steep homotopy curve and not a
result of passing a singular point.
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0.2f

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

F1G. 5.3. Eigenvector y versus t. Solid curve: y1(t); dashed curve: y2(t); dotted curve: y3(t).

0.07

0.06

0.05f

0.04

0.03f

0.02

0.01f

Fic. 5.4. Step size h versus t.

We also tested Newton’s method without tensor or generalized Rayleigh quotient.
The numbers in the fourth, the fifth and the sixth column of Table 5.1. represent the
number of calculated Newton iterations, tensor and generalized Rayleigh quotients,
respectively. As predicted in Theorem 4.4 TRQI converges faster than Newton’s
method. On the other hand, GRQI is most expensive to compute and has the slowest
convergence among these three methods. Usually two steps of TRQI and three steps
of GRQI are needed for one step of the continuation method. Based on these results
and based on the theory from the previous section we recommend the use of TRQI
algorithm instead of Newton’s method or GRQL.

The number of steps could be further reduced by using better bounds for the
norm of the difference between two distinct eigenvectors of the two-parameter right

definite problem (1.1).
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TABLE 5.1
Statistics for all 9 eigenvalues: starting A(0), u(0) and obtained \(1), u(1); number of steps of
the continuation method; number of evaluations of Newton’s method, TRQI and GRQI.

No. of Number of evaluations passes
i X(0) 1(0) steps | Newton | TRQI | GRQI (1) w(1) (0,0)
1 | —1.0445 0.8279 159 360 323 493 —0.2154 0.3659 no
2 1.0445 0.8279 174 399 346 534 1.8297 1.2842 no
3 0 0.8279 216 501 430 654 0.0090 0.4623 no
4 | —1.0445 0 129 289 254 395 0 0 yes
5 1.0445 0 54 145 106 179 1.0445 0 no
6 0 0 10 21 9 9 0 0 yes
7 | —1.0445 —0.4529 94 270 189 316 0 0 yes
8 1.0445 —0.4529 161 405 321 538 4.8629 —4.0229 no
9 0 —0.4529 104 253 208 311 0 0 yes
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