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where � = (�1; : : : ; �k) 2 C k ,Wi(�) = Vi0 � kXj=1�jVij;and Vij are ni � ni matries over C . We will abbreviate the MEP (1) by W .For k = 1, a MEP is a generalized eigenvalue problem V10x1 = �1V11x1.A k-tuple � that satis�es (1) is alled an eigenvalue and the tensor produtx = x1 
 � � � 
 xk is the orresponding right eigenvetor. A left eigenvetororresponding to the eigenvalue � is y = y1 
 � � � 
 yk, where 0 6= yi 2 C niand y�iWi(�) = 0 for i = 1; : : : ; k.The bakward error and ondition numbers are important tools in numeriallinear algebra that reveal the quality and sensitivity of numerial solutions.The theory of bakward error and onditioning for eigenproblems is well devel-oped for the generalized eigenvalue problem (see, e.g., [8℄) and the polynomialeigenvalue problem (see, e.g., [5,11℄).Multiparameter eigenvalue problems arise in a variety of appliations [1℄, par-tiularly in mathematial physis when the method of separation of variablesis used to solve boundary value problems [15℄. The result of the separation isa multiparameter system of ordinary di�erential equations.To a MEP (1) whih satis�es a ertain regularity ondition, a k-tuple of om-muting linear transformations on a tensor produt spae is assoiated, as fol-lows. The tensor produt spae C n1 
 � � � 
 C nk is isomorphi to C N , whereN = n1 � � �nk. The linear transformations Vij indue linear transformationsV yij on C N . For a deomposable tensor,V yij(x1 
 � � � 
 xk) = x1 
 � � � 
 Vijxi 
 � � � 
 xk:V yij is then extended to all of C N by linearity. On C N we de�ne operatordeterminants�0 = ���������� V y11 V y12 � � � V y1kV y21 V y22 � � � V y2k... ... ...V yk1 V yk2 � � � V ykk ���������� 2



and �i = ���������� V y11 � � � V y1;i�1 V y10 V y1;i+1 � � � V y1kV y21 � � � V y2;i�1 V y20 V y2;i+1 � � � V y2k... ... ... ... ...V yk1 � � � V yk;i�1 V yk0 V yk;i+1 � � � V ykk
����������for i = 1; : : : ; k.A MEP is alled nonsingular if the orresponding operator determinant �0 isinvertible. A nonsingular MEP is equivalent to the assoiated problem�ix = �i�0x; i = 1; : : : ; k; (2)for deomposable tensors x = x1 
 � � � 
 xk 2 C N , where the matries �i :=��10 �i ommute for i = 1; : : : ; k (see [2℄).If � is an eigenvalue of W thenda := dim \j1+���+jk=Nj1;:::;jk�0 Ker h(�1 � �1I)j1 � � � (�k � �kI)jki!is the algebrai multipliity anddg := dim k\i=1Ker (�i � �iI)! = kYi=1 dim �KerWi(�)�is the geometri multipliity of the eigenvalue (see [2℄). We say that an eigen-value � is geometrially or algebraially simple when dg = 1 or da = 1, re-spetively. It an be seen that da � dg, so an eigenvalue that is algebraiallysimple is also geometrially simple.Let � be an eigenvalue ofW with the orresponding left and right eigenvetorsx and y. We form a k � k matrixB0 = 266664 y�1V11x1 y�1V12x1 � � � y�1V1kx1y�2V21x2 y�2V22x2 � � � y�2V2kx2... ... ...y�kVk1xk y�kVk2xk � � � y�kVkkxk 377775 : (3)

The following lemma is a onsequene of [9, Lemma 3℄.3



Lemma 1 If � is an algebraially simple eigenvalue of the multiparametereigenvalue problem W then B0 is nonsingular.A MEP is alled Hermitian when all matries Vij are Hermitian. Furthermore,a Hermitian MEP is alled right de�nite if���������� x�1V11x1 x�1V12x1 � � � x�1V1kx1x�2V21x2 x�2V22x2 � � � x�2V2kx2... ... ...x�kVk1xk x�kVk2xk � � � x�kVkkxk ���������� � Æ (4)
for all vetors xi 2 C ni , kxik = 1, i = 1; : : : ; k, and some Æ > 0. Condition(4) is equivalent to the positive de�niteness of �0 [2, Theorem 7.8.2℄. Thisimplies that if W is right de�nite then there exist N linearly independenteigenvetors. If � is an eigenvalue of a right de�nite problemW then � 2 Rk .Furthermore, if all matries Vij of a right de�nite problem W are real, thenthe eigenvetors an be hosen real. For a real geometrially simple eigenvalueof a Hermitian MEP the orresponding left and right eigenvetors oinide.After preliminaries in Setion 2, we study the bakward error in Setion 3. Theondition numbers for eigenvalues and eigenvetors are disussed in Setion 4.The pseudospetra, examined in Setion 5, are another valuable tool for thestudy of the sensitivity of eigenvalues to perturbations of matries. In Se-tion 6, we give some numerial experiments for right de�nite two-parametereigenvalue problems, where pseudospetra an be visualized in R2 .
2 PreliminariesThroughout the paper we assume that the MEPW is nonsingular. The matri-es Eij for i = 1; : : : ; k; j = 0; : : : ; k represent toleranes for the perturbations�Vij of Vij, de�ned by k�Vijk � "kEijk for some " > 0. Usually we take eitherEij = Vij onsidering normwise relative perturbations, or Eij = I onsideringnormwise absolute perturbations. Elementwise perturbations j�Vijj � "jEijjan also be onsidered, see Remark 5. We de�ne�Wi(�) := �Vi0 � kXj=1�j�Vij: 4



We will denote the perturbed MEP with matries Vij + �Vij by W + �W .For a omplex � the sign of � is de�ned as (f. [8, p. 495℄)sign(�) := 8><>:�=j�j; � 6= 00; � = 0:Suppose that we are looking for the maximum Eulidean norm of Az whereA 2 C k�k and z 2 C k is suh that jzij � �i for i = 1; : : : ; k, where �1; : : : ; �kare given positive onstants. Aording to Bauer's maximum priniple (boththe funtion k�k and its domain are onvex), the maximum is attained by z forwhih jzij = �i for i = 1; : : : ; k. For � = [�1 � � � �n℄T we de�ne the �-weightednorm of A askAk� := maxf kAzk2 : z 2 C k ; jzij = �i for i = 1; : : : ; k g: (5)Clearly,kAk� � kAk2k�k2: (6)One may verify that k�k� is indeed a matrix norm. One may also see that k�k�is not a onsistent norm as it does not neessarily satisfy kABk� � kAk�kBk�(for a ounterexample, take A = B = I and � suh that k�k2 < 1).From now on, k � k stands for k � k2. We say that a deomposable tensor z =z1
� � �
zk is normalized if kzik = 1 for i = 1; : : : ; k. From kzk = kz1k � � � kzkkit follows that kzk = 1. In this paper we will assume that the eigenvetors arenormalized.3 Bakward errorLet (ex; e�) be an approximate eigenpair of W and let ex be normalized. Wede�ne the normwise bakward error of (ex; e�) by�(ex; e�) := minf " : (Wi(e�) + �Wi(e�))exi = 0;k�Vijk � "kEijk; i = 1; : : : ; k; j = 0; : : : ; k g: (7)The following theorem is a generalization of the bakward errors for the asek = 1 given in [7, Lemma 2.1℄ and [8, Theorem 2.1℄.5



Theorem 2 For the normwise bakward error �(ex; e�) we have�(ex; e�) = maxi=1;:::;k krike�i ; (8)where ri := Wi(e�)exi is the residual ande�i := kEi0k+ kXj=1 je�jjkEijkfor i = 1; : : : ; k.Proof. From ri = ��Wi(e�)exi it follows that krik � e�i" for i = 1; : : : ; k.Therefore, the right-hand side of (8) is a lower bound for �(ex; e�). The lowerbound is attained for the perturbations�Vi0 = � 1e�ikEi0kriex �i ; �Vij = sign(e�j)e�i kEijkriex �ifor i; j = 1; : : : ; k. 2If W is Hermitian then it is of interest to onsider a bakward error in whihthe perturbations �Vij are Hermitian. The bakward error for a HermitianMEP an be de�ned as�H(ex; e�) := minf " : (Wi(e�) + �Wi(e�))exi = 0; �V �ij = �Vij;k�Vijk � "kEijk; i = 1; : : : ; k; j = 0; : : : ; kg: (9)It is lear that �H(ex; e�) � �(ex; e�) and that the optimal perturbations in (7)are not Hermitian in general. The next lemma, whih is is a generalization of [8,Lemma 2.6℄, shows that in the ase when e� is real requiring the perturbationsto be Hermitian has no e�et on the bakward error.Theorem 3 If W is Hermitian and e� is real then�H(ex; e�) = �(ex; e�): (10)Proof. Let ri = Wi(e�)exi. It follows from e� being real that ex �i ri is real. We arelooking for a Hermitian matrix Si suh that Siexi = �ri. We take Si = krikI6



if ri is a negative multiple of exi; otherwise we take Si = krikHi where Hi is aHouseholder matrix that maps exi to �ri=krik. Suh an Hi exists beause ex �i riis real and is equal to I � 2(w�iwi)�1wiw�i , where wi = exi + ri=krik.Let �Vij be Hermitian matries de�ned by�Vi0 = 1e�ikEi0kHi; �Vij = � 1e�i sign(e�j)kEijkHi (11)for i; j = 1; : : : ; k. It follows that �Wi(e�) = Si and the �rst onstraint in (9)is satis�ed. Using (8), we getkSik = krik � �(ex; e�)e�ifor i = 1; : : : ; k. From (11) we dedue �H(ex; e�) � �(ex; e�). Sine �H(ex; e�) ��(ex; e�) by de�nition, equality (10) must hold. 2We remark that one an see from ex �i Siexi = �exiri that a Hermitian matrixSi suh that Siexi = �exiri exists only when ex �i ri is real. This is the reasonwhy Lemma 3 annot be generalized for nonreal approximations e�. As it isreasonable to assume that e� is real if � is real, Lemma 3 an also be appliedfor a right de�nite MEP.If we are interested only in the approximate eigenvalue e�, then a more appro-priate measure of the bakward error may be�(e�) := minf �(ex; e�) : ex normalized g:Proposition 4�(e�) = maxi=1;:::;k 1e�i �min(Wi(e�)):
Proof. The result follows from Theorem 2 by using the equalityminkxk=1 kAxk = �min(A): 2Remark 5 Although in this paper we do not onsider omponentwise bak-ward errors, omponentwise results from [8℄ an be generalized as well.7



4 Condition numbersIn this setion, we assume that � is a nonzero algebraially simple eigenvalueof a nonsingular MEP W with orresponding normalized right eigenvetor xand left eigenvetor y.4.1 Eigenvalue ondition numberA normwise ondition number of � an be de�ned by�(�;W ) := lim sup"!0 �k��k" :�Vi0 +�Vi0 � kXj=1(�j +��j)(Vij +�Vij)�(xi +�xi) = 0;k�Vijk � "kEijk; i = 1; : : : ; k; j = 0; : : : ; k�: (12)The following results an be onsidered as generalizations of the theory in [8,Setion 2.2℄.Theorem 6 The ondition number �(�;W ) is given by�(�;W ) = kB�10 k�; (13)where�i := kEi0k+ kXj=1 j�jjkEijkfor i = 1; : : : ; k, and � = [�1 � � � �k℄T .Proof. If we expand the equality onstraints in (12) and keep only the �rstorder terms then we get�Wi(�)xi + kXj=1��jVijxi +Wi(�)�xi = O("2): (14)8



Premultiplying by y�i yieldsy�i�Wi(�)xi + y�i kXj=1��jVijxi = O("2)for i = 1; : : : ; k. By rearranging the equations we obtain the linear system264 y�1V11x1 � � � y�1V1kx1... ...y�kVk1xk � � � y�kVkkxk 375 264��1...��k 375 = 264 y�1�W1(�)x1...y�k�Wk(�)xk 375 +O("2);or in shorter formB0�� = 264 y�1�W1(�)x1...y�k�Wk(�)xk 375 +O("2):Sine � is an algebraially simple eigenvalue, it follows from Lemma 1 thatB0 is nonsingular. Thus,�� = B�10 264 y�1�W1(�)x1...y�k�Wk(�)xk 375+O("2)and we onludek��k � kB�10 k"� +O("2) = "kB�10 k� +O("2):Hene, the expression in (13) is an upper bound for the ondition number. Toshow that this bound an be attained we onsider the matries�Vi0 = "kEi0kyix�i ; �Vij = �sign(e�j)"kEijkyix�ifor i; j = 1; : : : ; k. 2As for the bakward error, if the MEP W is Hermitian then it is natural torestrit the perturbations �Vij in (12) to be Hermitian. We denote�H(�;W ) := lim sup"!0 �k��k" : 9



�Vi0 +�Vi0 � nXj=1(�j +��j)(Vij +�Vij)�(xi +�xi) = 0;�V �ij = �Vij; k�Vijk � "kEijk; i = 1; : : : ; k; j = 0; : : : ; k�:Lemma 7 If � is a real algebraially simple eigenvalue of a Hermitian mul-tiparameter eigenvalue problem W then�H(�;W ) = �(�;W ):
Proof. For a Hermitian MEP and algebraially simple eigenvalue � we antake y = x and then the matries Hi in the proof of Theorem 6 are Hermitian.It follows that the perturbations for whih the bound is attained are alsoHermitian. 2As in Setion 3 let us remark that Lemma 7 an also be applied to a rightde�nite MEP.4.2 Eigenvetor ondition numberIn order to study the ondition number of the eigenvetor of an algebraiallysimple eigenvalue we introdue the following approah. If an eigenvetor x =x1 
 � � � 
 xk is perturbed to ex = (x1 +�x1)
 � � � 
 (xk +�xk), then we areinterested in k ve(�x)k, whereve(�x) = [�xT1 � � � �xTk ℄Tis a vetor in C n1+���+nk : Therefore we de�ne a normwise ondition number ofx by�(x;W ) := lim sup"!0 � k ve(�x)k" :�Vi0 +�Vi0 � kXj=1(�j +��j)(Vij +�Vij)�(xi +�xi) = 0;g�i xi = g�i (xi +�xi) = 1;k�Vijk � "kEijk; i = 1; : : : ; k; j = 0; : : : ; k �; (15)10



where the vetors gi that are used for the normalization of ex are suh thatg�i xi 6= 0 for i = 1; : : : ; k and that the matrix264 g�1V11x1 � � � g�1V1kx1... ...g�kVk1xk � � � g�kVkkxk 375 (16)is nonsingular. We an for instane take gi = yi, sine in this ase the matrix(16) is equal to B0, whih is nonsingular for algebraially simple eigenvaluesby Lemma 1.Let m = n1+� � �+nk. We an ombine all the equations (14) into one equationin C m asD ve(�x) = � diag(�Wi(�)) ve(x)� V�� +O("2); (17)whereV = 264 V11x1 � � � V1kx1... ...Vk1xk � � � Vkkxk 375 ; D = 264W1(�) . . . Wk(�) 375 ;diag(�Wi(�)) = 264�W1(�) . . . �Wk(�)375 ;�� = [��1 � � � ��k℄T ; and ve(x) = [ xT1 � � � xTk ℄T :If we de�ne the m� k matrixG = 266664 g1 0 � � � 00 g2 ...... . . . 00 � � � 0 gk 377775then G�V is equal to (16). As a result G�V is nonsingular and we an de�nean oblique projetionP = I � V (G�V )�1G�onto range(G)? along range(V ). It follows that PV = 0 and when we multiply(17) by P we obtainPD ve(�x) = �P diag(�Wi(�)) ve(x) +O("2): (18)11



From g�i�xi = 0 for i = 1; : : : ; k it follows that G� ve(�x) = 0 and thusP ve(�x) = ve(�x). Now we an rewrite (18) asPDP ve(�x) = �P diag(�Wi(�)) ve(x) +O("2): (19)Lemma 8 The operator T de�ned by T := PDP is a bijetion as an operatorfrom G? onto G?, where G? := range(G)?Proof. Sine T learly maps to G?, it is enough to show that T is injetive.Suppose that there exists a z 2 G? suh that Tz = 0. Sine Pz = z, thereexists an h 2 C k suh thatDz = V h: (20)If we left-multiply (20) by Y �, where Y is the m� k matrixY = 266664 y1 0 � � � 00 y2 ...... . . . 00 � � � 0 yk 377775 ;we obtain Y �V h = 0 and sine Y �V = B0 is nonsingular it follows that h = 0.As a result we have Wi(�)zi = 0 for i = 1; : : : ; k where z is partitionedonformally with ve(x). Sine � is algebraially simple by assumption itfollows that dimKerWi(�) = 1 and therefore zi = ixi for ertain i 2 C .Now we know that G�z = 0 on the one hand and on the other hand G�z =[1 � � � k℄T so i = 0 for i = 1; : : : ; k from whih we onlude that z = 0. 2It follows from Lemma 8 and (19) thatve(�x) = �PDP jG?��1 P diag(�Wi(�)) ve(x);where PDP jG? is a restrition of PDP to G?. This givesk ve(�x)k � " �PDP jG?��1 P �;n +O("2); (21)wherekAk�;n := max� kAzk : z = [ zT1 � � � zTk ℄T ;12



zi 2 C ni ; kzik � �i; i = 1; : : : ; k �and n = [n1 � � � nk℄T . One an view this �;n-norm as a blok version of (5).This leads to the next theorem.Theorem 9�(x;W ) = �PDP jG?��1 P �;n : (22)Proof. In the disussion preeding the theorem we showed in (21) that�(x;W ) � �PDP jG?��1 P �;n :What remains is to onstrut a perturbation for whih equality is attained.Suppose that for z = [ zT1 � � � zTk ℄T suh that kzik � �i for i = 1; : : : ; k wehave�PDP jG?��1 P �;n = �PDP jG?��1 Pz : (23)Equality in (21) is then attained if we take�Vi0 = �"kEi0k�i zix�i ; �Vij = sign(�j)"kEijk�i zix�ifor i; j = 1; : : : ; k. 2Remark 10 If we take G = Y then D is a bijetion as an operator from Y? toY?, where Y := range(Y ), and �PDP jY?��1 P �;n = P �DjY?��1 P �;n.From (21) we an produe upper bounds for the norm of ex�x. If we onsideronly �rst order terms then we havekex� xk � k�x1k+ � � �+ k�xkk+O("2)and it follows thatkex� xk � pk k ve(�x)k+O("2):13



As we insert (21) we obtain the boundkex� xk � pk �PDP jG?��1 P �;n "+O("2):5 PseudospetraAnother tool for the study of the sensitivity of the eigenvalues to perturba-tions are pseudospetra. They have been studied for the standard (see, e.g.,[13,14℄) and generalized eigenproblem [6℄ and for the polynomial eigenvalueproblem (see, e.g., [12℄). We extend the de�nition of pseudospetrum to themultiparameter eigenvalue problem.We de�ne the "-pseudospetrum of W by�"(W ) = �� 2 C k : Wi(�) + �Wi(�) singular;k�Vijk � "kEijk; i = 1; : : : ; k; j = 0; : : : ; k�: (24)If we de�ne the "-pseudospetrum of Wi by�"(Wi) = �� 2 C k : Wi(�) + �Wi(�) singular;k�Vijk � "kEijk; j = 0; : : : ; k�;then it is easy to see that�"(W ) = �"(W1) \ �"(W2) \ � � � \ �"(Wk): (25)Theorem 11�"(W ) = f� 2 C k : �(�) � " for i = 1; : : : ; k g= f� 2 C k : �min(Wi(�)) � "e�i for i = 1; : : : ; k g= f� 2 C k : kWi(�)�1k � 1=("e�i) for i = 1; : : : ; k g= f� 2 C k : 9ui; kuik = 1; suh thatkWi(�)uik � "e�i for i = 1; : : : ; k g:Proof. The �rst equality follows readily from the de�nition (24). For theseond equality Proposition 4 an be applied. The last two equalities follow14



from the identity minx6=0 kAxk=kxk = kA�1k�1 = �min(A) with the onventionthat kA�1k =1 if A is singular. 2Pseudospetra for the MEP have a property that is di�erent from pseudospe-tra for the standard eigenvalue problem Ax = �x: if " is large enough then�"(W ) will be unbounded. This is the subjet of the rest of this setion.If W is a right de�nite MEP, then we may be interested in the smallestperturbation that makes W +�W not right de�nite. Again, here we restritthe perturbations �Vij to be Hermitian. We an de�ne the distane to thelosest non right de�nite MEP as�(W ) := minf " :W +�W is not right de�nite;�V �ij = �Vij;k�Vijk � "kEijk; i = 1; : : : ; k; j = 0; : : : ; k g:In the next theorem we show that �(W ) is bounded by the minimal " forwhih the pseudospetra is unbounded.Theorem 12�(W ) � minf " : �"(W ) is unbounded g: (26)Proof. If � = (�1; : : : ; �k) is an eigenvalue of a right de�nite W with orre-sponding normalized eigenvetor x = x1 
 � � � 
 xk then it follows that �i isequal to the tensor Rayleigh quotient [10℄�i = x��ixx��0x (27)for i = 1; : : : ; k.Suppose now that " is so small that W +�W is right de�nite for k�Vijk �"kEijk; i = 1; : : : ; k; j = 0; : : : ; k. Sine the eigenvalues of W +�W an beexpressed as Rayleigh quotients (27) it follows from right de�niteness that thepseudospetrum �"(W ) is bounded. This yields the bound (26). 26 Numerial examplesWe present some numerial examples obtained with Matlab 5.3. For all exam-ples we take Eij = Vij for all i; j. We draw all pseudospetra by omputing�min(Wi(�)) in all grid points by Matlab's svd. For more eÆieny one ould15



try to use similar ideas as mentioned in [13℄, but we will pay no further atten-tion to this. The size of the grid used in the examples is 400� 400.Example 1. For the �rst numerial example we take the right de�nite two-parameter eigenvalue problemW1(�)= � 1 11 2 �� �1 � 2:2 11 2:3 �� �2 � 0:1 �1�1 0:1 � ;W2(�)= � 2 11 �1 �� �1 � 1 �0:2�0:2 �0:1 �� �2 � 2 �0:1�0:1 4 � :Fig. 1. Pseudospetra for Example 1. Top left: The eigenvalues are intersetionsof the eigenurves detW1(�) = 0 (solid line) and detW2(�) = 0 (dashed line).Top right: pseudospetra for " = 10�1:8; 10�1:5; 10�1:2; 10�0:9; 10�0:6. Bottom: pseu-dospetra for W1 (left) and W2 (right).
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The eigenvalues � = (�1; �2) are intersetion points of the eigenvalue urvesdet(W1(�)) = 0 and det(W2(�)) = 0 as depited in the top left piture in Fig-ure 1. The pseudospetra for " = 10�0:6; 10�0:3; 100; 100:3 are shown in the topright piture in Figure 1. One an see that the boundaries of the pseudospe-tra are not di�erentiable. The reason is that pseudospetra are intersetionsof pseudospetra for W1 and W2, whih are shown on the bottom left andbottom right piture in Figure 1, respetively.Table 1Eigenvalues and their ondition numbers for the right de�nite two-parameter prob-lem in Example 1. �1 �2 �(�;W )�1:0142 1:5688 4:660:4556 �0:3613 2:420:9360 �0:4025 3:341:0069 0:7125 3:37The eigenvalues together with the orresponding ondition numbers are pre-sented in Table 1. To obtain the ondition number of an eigenvalue we haveto ompute kB�10 k�. Sine the problem is right de�nite and all matries Vijare real we have to onsider only real vetors in de�nition (5) of kB�10 k�. Thisfat makes it easy to ompute the �-norm as we only have to ompute a �nitenumber of norms. In partiular, for a right de�nite two-parameter ase wehavekB�10 k� = maxf kB�10 zk : z 2 R2 ; jzij = �i for i = 1; 2 g:By omparing the results of Table 1 and Figure 1 one an see that the eigen-value with the largest ondition number has the largest pseudospetrum asmay be expeted.The left �gure in Figure 2 shows eigenvalues of 500 randomly perturbed prob-lems, where eah �Vij is a random symmetri matrix suh that k�Vijk =10�1:2kVijk: One an see that all dots in Figure 2 lie in the interior of thepseudospetrum for " = 10�1:2.The right �gure in Figure 2 presents pseudospetra for " = 10�0:9 and " =10�0:6 on a larger area. One may suspet that here, in ontrast to the eigenvalueproblem Ax = �x, a pseudospetrum may be unbounded.Figures 1 and 2 suggest that the sensitivity of the eigenvalue is related to theangle of the intersetion between the urves det(W1(�)) = 0 and det(W2(�)) =0. We observe that the pseudospetrum is large when the angle of the inter-setion is small. The following proposition (whih an be easily generalized to17



Fig. 2. Left: Eigenvalues of 500 randomly perturbed two-parameter eigenvalueproblems of Example 1, where eah �Vij is a symmetri matrix suh thatk�Vijk = 10�1:2kVijk, and pseudospetrum for " = 10�1:2. Right: Pseudospetrafor Example 1 for " = 10�0:9 and " = 10�0:6.
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10−0.6MEPs with more than two parameters) justi�es this observation.Proposition 13 Let � = (�1; �2) 2 R2 be an algebraially simple eigenvalueof a real right de�nite two-parameter eigenvalue problemW and let x = x1
x2and y = y1 
 y2 be the orresponding normalized right and left eigenvetor,respetively. ThenB0 = 2666664 � n1�1Yj=1 �(1)j (�) 00 � n2�1Yj=1 �(2)j (�) 3777775�1 2666664 �f1��1 (�) �f1��2 (�)�f2��1 (�) �f2��2 (�)
3777775 ;where fi(�) = detWi(�) and where �(i)1 (�) � � � � � �(i)ni�1(�) > 0 are nonzerosingular values of Wi(�) for i = 1; 2.Proof. We de�ne Z(t) = V10 � tV11 � �2V12 and g(t) = det(Z(t)). SineZ(t) is a real analyti funtion of t, there exists an analyti singular valuedeomposition (see [4℄)Z(t) = U(t)�(t)V (t)T (28)suh that(1) U(t) and V (t) are orthogonal matries,18



(2) �(t) = diag(�1(t); : : : ; �n1(t)) is a diagonal matrix,(3) the elements of U(t), �(t), and V (t) are analyti funtions of t in a smallneighborhood of �1, and(4) Z(�1) = U(�1)�(�1)V (�1)T is a singular value deomposition of Wi(�).We may onsider (28) as a singular value deomposition of Z(t) where thesingular values are not neessarily nonnegative and ordered. Let uni(t) andvni(t) denote the nith olumn of U(t) and V (t), respetively. Sine � is analgebraially simple eigenvalue, �ni(�1) = 0, �ni�1(�1) 6= 0, vni(�1) = xi, anduni(�1) = yi.If we di�erentiate �n1(t) = un1(t)TZ(t)vn1(t) then we obtaind�n1dt (�1) = �yT1 V11x1 = �(B0)11: (29)From g(t) = � �1(t)�2(t) � � ��n(t) and (29) it follows that�f1��1 (�) = dgdt (�1) = � �(1)1 (�) � � ��(1)n1�1(�)(B0)11:In order to omplete the proof one has to repeat the above proedure for allpartial derivatives �fi��j (�) for i; j = 1; 2. 2From Theorem 6 and (6) we an onlude that kB�10 k has a great impat onthe sensitivity of the eigenvalue �. As follows from Proposition 13, kB�10 k maybe large when the angle of the intersetion between the urves det(W1(�)) = 0and det(W2(�)) = 0 is small.Example 2. For the seond example we take the two-parameter Sturm{LiouvilleproblemW1(�)x1(t1)=�x001(t1)� (�1 + �2 os 2t1)x1(t1); (30)W2(�)x2(t2)=�x002(t2)� �2x2(t2)with boundary onditions xi(0) = xi(�) = 0 for i = 1; 2, studied in [3℄. Theseond equation of (30) yields that �2 = 12; 22; 32; : : : and then it follows fromthe �rst equation of (30) that �1 is an eigenvalue of the Mathieu equation withparameter �2.If we take h = �=n and apply the �nite-di�erene method to the two-parameterboundary-value problem (30) using symmetri di�erenes y0i � (yi+1�yi�1)=(2h)19



and y00i � (yi+1 � 2yi + yi�1)=h2 for the derivatives y0 and y00, then we obtainan algebrai two{parameter problem whereV10 = V20 = 1h2 tridiag(1;�2; 1);V11 = I; V21 = 0; (31)V12 = diag � os 2�n+ 1 ; os 4�n+ 1 ; : : : ; os 2n�n+ 1�; V22 = In:The eigenvalues of the above algebrai two-parameter problem are approxi-mations to the eigenvalues of (30) with order of approximation O(h2).Fig. 3. Pseudospetra for the algebrai two-parameter approximation of Example 2,where n = 10 and " = 10�1:8; 10�1:5; 10�1:2; 10�0:9; 10�0:6.
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Figure 3 shows eigenvalues and pseudospetra for the algebrai two-parameterapproximation (31) of (30) for n = 10. The left �gure shows eigenvalues asthe points where eigenurves det(W1(�)) = 0 (solid line) and det(W2(�)) = 0(dashed line) interset. One should note that the lines det(W2(�)) = 0 donot agree with the known result �2 = 12; 22; 32; : : :. The reason is that theeigenvalues in Figure 3 are the eigenvalues of the algebrai approximation(31) and not of the original problem (30). The eigenvalues our in groupsof two for a �xed �2. In some of these pairs the eigenvalues are so lose to-gether that they look like a single eigenvalue on Figure 3, an example of suhpair is (�12:6225; 34:7056) and (�12:6215; 34:7056). The right �gure with thepseudospetra for " = 10�1:8; 10�1:5; : : : ; 10�0:6 indiates that the fat thatsome of the eigenvalues are lose together does not seem to inuene theirpseudospetra and the eigenvalues are well onditioned.20
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