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Abstract

We define and evaluate the normwise backward error and condition numbers for
the multiparameter eigenvalue problem (MEP). The pseudospectrum for the MEP
is defined and characterized. We show that the distance from a right definite MEP
to the closest non right definite MEP is related to the smallest unbounded pseu-
dospectrum. Some numerical results are given.
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1 Introduction

We study the backward error, condition numbers and pseudospectra for the
multiparameter eigenvalue problem (MEP)

WZ(A)ZL'Z:O, O%SUZ'E(CM, izl,...,k, (1)
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where A = (\,...,\;) € CF,

k
Wi(A) = Vio = > AV,
j=1

and Vj; are n; x n; matrices over C. We will abbreviate the MEP (1) by W.
For k =1, a MEP is a generalized eigenvalue problem Vigx; = A\ Vi 2.

A k-tuple A that satisfies (1) is called an eigenvalue and the tensor product
T =11 Q- - ® 1z is the corresponding right eigenvector. A left eigenvector
corresponding to the eigenvalue A is y = y; ® - - ® yi, where 0 # y; € C™
and yfW;(A) =0fori=1,...,k.

The backward error and condition numbers are important tools in numerical
linear algebra that reveal the quality and sensitivity of numerical solutions.
The theory of backward error and conditioning for eigenproblems is well devel-
oped for the generalized eigenvalue problem (see, e.g., [8]) and the polynomial
eigenvalue problem (see, e.g., [5,11]).

Multiparameter eigenvalue problems arise in a variety of applications [1], par-
ticularly in mathematical physics when the method of separation of variables
is used to solve boundary value problems [15]. The result of the separation is
a multiparameter system of ordinary differential equations.

To a MEP (1) which satisfies a certain regularity condition, a k-tuple of com-
muting linear transformations on a tensor product space is associated, as fol-
lows. The tensor product space C"* ® --- ® C™ is isomorphic to CV, where
N = ny---ng. The linear transformations Vj; induce linear transformations
VJ on CV. For a decomposable tensor,

V;}L-(xl@)---@xk):x1®---®‘/;jxi®---®xk.

VJ is then extended to all of CV by linearity. On CV we define operator
determinants

Vi Vo Vi
VoV V.
AU _ 21 ?2 2k
‘/;ch VkTZ Vka



and

V1T1 e V1T,z>1 V1T0 V1T,i+1 e VlTk
A V2T1 e V2T,z'—1 V2T0 V2T,i+1 e V2Tk
i . . . . .
Vle T Vlj,z'q V;Jo VkT,iJrl T Vljk
fori=1,...,k.

A MEP is called nonsingular if the corresponding operator determinant A is
invertible. A nonsingular MEP is equivalent to the associated problem

AZ'CL':)\Z'A[)CL', 1= ]_,...,k, (2)

for decomposable tensors € = 71 ® --- ® 2, € CV, where the matrices I'; :=
AgtA; commute for i = 1,..., k (see [2]).

If A is an eigenvalue of W then

d, = dim ( N Ker [Ty = \I)y (D — )\kI)jkD

i =N
J1sJE 20

is the algebraic multiplicity and

dy := dim ((k] Ker (T'; — M)) = ﬁ dim (Ker I¥;(X))

i=1 i=1

is the geometric multiplicity of the eigenvalue (see [2]). We say that an eigen-
value A is geometrically or algebraically simple when d, = 1 or d, = 1, re-
spectively. It can be seen that d, > d4, so an eigenvalue that is algebraically
simple is also geometrically simple.

Let A be an eigenvalue of W with the corresponding left and right eigenvectors
x and y. We form a k x k£ matrix

iz, yiViexy - yiVia
?J;V21$2 y;‘/22$2 s y;V%«T2

By = . . . (3)
VeViiTe  YiVieTr - YLVieTk

The following lemma is a consequence of [9, Lemma 3].



Lemma 1 If X\ is an algebraically simple eigenvalue of the multiparameter
eigenvalue problem W then By is nonsingular.

A MEP is called Hermitian when all matrices V;; are Hermitian. Furthermore,
a Hermitian MEP is called right definite if

Ve, Ve - 2iVigr
ToVorwey  x3Vooxe -+ wHVopTo

. . . >4 (4)
xZVklxk xZVkak s fL‘ZkafL'k

for all vectors z; € C", ||z;|| = 1,7 = 1,...,k, and some § > 0. Condition

(4) is equivalent to the positive definiteness of Ay [2, Theorem 7.8.2]. This
implies that if W is right definite then there exist N linearly independent
eigenvectors. If X is an eigenvalue of a right definite problem W then X € RF.
Furthermore, if all matrices Vj; of a right definite problem W are real, then
the eigenvectors can be chosen real. For a real geometrically simple eigenvalue
of a Hermitian MEP the corresponding left and right eigenvectors coincide.

After preliminaries in Section 2, we study the backward error in Section 3. The
condition numbers for eigenvalues and eigenvectors are discussed in Section 4.
The pseudospectra, examined in Section 5, are another valuable tool for the
study of the sensitivity of eigenvalues to perturbations of matrices. In Sec-
tion 6, we give some numerical experiments for right definite two-parameter
eigenvalue problems, where pseudospectra can be visualized in R2.

2 Preliminaries

Throughout the paper we assume that the MEP W is nonsingular. The matri-
ces Fyjfori=1,...,k; j =0,...,k represent tolerances for the perturbations
AV;; of Vi;, defined by ||AVj;|| < ]| Ej;|| for some e > 0. Usually we take either
E;; = Vi; considering normwise relative perturbations, or E;; = I considering
normwise absolute perturbations. Elementwise perturbations |AV;;| < e|Ej|
can also be considered, see Remark 5. We define

k

i=1



We will denote the perturbed MEP with matrices V;; + AV;; by W + AW.
For a complex A the sign of A is defined as (cf. [8, p. 495])

MAL A£0
sign(\) := 0/|| )\%0

Suppose that we are looking for the maximum Euclidean norm of Az where
A € C** and z € C* is such that |z] < 6; for i = 1,...,k, where 0y,...,0;
are given positive constants. According to Bauer’s maximum principle (both
the function ||- || and its domain are convex), the maximum is attained by z for
which |z;| =6; fori =1,...,k. For @ =[0; --- 0,]" we define the @-weighted
norm of A as

|Allg := max{||Az[]s : z€C*, || =0;fori=1,....k}. (5)
Clearly,
[Allg < [ All211€]2- (6)

One may verify that ||| g is indeed a matrix norm. One may also see that |- ||
is not a consistent norm as it does not necessarily satisfy ||AB||g < ||Al/g|Bllg
(for a counterexample, take A = B = I and @ such that [|@]]» < 1).

From now on, || - || stands for || - ||o. We say that a decomposable tensor z =
21®+ - ®2zy, 18 normalized if ||z;]| = 1 fori = 1,... k. From ||z|| = ||z1]| - - - || 2 ]|
it follows that ||z|| = 1. In this paper we will assume that the eigenvectors are
normalized.

3 Backward error

Let (z, 5\) be an approximate eigenpair of W and let  be normalized. We
define the normwise backward error of (Z,A) by

n(@, ) :=min{ £ : (W;(X) + AW;(X))Z; = 0,
AV, || < ellByll, i=1,...,k; j=0,....k}. (7)

The following theorem is a generalization of the backward errors for the case
k =1 given in [7, Lemma 2.1] and [8, Theorem 2.1].



Theorem 2 For the normwise backward error n(, S\) we have

= 3y I
n(@,A) = max, T, (8)

where r; := W;(X)T; is the residual and

k
0 = || Eioll + X X111 2l

i=1

foro=1,... k.

Proof. From r; = —AW;(A)Z; it follows that ||r;|| < ;e for i = 1,...,k.
Therefore, the right-hand side of (8) is a lower bound for n(&, A). The lower
bound is attained for the perturbations

1 . sign(A\; ~*
AVio = 21 Fallrat, - AV = T3 7

fori,j=1,...,k. O

If W is Hermitian then it is of interest to consider a backward error in which

the perturbations AVj; are Hermitian. The backward error for a Hermitian
MEP can be defined as

mi (2, X) == min{ ¢ : (W;(X) + AW;(X)3; =0, AV}; = AV,

YR

AV <ellEyll, i=1,...,k j=0,...,k}. 9)

Tt is clear that (&, A) > n(#, A) and that the optimal perturbations in (7)
are not Hermitian in general. The next lemma, which is is a generalization of [8,
Lemma 2.6], shows that in the case when X is real requiring the perturbations
to be Hermitian has no effect on the backward error.

Theorem 3 If W s Hermitian and X is real then

(&, ) = (2, X). (10)

Proof. Let r; = WZ(S\)L It follows from X being real that z;r; is real. We are
looking for a Hermitian matrix S; such that S;7; = —r;. We take S; = ||r;||]



if r; is a negative multiple of Z;; otherwise we take S; = ||r;||H; where H; is a
Householder matrix that maps Z; to —r;/||r;||. Such an H; exists because T;r;
is real and is equal to I — 2(w}w;) ™ w;w}, where w; = Z; + r;/||r;]|.

Let AV;; be Hermitian matrices defined by

1 1 . ~
AV = §||Ez'0||Hz', AVy; = i sign(\;) || Ei; || H; (11)

)

fori,j =1,...,k. It follows that AW;(A) = S; and the first constraint in (9)
is satisfied. Using (8), we get

ISill = [Iill < n(@, X)8;

for i = 1,...,k. From (11) we deduce na(&,A) < n(&, A). Since (&, A) >
n(x, A) by definition, equality (10) must hold. O

We remark that one can see from z5;7; = —z;r; that a Hermitian matrix
S; such that S;7; = —&;r; exists only when 7 r; is real. This is the reason
why Lemma 3 cannot be generalized for nonreal approximations A. As it is
reasonable to assume that X is real if A is real, Lemma 3 can also be applied
for a right definite MEP.

If we are interested only in the approximate eigenvalue 5\, then a more appro-
priate measure of the backward error may be

n(A) := min{ n(&, A) : & normalized }.
Proposition 4

1(R) = max = o (Wi(R)).

i=1,...,k 91

Proof. The result follows from Theorem 2 by using the equality

win Ao = omia(4). O

Remark 5 Although in this paper we do not consider componentwise back-
ward errors, componentwise results from [8] can be generalized as well.



4 Condition numbers

In this section, we assume that X is a nonzero algebraically simple eigenvalue
of a nonsingular MEP W with corresponding normalized right eigenvector
and left eigenvector y.

4.1  Eigenvalue condition number

A normuwise condition number of A can be defined by

A
k(X, W) := lim sup {M :
e—0 9
k
(Vo AV = 00 4+ ANV + AVy) ) (i + Az =0,
j=1
HAWNgeW%Wi:LHWhjzoruﬁ} (12)

The following results can be considered as generalizations of the theory in [8,
Section 2.2].

Theorem 6 The condition number k(X, W) is given by

KA W) = 1B7" g, (13)

where

k
0 = || Eioll + X_ X111 2l

=1

fori=1,...)k, and @ = [0, --- 0;]".

Proof. If we expand the equality constraints in (12) and keep only the first
order terms then we get

k
AW (N z; + S ANViz: + Wi(A)Az; = O(2). (14)

i=1



Premultiplying by y; yields

k
YiAW Nz + yf - ANV = O(e2)

7=1

for i =1,..., k. By rearranging the equations we obtain the linear system

yiViier oo yiVigx A\ yfAWI()‘)xl

: : L= : +0(?),

UiViare - yiViewel LA Y AWE(XN) g

or in shorter form
yTAWI ()\).’L’l
ByAX = : + O(e?).

Since A is an algebraically simple eigenvalue, it follows from Lemma 1 that
By is nonsingular. Thus,

y{AWl (A)fL‘l

AN = B! + O(£?)

and we conclude

IAX < 1B, 'll.g + O(%) = =] B; *llg + O(e).

Hence, the expression in (13) is an upper bound for the condition number. To
show that this bound can be attained we consider the matrices

AV = el|Eillyiz;,  AVi; = —sign(A;)el|| Eyjllyiz;
fori,j=1,...k O

As for the backward error, if the MEP W is Hermitian then it is natural to
restrict the perturbations AV;; in (12) to be Hermitian. We denote

|AA]

ku(X, W) := lim sup{ -

e—0



(Vio+ AV = 00 4+ ANV + ATy (i + A =0,

j=1

AVE = AVy, AV < ellEgll, i =1, k: j:(),...,k}.

Lemma 7 If X is a real algebraically simple eigenvalue of a Hermitian mul-
tiparameter eigenvalue problem W then

En(A, W) = k(X W).

Proof. For a Hermitian MEP and algebraically simple eigenvalue A we can
take y = x and then the matrices H; in the proof of Theorem 6 are Hermitian.
It follows that the perturbations for which the bound is attained are also
Hermitian. 0O

As in Section 3 let us remark that Lemma 7 can also be applied to a right
definite MEP.

4.2 Figenvector condition number

In order to study the condition number of the eigenvector of an algebraically
simple eigenvalue we introduce the following approach. If an eigenvector & =
r1 ® - ® xy is perturbed to T = (21 + Azy) ® - - - @ (x + Axy), then we are
interested in || vec(Az)||, where

vec(Ax) = [AzT - AT]"

is a vector in C"t+*7 Therefore we define a normwise condition number of
x by

k(z, W) = limsup{ [vec(A@)| :
e—0 g
(vi0 AV =30y 4+ ANV + Avij)) (i + Azi) = 0,
g; i = g; (w; +JA;Z-) =1,
AV, < Bl i =1, k; j:O,...,k}, (15)

10



where the vectors g; that are used for the normalization of & are such that
giv; #0for i =1,..., k and that the matrix

ngnIl gfvlklﬁ
: - (16)

QZVklwk QZkaxk

is nonsingular. We can for instance take g; = y;, since in this case the matrix
(16) is equal to By, which is nonsingular for algebraically simple eigenvalues
by Lemma 1.

Let m = ny+- - -+ng. We can combine all the equations (14) into one equation
in C" as

Dvec(Ax) = — diag(AW;(X)) vec(x) — VAX + O(e?), (17)
where

Vinwy -+ Vg Wi(A)
V= : : , D= ;

Viiwe -+ Vi Wi ()

AW (A)
diag(AW;(A)) = ,
AWi(A)

AX=[AN -+ AN, and  vec(x) =[2T .- 2T)".

If we define the m x k matrix

¢ 0 - 0
G: 0 g2 :
: .0
0 -~ 0 g

then G*V is equal to (16). As a result G*V is nonsingular and we can define
an oblique projection

P=I-V(GV)'G
onto range(G)* along range(V'). It follows that PV = 0 and when we multiply
(17) by P we obtain

PDvec(Ax) = —P diag(AW;(A)) vec(z) + O(?). (18)

11



From gfAz; = 0 for i = 1,...,k it follows that G* vec(Axz) = 0 and thus
Pvec(Az) = vec(Ax). Now we can rewrite (18) as

PDPvec(Az) = —P diag(AW;(X)) vec(z) + O(£?). (19)
Lemma 8 The operator T defined by T := PDP is a bijection as an operator

from G* onto G+, where G+ := mnge(G)L

Proof. Since T clearly maps to G, it is enough to show that T is injective.
Suppose that there exists a 2z € G+ such that Tz = 0. Since Pz = z, there
exists an h € C* such that

Dz =Vh. (20)

If we left-multiply (20) by Y*, where Y is the m x k matrix

yy 0 -+ 0
Y: O Y2 : ,

: .0

0 -+ 0 |y

we obtain Y*Vh = 0 and since Y*V = By is nonsingular it follows that h = 0.
As a result we have W;(A)z; = 0 for i = 1,...,k where z is partitioned
conformally with vec(x). Since A is algebraically simple by assumption it
follows that dim Ker W;(A) = 1 and therefore z; = ~;x; for certain ; € C.
Now we know that G*z = 0 on the one hand and on the other hand G*z =
[v1 -+ %] soy; =0fori=1,...,k from which we conclude that z = 0. O

It follows from Lemma 8 and (19) that

vec(Az) = (PDP|y.) " Pdiag(AW(A)) vec(a),

where PDP)|;, is a restriction of PDP to G*. This gives

| vec(Az)|| < e

-1
PDP PH + O(e%), 21
(PDPI.) " P, +OE) 1)
where
| Allg p = max { [ Azl| 2 =[] -+ 2",

12



e, ||u] < 6, @':1,...,k}

and n = [n; --- ng|". One can view this @, n-norm as a block version of (5).
This leads to the next theorem.

Theorem 9

k(z, W) = H(PDP|QL)_1 PHo,n' (22)

Proof. In the discussion preceding the theorem we showed in (21) that

Kz, W) < H(PDP|QL)_1P‘

On’

What remains is to construct a perturbation for which equality is attained.

Suppose that for z = [27 -+ 2I'|" such that ||z]| < 6, fori =1,... k we
have

poP|,.) " P| = |(PDP|,.)” P2|. (23)
0n

Equality in (21) is then attained if we take

*
)

6” 0||Zi1‘2<; A‘/;] :Slgn()\j)((:“ ]||

Q; Q;

AViy = -

Z;T

fori,j=1,...,k. O

Remark 10 If we take G = Y then D is a bijection as an operator from Y+ to
N B “1 -1
V1, where Y := range(Y’), and H(PDP|yL) P ‘P (Dly.) PHe,n'

On -

From (21) we can produce upper bounds for the norm of  — . If we consider
only first order terms then we have

& — || < Az + - + | Az ]| + O()

and it follows that

|12 — || < V|| vec(Az)[| + O(<?).

13



As we insert (21) we obtain the bound

-1
F—x <\/EH PDP PH e+ O(2).
| | < ( |gL) on (%)

5 Pseudospectra

Another tool for the study of the sensitivity of the eigenvalues to perturba-
tions are pseudospectra. They have been studied for the standard (see, e.g.,
[13,14]) and generalized eigenproblem [6] and for the polynomial eigenvalue
problem (see, e.g., [12]). We extend the definition of pseudospectrum to the
multiparameter eigenvalue problem.

We define the e-pseudospectrum of W by

A (W) = {)\ e C* : Wi(X) + AW;(X) singular,
AV, | < Byl i=1,... . k; j= Ok} (24)

If we define the e-pseudospectrum of W; by

A (W) = {)\ € C* : Wi(X) + AW;(A) singular,
1AVl < Bl 7 =0,k
then it is easy to see that
A (W) = A (W) N A (W) NN AL(W). (25)
Theorem 11
AW)={xeC : nAN) <cfori=1,....k}
={AeC : opn(Wi(A) <eb; fori=1,....k}
={AeC : |[WiA) | >1/(ch;) fori=1,....k}
={AeCt : Fu,; |Jul| =1, such that
IWi(A)us|| < eb; fori=1,....k}.

Proof. The first equality follows readily from the definition (24). For the
second equality Proposition 4 can be applied. The last two equalities follow

14



from the identity ming, [|Az||/||z]] = |A || "' = omin(A) with the convention
that ||[A7Y| = oo if A is singular. O

Pseudospectra for the MEP have a property that is different from pseudospec-
tra for the standard eigenvalue problem Az = Az: if ¢ is large enough then
A (W) will be unbounded. This is the subject of the rest of this section.

If W is a right definite MEP, then we may be interested in the smallest
perturbation that makes W + AW not right definite. Again, here we restrict
the perturbations AV;; to be Hermitian. We can define the distance to the
closest non right definite MEP as

(W) := min{e: W + AW is not right definite, AVS = AVj;,
IAV;[I < ellEyll, i=1,....k; j=0,....k}.

In the next theorem we show that (W) is bounded by the minimal ¢ for
which the pseudospectra is unbounded.

Theorem 12

E(W) < min{e: A, (W) is unbounded }. (26)

Proof. If A = (\,..., \;) is an eigenvalue of a right definite W with corre-
sponding normalized eigenvector £ = z; ® - - - ® x; then it follows that \; is
equal to the tensor Rayleigh quotient [10]

\ = " A\;x

AT (27)

fori=1,...,k.

Suppose now that ¢ is so small that W + AW is right definite for ||AVj;|| <
ellEiyll, i=1,...,k j=0,..., k. Since the eigenvalues of W + AW can be
expressed as Rayleigh quotients (27) it follows from right definiteness that the
pseudospectrum A, (W) is bounded. This yields the bound (26). O

6 Numerical examples

We present some numerical examples obtained with Matlab 5.3. For all exam-
ples we take E;; = Vj; for all 7,j. We draw all pseudospectra by computing
Omin(Wi(A)) in all grid points by Matlab’s svd. For more efficiency one could

15



try to use similar ideas as mentioned in [13], but we will pay no further atten-
tion to this. The size of the grid used in the examples is 400 x 400.

Example 1. For the first numerical example we take the right definite two-
parameter eigenvalue problem

Wl(A):P 1]_A1[ 22 1 ]_MLOJ ~1 ]

1 2 1 2.3 1 0.1
2 1 1 —0.2 2 —0.1
W2(A) = {1 —1] M [—0.2 —0.1] — A2 {—0.1 4 ] '

Fig. 1. Pseudospectra for Example 1. Top left: The eigenvalues are intersections
of the eigencurves det Wi(A) = 0 (solid line) and det Wa(A) = 0 (dashed line).
Top right: pseudospectra for ¢ = 10758, 1075°, 1072, 10792, 10796, Bottom: pseu-
dospectra for Wy (left) and Wy (right).

-2 0 2

. w Azoai\
" | A " |

16



The eigenvalues A = (\q, \2) are intersection points of the eigenvalue curves
det(W1(A)) = 0 and det(W3(X)) = 0 as depicted in the top left picture in Fig-
ure 1. The pseudospectra for ¢ = 107%6,107%3,10°, 10°3 are shown in the top
right picture in Figure 1. One can see that the boundaries of the pseudospec-
tra are not differentiable. The reason is that pseudospectra are intersections
of pseudospectra for W; and W5, which are shown on the bottom left and
bottom right picture in Figure 1, respectively.

Table 1
Eigenvalues and their condition numbers for the right definite two-parameter prob-
lem in Example 1.

)\1 )\2 H()\, W)

—1.0142 1.5688 4.66
0.4556 | —0.3613 2.42
0.9360 | —0.4025 3.34
1.0069 0.7125 3.37

The eigenvalues together with the corresponding condition numbers are pre-
sented in Table 1. To obtain the condition number of an eigenvalue we have
to compute ||B;'||g. Since the problem is right definite and all matrices Vj;
are real we have to consider only real vectors in definition (5) of || By || g- This
fact makes it easy to compute the @-norm as we only have to compute a finite
number of norms. In particular, for a right definite two-parameter case we
have

|Bytllg = max{||By 'z : z€ R, |z|=0;fori=1,2}.

By comparing the results of Table 1 and Figure 1 one can see that the eigen-
value with the largest condition number has the largest pseudospectrum as
may be expected.

The left figure in Figure 2 shows eigenvalues of 500 randomly perturbed prob-
lems, where each AV, is a random symmetric matrix such that [|AV,;|| =
107"2||V;;]]. One can see that all dots in Figure 2 lie in the interior of the
pseudospectrum for e = 1012,

The right figure in Figure 2 presents pseudospectra for ¢ = 107 and ¢ =
107%6 on a larger area. One may suspect that here, in contrast to the eigenvalue
problem Ax = Az, a pseudospectrum may be unbounded.

Figures 1 and 2 suggest that the sensitivity of the eigenvalue is related to the
angle of the intersection between the curves det(17; (X)) = 0 and det(W3(X)) =
0. We observe that the pseudospectrum is large when the angle of the inter-
section is small. The following proposition (which can be easily generalized to

17



Fig. 2. Left: Eigenvalues of 500 randomly perturbed two-parameter eigenvalue
problems of Example 1, where each AVj; is a symmetric matrix such that
|AV;;]| = 107"2||V;4]|, and pseudospectrum for e = 107!2. Right: Pseudospectra
for Example 1 for e = 107%? and ¢ = 10796,

A, o

-2 0 2
)\l

MEPs with more than two parameters) justifies this observation.

Proposition 13 Let p = (1, po) € R? be an algebraically simple eigenvalue
of a real right definite two-parameter eigenvalue problem W and let € = 11®x5
and y = 1y ® ya be the corresponding normalized right and left eigenvector,
respectively. Then

T T vy Oy,
+ H Uj (IJ’) 0 6)\1 ® 8)\2 i
Jj=1
BO = na—1 - )
0 + I] cer () E Of2
7=1 a)\l (IJ’) a)\z (I‘l’)

where f;(X) = det W;(X) and where Ugi)(p,) > > a,(lii),l(u) > 0 are nonzero
singular values of W;(p) fori=1,2.

Proof. We define Z(t) = Viy — tVi; — peVis and g(t) = det(Z(t)). Since
Z(t) is a real analytic function of ¢, there exists an analytic singular value
decomposition (see [4])

Z(t) =UM=(H)V ()" (28)

such that

(1) U(t) and V(t) are orthogonal matrices,

18



(2) X(t) = diag(oq(t), .. .,0n,(t)) is a diagonal matrix,

(3) the elements of U(t), X(t), and V (¢) are analytic functions of ¢ in a small
neighborhood of p, and

(4) Z(uy) = U(p)Z(p1)V (p1)" is a singular value decomposition of W; ().

We may consider (28) as a singular value decomposition of Z(¢) where the
singular values are not necessarily nonnegative and ordered. Let wu,,(t) and
Up, (t) denote the n;th column of U(t) and V'(¢), respectively. Since p is an
algebraically simple eigenvalue, o, (p1) = 0, 0p,—1 (1) # 0, vy, (1) = 24, and
Un,; (Ml) = Yi-

If we differentiate o, (t) = u,, ()7 Z(t)v,, (t) then we obtain

doy,

dt (Ml) = —yian% = —(Bo)n- (29)

From g(t) = Fo1(t)oa(t) - - - 0, (t) and (29) it follows that

%( )_@

o (1) = () = 0t () ) (1) (Bo) .

In order to complete the proof one has to repeat the above procedure for all
partial derivatives g/\&,(u) fori,j=1,2. O
J

From Theorem 6 and (6) we can conclude that ||By"'|| has a great impact on
the sensitivity of the eigenvalue A. As follows from Proposition 13, || By || may
be large when the angle of the intersection between the curves det(W;(A)) = 0
and det(Wy(X)) = 0 is small.

FEzxample 2. For the second example we take the two-parameter Sturm—Liouville
problem

=
>
B
=
[

=2 (t1) — (M1 + Agcos 2ty)x1 (1),

(30)
Wa(A)wa(tz) = —a3(t2) — Aawa(ts)
with boundary conditions x;(0) = z;(w) = 0 for i = 1,2, studied in [3]. The
second equation of (30) yields that Ay = 12,22, 32 ... and then it follows from
the first equation of (30) that A; is an eigenvalue of the Mathieu equation with
parameter \o.

If we take h = 7/n and apply the finite-difference method to the two-parameter
boundary-value problem (30) using symmetric differences y ~ (y;41—vy;_1)/(2h)
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and y! ~ (yir1 — 2y; + yi—1)/h? for the derivatives y' and y”, then we obtain
an algebraic two—parameter problem where

1
‘/10 = ‘/20 = 75 trldlag(la _27 1)7

2

Vin=1, Vu =0, (31)
. 2T 47 2nm

V12:d1ag(cosn+1,cosn+1,...,cosn+1), Voo = 1,.

The eigenvalues of the above algebraic two-parameter problem are approxi-
mations to the eigenvalues of (30) with order of approximation O(h?).

Fig. 3. Pseudospectra for the algebraic two-parameter approximation of Example 2,
where n =10 and ¢ = 1078, 107"%,107"2,10799, 10796,

70— 70 T
\
60} 60 y |
50 ____ Mo\ { 50
40F -~~~ - g { 40
Nsol 12,30
20F~ """~ { 20
10p o ______ 10
(0] i 0
-10—= -10
-50

Figure 3 shows eigenvalues and pseudospectra for the algebraic two-parameter
approximation (31) of (30) for n = 10. The left figure shows eigenvalues as
the points where eigencurves det(1W7(X)) = 0 (solid line) and det(W3(X)) =0
(dashed line) intersect. One should note that the lines det(IW2(X)) = 0 do
not agree with the known result \y = 12,22 3% .... The reason is that the
eigenvalues in Figure 3 are the eigenvalues of the algebraic approximation
(31) and not of the original problem (30). The eigenvalues occur in groups
of two for a fixed Ay. In some of these pairs the eigenvalues are so close to-
gether that they look like a single eigenvalue on Figure 3, an example of such
pair is (—12.6225, 34.7056) and (—12.6215,34.7056). The right figure with the
pseudospectra for ¢ = 107 %%,1071°,...,107 %% indicates that the fact that
some of the eigenvalues are close together does not seem to influence their
pseudospectra and the eigenvalues are well conditioned.
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7

Conclusions

We have studied backward error, condition numbers, and pseudospectra for
the MEP. The results can be viewed as a generalization of the theory for the
generalized eigenvalue problem and are similar to the results for the poly-
nomial eigenvalue problem. We also studied the nearness of a right definite
MEP to a non right definite MEP and established that it is connected with
unbounded pseudospectra.
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