
A CHOLESKY LR ALGORITHM FOR THE POSITIVE DEFINITE SYMMETRIC
DIAGONAL-PLUS-SEMISEPARABLE EIGENPROBLEM ∗

BOR PLESTENJAK , ELLEN VAN CAMP , AND MARC VAN BAREL

Abstract. We present a Cholesky LR algorithm with Laguerre’s shift for computing the eigenvalues of a positive
definite symmetric diagonal-plus-semiseparable matrix. By exploiting the semiseparable structure, each step of the method
can be performed in linear time.

Key words. diagonal-plus-semiseparable matrix, LR algorithm, Laguerre’s method, Cholesky decomposition

AMS subject classifications. 65F15

1. Introduction. The symmetric eigenvalue problem is a well studied topic in numerical linear
algebra. When the original matrix is an n×n symmetric matrix, very often an orthogonal transforma-
tion into a similar tridiagonal one is applied because the eigendecomposition of a tridiagonal matrix
can be computed in O(n) and such an orthogonal similarity transformation always exists (see, for
example, [5, 9]).

In [14], an orthogonal similarity reduction is presented that reduces any symmetric matrix into a
diagonal-plus-semiseparable (from now on denoted by DPSS) one with free choice of the diagonal.
This transformation has the same order of computational complexity as the reduction into tridiagonal
form, only the second highest order term is a little bit larger. A good choice of the diagonal however,
can compensate this small delay when computing the eigenvalues and eigenvectors afterwards.

Several algorithms are known for computing the eigendecomposition of symmetric DPSS matri-
ces, for example, in [2] and [8] divide and conquer techniques are used. The authors of [1, 4, and
references therein] focus on QR algorithms and in [10] an implicit QR algorithm is presented.

When the symmetric DPSS matrix is positive definite, also an LR algorithm, based on the Cholesky
decomposition, can be applied in order to compute the eigenvalues. Such a Cholesky LR algorithm
will be constructed in this paper.

Therefore, we show that the DPSS structure is preserved by the Cholesky decomposition and
the LR algorithm. As a shift, Laguerre’s shifts (also used for symmetric positive definite tridiagonal
matrices in [6]) are used because one has to be sure that the shifted matrix is positive definite again.
Exploiting the DPSS structure, one step of the Cholesky LR algorithm, including the computation
of the shift, has a computational cost of order O(n). Because two steps of the LR algorithm are
equivalent to one step of the QR algorithm (see, for example, [5]) there will be convergence towards
the eigenvalues.

In contrast to the QR algorithm with shifts where the eigenvalues are not computed in any particu-
lar order, the eigenvalues in the LR algorithm are computed from the smallest to the largest one. This

∗Version: March 8, 2005. The research of the first author was partially supported by the Ministry of Higher Education,
Science and Technology of Slovenia, project P1-0294. The research of the second and third author was partially supported
by the Research Council K.U.Leuven, project OT/00/16 (SLAP: Structured Linear Algebra Package), G.0176.02 (ANCILA:
Asymptotic aNalysis of the Convergence behavior of Iterative methods in numerical Linear Algebra), G.0184.02 (CORFU:
Constructive study of Orthogonal Functions) and G.0455.0 (RHPH: Riemann-Hilbert problems, random matrices and Padé-
Hermite approximation), and by the Belgian Programme on Interuniversity Poles of Attraction, initiated by the Belgian
State, Prime Minister’s Office for Science, Technology and Culture, project IUAP V-22 (Dynamical Systems and Control:
Computation, Identification and Modelling). The scientific responsibility rests with the authors.

1

makes it a very suitable algorithm for those applications where the smallest eigenvalues are needed.

The paper is organized as follows. In §2 the concepts used, are explained. The preservation of the
DPSS structure under the Cholesky decomposition and the Cholesky LR algorithm is proven in §3.
Also explicit fast algorithms for the Cholesky decomposition and the LR algorithm are constructed.
In §4 a fast computation of Laguerre’s shifts is studied. §5 focuses on the implementation, while
numerical results are discussed in §6, followed by conclusions.

2. Preliminaries. In this section we recall the definition of DPSS matrices and the Givens-vector
representation that we will use. The idea of the LR algorithm based on the Cholesky decomposition
is repeated as well as Laguerre’s method.

DEFINITION 2.1. An n× n matrix S is called a lower- (upper-) semiseparable matrix if every
submatrix that can be taken out of the lower (upper) triangular part of the matrix S, has rank at
most 1. If a matrix is lower- and upper-semiseparable, it is called a semiseparable matrix.

The sum D + S of a diagonal matrix D and a semiseparable matrix S is called a diagonal-plus-
semiseparable matrix or shortly a DPSS matrix.

To represent a symmetric DPSS matrix, we use the Givens-vector representation based on a vector
f = [f1, . . . , fn]

T , n−1 Givens rotations

Gi =

[
ci −si
si ci

]
, i = 1, . . . ,n−1,

and a diagonal d = [d1, . . . ,dn]
T (for more details, see, e.g., [13]).

D+S =




c1 f1 +d1 c2s1 f1 · · · cn−1sn−2:1 f1 sn−1:1 f1
c2s1 f1 c2 f2 +d2 · · · cn−1sn−2:1 f2 sn−1:2 f2

...
. . .

...
cn−1sn−2:1 f1 cn−1sn−2:2 f2 · · · cn−1 fn−1 +dn−1 sn−1 fn−1

sn−1:1 f1 sn−1:2 f2 · · · sn−1 fn−1 fn +dn




,

where sa:b = sasa−1 · · · sb. We will denote D+S = diag(d)+Giv(c,s, f).
The above representation of a DPSS matrix is not unique. One can see that the parameters d1 and

dn can be chosen arbitrarily. If we change dn into d̃n then we can change fn into f̃n = fn +dn − d̃n. If
we change d1 into d̃1, then one can check that by taking

f̃1 =
√

(c1 f1 +d1 − d̃1)2 + s2
1 f 2

1 ,

c̃1 = (c1 f1 +d1 − d̃1)/ f̃1,

s̃1 = s1 f1/ f̃1

we get the same matrix D+S. Most often, however, the diagonal d is known, so d1 and dn are fixed.

Next we recall another important concept, the Cholesky LR algorithm.
Let A be a symmetric positive definite (from now on denoted by s.p.d.) matrix. Starting from the

matrix A0 = A, a Cholesky LR algorithm generates a sequence of similar matrices

Ak+1 = V−1
k AkVk = V T

k Vk, k = 0,1, . . . ,

2

where VkV T
k = Ak is the Cholesky decomposition of Ak with Vk a lower-triangular matrix. The use of

a shift at each step can speed up the convergence of the sequence Ak, k = 0,1, . . ., towards the Schur
decomposition of A.

When applying the Cholesky LR algorithm to a s.p.d. DPSS matrix D+S, the shift can be included
into the diagonal part and hence, when we are able to construct the Cholesky decomposition VV T of
an arbitrary s.p.d. DPSS matrix and the corresponding product V TV , we can apply a step of the shifted
Cholesky LR algorithm on a s.p.d. DPSS.

One important remark, however, is that the shift σ should be chosen such that D+S−σ I is still
positive definite or in other words, the shift σ should be smaller than the smallest eigenvalue of D+S.
To fulfill this requirement, Laguerre’s shifts are used.

Let A be a s.p.d. n×n matrix with eigenvalues 0 < λn ≤ λn−1 ≤ . . . ≤ λ1. Let f (λ) = det(A−λ I)
be the characteristic polynomial of A. If x is an approximation for an eigenvalue of A and we define

S1(x) =
n

∑
i=1

1
λi − x

= − f ′(x)
f (x)

,

S2(x) =
n

∑
i=1

1
(λi − x)2 =

f ′2(x)− f (x) f ′′(x)
f 2(x)

,

then the next approximation x̃ by Laguerre’s method is given by the equation

x̃ = x+
n

S1(x)+
√

(n−1)(nS2(x)−S2
1(x))

.(2.1)

Two important properties of Laguerre’s method are that if λn is a simple eigenvalue and if x < λn
then x < x̃ < λn and the convergence towards λn is cubic. For multiple eigenvalues the convergence
is linear. More details on Laguerre’s method and its properties can be found in, e.g., [15].

3. Cholesky decomposition. In this section we show that the DPSS structure is preserved by
both the Cholesky decomposition and the LR algorithm. Even better, if we use the Givens-vector rep-
resentation, then we can show that some vectors from the representation are invariant to the Cholesky
decomposition and the Cholesky LR algorithm. This enables us to produce a fast algorithm for the
Cholesky LR step.

THEOREM 3.1. Let A be a symmetric positive definite diagonal-plus-semiseparable matrix in the
Givens-vector representation

A = Giv(c,s, f)+diag(d).

1. If V is a lower triangular matrix such that A =VV T is the Cholesky decomposition of A, then
V can be represented in the Givens-vector representation as

V = tril(Giv(c,s, f̃))+diag(d̃).

2. If B = V TV, where V is the lower triangular Cholesky factor from 1. of A, then B is again a
symmetric positive definite diagonal-plus-semiseparable matrix with the same diagonal part
as the original matrix A:

B = Giv(ĉ, ŝ, f̂)+diag(d).

3

Proof. 1. We use induction. As we generate A from the top to the bottom, the following relation
holds between Ak and Ak+1, where A1 = [f1 +d1] and An = A. If we write

Ak =

[
Bk ak
aT

k fk +dk

]
,

where Bk ∈ R
(k−1)×(k−1) and ak ∈ R

k−1, then

Ak+1 =




Bk ckak skak
ckaT

k ck fk +dk sk fk
skaT

k sk fk fk+1 +dk+1


 .

If

Vk =

[
Wk 0
vT

k ∗

]
,

where Wk ∈ R
(k−1)×(k−1) and vk ∈ R

k−1, is the Cholesky factor of Ak then one can see that the
Cholesky factor of Ak+1 has the form

Vk+1 =




Wk 0 0
ckvT

k ∗ 0
skvT

k ∗ ∗


 .

It is easy to see that there exist f̃k and d̃k such that

Vk =

[
Wk 0
vT

k f̃k + d̃k

]

and

Vk+1 =




Wk 0 0
ckvT

k ck f̃k + d̃k 0
skvT

k sk f̃k ∗


 .

In the last step, when k = n− 1, one can also choose appropriate f̃n and d̃n for the right bottom
element of V . Hence, the Givens transformations from A appear in the Givens-vector representation
of the Cholesky factor V as well.

2. From 1. we know that A =VV T with V a nonsingular, lower-semiseparable and lower triangular
matrix. A is also a s.p.d. DPSS matrix, so A = D+S. Hence,

D+S = VV T .

This implies:

V TV = V T (D+S)V−T

= V T DV−T +V T SV−T

= D1 +S1.

The matrix D1 is an upper triangular matrix with the diagonal D as diagonal elements. All the sub-
matrices of the lower triangular part of S1 have rank at most 1. So, D1 +S1 can be rewritten as

D1 +S1 = D+ Ŝ,

4

where all the submatrices of the lower triangular part of Ŝ have rank at most 1. Because of symmetry,
also the submatrices of the upper triangular part of Ŝ have rank at most 1 and hence, Ŝ is a semisep-
arable matrix. This finishes the proof that V TV = D + Ŝ is again a symmetric DPSS matrix with the
same diagonal part as the original matrix A.

The fact that the Givens transformations used in A and in the Cholesky factor V are the same,
simplifies the computation of V . The same is true for the fact that the diagonal part of A is invariant
under the LR algorithm. This will be exploited now.

The Cholesky factor of A has the form

V =




c1 f̃1 + d̃1
c2s1 f̃1 c2 f̃2 + d̃2

...
. . .

cn−1sn−2:1 f̃1 cn−1sn−2:2 f̃2 · · · cn−1 f̃n−1 + d̃n−1
sn−1:1 f̃1 sn−1:2 f̃2 · · · sn−1 f̃n−1 f̃n + d̃n




,

where sa:b = sasa−1 · · · sb.
By comparing the elements of A and VV T we get equations for the vectors f̃ and d̃. As we know

all Givens rotations, it is enough to compare the elements on the diagonal and the main subdiagonal.
Hence, we get the following equations

ck fk +dk =
k−1

∑
j=1

(cksk−1 · · · s j f̃ j)
2 +(ck f̃k + d̃k)

2, k = 1, . . . ,n,(3.1)

ck+1sk fk =
k−1

∑
j=1

ckck+1sk(sk−1 · · · s j f̃ j)
2

+ck+1sk f̃k(ck f̃k + d̃k), k = 1, . . . ,n−1,(3.2)

where we assume that cn = 1. If we denote

qk :=
k−1

∑
j=1

(sk−1sk−2 · · · s j f̃ j)
2,

then we can write (3.1) and (3.2) as

ck fk +dk = c2
kqk +(ck f̃k + d̃k)

2, k = 1, . . . ,n,(3.3)

ck+1sk fk = ckck+1skqk + ck+1sk f̃k(ck f̃k + d̃k), k = 1, . . . ,n−1.(3.4)

The solution of (3.3) and (3.4) for f̃k and d̃k is

f̃k =
fk − ckqk√

dk + ck(fk − ckqk)
, k = 1, . . . ,n,(3.5)

d̃k =
dk√

dk + ck(fk − ckqk)
, k = 1, . . . ,n,(3.6)

where we assume that cn = 1 and q1 = 0.

5

For later use, let us define the common factors in the numerator and the denominator of (3.5) and
(3.6) as follows:

zk = fk − ckqk,

yk =
√

dk + ckzk.

One can see from (3.1) that yk is in fact the diagonal element of V because

ck f̃k + d̃k =
√

dk + ck(fk − ckqk) =
√

dk + ckzk = yk.(3.7)

As in the standard Cholesky algorithm, a negative or zero value under the square root appears if
A is not positive definite, so this is a way to check whether A is positive definite or not.

Let us remark that f̃n and d̃n are not uniquely determined. We choose the values (3.5) and (3.6)
because of consistency.

From the above equations we can obtain an algorithm that computes the Cholesky factorization
of a s.p.d. DPSS matrix in 11n+O(1) flops.

ALGORITHM 3.2. An algorithm for the Cholesky decomposition VV T = A of a s.p.d. DPSS matrix
A = Giv(c,s, f)+ diag(d). The result are vectors f̃ and d̃ such that V = tril(Giv(c,s, f̃))+ diag(d̃).
In the algorithm we assume that cn = 1.

function [f̃ , d̃] = Cholesky(c, s, f , d)
cn = 1
q1 = 0
for k = 1, . . . ,n :

zk = fk − ck ·qk

yk =
√

dk + ck · zk

f̃k = zk/yk

d̃k = dk/yk

qk+1 = s2
k(qk + f̃ 2

k)

Next we study how to construct the product V TV in an efficient way. The product B = V TV is
again a s.p.d. DPSS matrix. A short calculation shows that the diagonal and subdiagonal elements of
B are equal to

bkk = (ck f̃k + d̃k)
2 +(sk f̃k)

2,(3.8)

b jk = sksk+1 · · · s j−1 f̃k(f̃ j + c jd̃ j),(3.9)

where k = 1, . . . ,n, j > k, and we assume that cn = 1 which implies that sn = 0. Let us denote
B = Giv(ĉ, ŝ, f̂)+diag(d). From the equality

ŝ2
k f̂ 2

k =
n

∑
j=k+1

b2
jk

and (3.9) it follows that

ŝ2
k f̂ 2

k = f̃ 2
k pk, k = 1, . . . ,n−1(3.10)

6

where

pk =
n

∑
j=k+1

(sksk+1 · · · s j−1)
2(f̃ j + c jd̃ j)

2.

For pk, k = n−1, . . . ,1, we can apply the recursion

pk = s2
k

(
pk+1 +(f̃k+1 + ck+1d̃k+1)

2
)

that starts with pn = 0.
From (3.8) we obtain

ĉk f̂k = (ck f̃k + d̃k)
2 +(sk f̃k)

2 −dk.(3.11)

By applying the relation (3.7) we simplify (3.11) into

ĉk f̂k = ckzk +(sk f̃k)
2(3.12)

and reduce the possibility of cancellation. From (3.10) and (3.12) we can compute the vectors ĉ, ŝ,
and f̂ .

ALGORITHM 3.3. An algorithm for the product B = V TV, where V = tril(Giv(c,s, f̃)) +diag(d̃)
is the lower triangular Cholesky factor of a s.p.d. DPSS matrix A = Giv(c,s, f) +diag(d). The
vector z was already computed in Algorithm 3.2. The result are vectors ĉ, ŝ, and f̂ such that B =
Giv(ĉ, ŝ, f̂)+diag(d).

function [ĉ, ŝ, f̂] = VTV(c,s, f̃ ,z)
cn = 1
f̂n = (f̃n + d̃n)

2 −dn

pn = 0
for k = n−1, . . . ,2,1

pk = s2
k

(
pk+1 +(f̃k+1 + ck+1d̃k+1)

2
)

[ĉk, ŝk, f̂k] = Givens(ckzk + s2
k f̃ 2

k , f̃k
√

pk)

The function [c,s, f] = Givens(x,y) in Algorithm 3.3 returns the Givens transformation such that

[
c s

−s c

][
x
y

]
=

[
f
0

]
.

A stable implementation that guards against overflow requires 7 flops (see, for example, [5]). Note
that some quantities such as f̃ 2

k and s2
k already appear in Algorithm 3.2, so we have to compute them

only once. As a result an efficient implementation of Algorithm 3.3 requires 16n +O(1) flops and
one step of the Cholesky LR algorithm without shifts can be performed in 27n+O(1) flops.

Let us remark that in Algorithm 3.3 we do not care about the sign of ŝk as the eigenvalues are
invariant to the sign of ŝk, k = 1, . . . ,n−1.

7

4. Computation of Laguerre’s shift. As indicated in (2.1), for Laguerre’s shift we need to
compute S1 and S2. It is easy to see that

S1(σ) =
n

∑
i=1

1
λi −σ

= Tr((A−σ I)−1)

and

S2(σ) =
n

∑
i=1

1
(λi −σ)2 = Tr((A−σ I)−2).

So, if A−σ I = VV T is the Cholesky decomposition of the s.p.d. DPSS matrix A−σ I and W = V −1,
then

S1(σ) = Tr(W TW) = ‖W‖2
F

and

S2(σ) = Tr(W TWW TW) = Tr(WW TWW T) = ‖WW T‖2
F .

The aim is to compute S1 and S2 in a stable and efficient way.
Let us assume that W = tril(Giv(c̄, s̄, f̄))+diag(d̄). We will later show that the algorithm derived

under the above assumption is correct also when W is not DPSS. One can check that W is not DPSS
when d̃i = 0 for some i = 2, . . . ,n−1.

In the next lemmas and remark, we will show that S1 and S2 can be computed in an efficient way.
LEMMA 4.1. If A = Giv(c,s, f) + diag(d) is a symmetric n × n diagonal-plus-semiseparable

matrix then

‖A‖2
F =

n

∑
k=1

(ck fk +dk)
2 +2

n−1

∑
k=1

s2
k f 2

k ,

where we assume that cn = 1.
Proof. As A is symmetric,

‖A‖2
F =

n

∑
k=1

a2
kk +2

n−1

∑
k=1

n

∑
j=k+1

a2
jk.

If follows from the structure of A that akk = ck fk +dk and

n

∑
j=k+1

a2
jk = s2

k f 2
k .

Based on Lemma 4.1, we can derive the following expressions for S1 and S2:
LEMMA 4.2. If W = tril(Giv(c̄, s̄, f̄))+ diag(d̄) is a lower nonsingular triangular matrix, such

that c̄k 6= 0 for k = 2, . . . ,n−1, then

‖WW T‖2
F =

n

∑
k=1

(WW T)2
kk +2

n−1

∑
k=1

(
(WW T)k+1,k

c̄k+1

)2

,(4.1)

8

‖W‖2
F =

n

∑
k=1

(WW T)kk,(4.2)

where we assume that c̄n = 1.
Proof. WW T is a s.p.d. DPSS matrix. As a consequence of point 1. of Theorem 3.1, the Givens

transformations of the representation of W are preserved in the product WW T . Hence, there exist two
vectors x,y ∈ R

n such that WW T = Giv(c̄, s̄,x)+diag(y). Applying Lemma 4.1 and the relations

s̄kxk =
(WW T)k+1,k

c̄k+1
for k = 1, . . . ,n−1,

c̄kxk + yk = (WW T)k,k for k = 1, . . . ,n

finishes the proof.

REMARK 4.3. The formula (4.1) of Lemma 4.2 can be generalized such that the condition c̄k 6= 0
for k = 2, . . . ,n− 1 is no longer required. If we denote by t(k) the smallest index j, j > k, such that
c̄ j 6= 0, then

‖WW T‖2
F =

n

∑
k=1

(WW T)2
kk +2

n−1

∑
k=1

(
(WW T)t(k),k

c̄t(k)

)2

.(4.3)

Since c̄n = 1, we always have k < t(k) ≤ n and (4.3) is well defined.

In addition to d̃i 6= 0 for k = 1, . . . ,n, such that W is a DPSS, let us assume from now on also
that ck 6= 0 for k = 2, . . . ,n− 1 in the Cholesky factor V . Under this assumptions it follows from
Lemma 4.2 that only the Givens transformations of W and the diagonal and subdiagonal elements of
WW T are required for computing S1 and S2.

One can check that

(WW T)kk = c̄2
k

k−1

∑
i=1

(
s̄k−1 · · · s̄i f̄i

)2
+(c̄k f̄k + d̄k)

2

and

(WW T)k+1,k = c̄k+1c̄k s̄k

k−1

∑
i=1

(
s̄k−1 · · · s̄i f̄i

)2
+ c̄k+1s̄k f̄k(c̄k f̄k + d̄k).

Because V is a lower triangular matrix and W = V −1, the diagonal and subdiagonal elements of W
are of the form:

wkk = c̄k f̄k + d̄k = y−1
k , k = 1, . . . ,n,(4.4)

wk+1,k = c̄k+1s̄k f̄k = −ck+1sk f̃k

ykyk+1
, k = 1, . . . ,n−1,(4.5)

where yk = ck f̃k + d̃k is the diagonal element of V computed in Algorithm 3.2.
If we define rk = ∑k−1

i=1

(
s̄k−1 · · · s̄i f̄i

)2 then we can write

(WW T)kk = c̄2
krk + y−2

k

9

and

(WW T)k+1,k

c̄k+1
= c̄k s̄krk +

s̄k f̄k

yk
.

For rk, k = 1, . . . ,n, we use the recursion rk+1 = s̄2
krk + s̄2

k f̄ 2
k that starts with r1 = 0.

From the relations (4.4) and (4.5) it follows that in order to compute the diagonal and the subdiag-
onal elements of WW T , it is enough to know the Givens rotations and the diagonal and the subdiagonal
elements of W .

The following lemma, which follows from the results in [3], helps us to compute the necessary
elements of W .

LEMMA 4.4. Let V = tril(Giv(c,s, f̃))+diag(d̃) be a nonsingular lower triangular matrix such
that d̃i 6= 0 for i = 1, . . . ,n. Then W = V −1 can be represented in the Givens-vector representation as
W = tril(Giv(c̄, s̄, f̄)) +diag(d̄), where d̄i = d̃−1

i for i = 1, . . . ,n.
Hence, the diagonal elements of W can be written as

wkk = c̄k f̄k + d̃−1
k = y−1

k , k = 1, . . . ,n.(4.6)

If we rearrange the equations (4.5) and (4.6) into

c̄k f̄k = − ck f̃k

d̃kyk
.

and

s̄k f̄k = − ck+1sk f̃k

c̄k+1ykyk+1
,(4.7)

then it follows that c̄k and s̄k form a Givens transformation such that
[

c̄k s̄k
−s̄k c̄k

][
ckyk+1c̄k+1
ck+1skd̃k

]
=

[
∗
0

]
.

Again, for k = n− 1 we assume that cn = c̄n = 1. One can see by induction that c̄k 6= 0 for k =
n− 1, . . . ,2 because we assumed that ck 6= 0 for k = 2, . . . ,n− 1 and yk+1 = 0 would contradict the
fact that A is s.p.d.

Now we can write an algorithm for the computation of ‖WW T‖2
F and ‖W‖2

F . In the algorihtm
ξk denotes (WW T)k+1,k/c̄k+1 and ωk denotes the diagonal element (WW T)kk . These are the values
that appear in equations (4.1) and (4.2) for S1 and S2. We use βk for the intermediate result (4.7). A
careful implementation of the algorithm, where the values that appear in Algorithms 3.2 and 3.3 are
computed only once, requires 31n+O(1) flops.

ALGORITHM 4.5. An algorithm that computes S1 = ‖W‖2
F and S2 = ‖WW T‖2

F , where W = V−1

and V = tril(Giv(c,s, f̃))+diag(d̃) is the Cholesky factor of a s.p.d. DPSS matrix A = Giv(c,s, f)+
diag(d), and y = diag(V). In the algorithm we assume ck 6= 0 for k = 2, . . . ,n−1 and cn = c̄n = 1.

function [S1, S2] = invtrace(c,s, f̃ , d̃,y)
cn = c̄n = 1
for k = n−1, . . . ,2,1 :

[c̄k, s̄k] = Givens(ck c̄k+1yk+1,ck+1sk d̃k)

10

r1 = 0
for k = 1, . . . ,n−1

βk = −ck+1sk f̃k/(c̄k+1ykyk+1)

ωk = c̄ 2
k rk + y−2

k

ξk = c̄k s̄krk +βk/yk

rk+1 = s̄2
krk +β 2

k

ωn = rn + y−2
n

S1 = ∑n
k=1 ωk

S2 = ∑n
k=1 ω2

k +2∑n−1
k=1 ξ 2

k

What remains to be considered is the case that W is not a DPSS matrix. If d̃k = 0 for some
k = 2, . . . ,n− 1 then W has a zero block W (k + 1 : n,1 : k− 1), see, e.g., [7, Lemma 2.5] and it is
not a DPSS matrix anymore. However, Algorithm 4.5, that was derived under the assumption that
W is a DPSS matrix, returns correct values for ‖W‖2

F and ‖WW T‖2
F in such case as well. There are

no divisions by d̃k in the algorithm that could cause problems. We only use d̃k to compute yk. If we
change d̃k in V then one can see that as long as V is nonsingular, ‖W‖2

F and ‖WW T‖2
F are continuous

functions of d̃k. So, the algorithm is correct also in the limit when d̃k = 0.
Another restriction in Algorithm 4.5 is the assumption ck 6= 0 for k = 2, . . . ,n− 1. When this

assumption is not valid, we can still compute S1 and S2 if we apply formula (4.3) from Remark 4.3.
One can see that in the kth column of W we need the elements wkk and wt(k),k . Because w jk = 0 for
k < j < t(k), Laguerre’s shift can still be computed in O(n) flops.

5. Implementation. In this section we discuss some details on the implementation of the al-
gorithm presented in the previous sections. The software can be downloaded freely at: http://www-
lp.fmf.uni-lj.si/plestenjak/papers.htm.

First we discuss how to deflate. If |sk| is small enough for some k = 1, . . . ,n−1, then we decouple
the problem into two smaller problems with matrices A(1 : k,1 : k) and A(k + 1 : n,k + 1 : n). In the
special case when |sn−1| is small enough, we take fn +dn as an approximation of an eigenvalue of A
and continue with vectors c(1 : n− 2), s(1 : n− 2), f (1 : n− 1), and d(1 : n− 1). As initial shift for
the smaller problem we take fn +dn.

Another important problem that can appear during the implementation is the shift. If a shift in the
QR algorithm is by chance an exact eigenvalue then we can immediately extract this eigenvalue and
continue with the smaller problem. This is not true in the Cholesky LR algorithm where shifts σk have
to be strictly below the smallest eigenvalue λn, otherwise the Cholesky factorization does not exist.
Without the Cholesky factorization we can not compute Ak+1 = V−1

k AkVk and deflate. In numerical
computations, even when σk < λn, the Cholesky factorization can fail if the difference is too small.
This can cause a problem as usually Laguerre’s shifts converge faster to the smallest eigenvalue than
the elements Ak(n,n). A good strategy is to insert a factor τ close, but smaller, to 1 into (2.1) and use

σk+1 = σk + τ
n

S1(σk)+
√

(n−1)(nS2(σk)−S2
1(σk))

as a shift in the new iteration. Based on our numerical experiments we suggest the value τ = 1−10−4.
If it happens anyway that the shift is so large that the Cholesky factorization fails, we first reduce the
shift by the factor τ = 1−10−4 and if the new shift is still too large, we start again with the shift 0.

11

The computation of Laguerre’s shift requires more than half of the operations in one step of the
Cholesky LR algorithm. We can save work by using the same shift once the shift improvement is
small enough. Our numerical experiments show a speed up up to 15% if we stop improving the shift
after (σk+1 −σk)/σk+1 ≤ 10−6.

The eigenvalues should be computed from the smallest to the largest one, however, it might hap-
pen that |sn−1| is so small that we deflate, and the extracted eigenvalue is not the smallest one. This
causes a problem in the next phase as we use the extracted eigenvalue as initial shift and this shift is
too large. The strategy from the previous paragraph overcomes this problem and the shift goes to zero
after two unsuccessful Cholesky factorizations.

At the end of §4 we proposed a modification of Algorithm 4.5 that handles the case ck = 0 for
some k = 2, . . . ,n− 1. Without this modification we get zero divided by zero in such a situation.
In practice we can implement a simpler solution. If we perturb ck into 10−20 whenever ck = 0 then
a small ck results in a small c̄k. These two quantities avoid the zero divided by zero problem in
Algorithm 4.5 and we end up with accurate results.

6. Numerical results. The following numerical results were obtained with Matlab 7.0 running
on a Pentium4 2.6 GHz Windows XP operating system. We compared the Cholesky LR algorithm
with a Matlab implementation of the implicit QR algorithm for DPSS matrices [10] and with the
Matlab function eig. Exact eigenvalues were computed in Mathematica 5 using variable precision.
For all numerical examples in this section the cutoff criterion for both Cholesky LR and implicit QR

is 10−16. With the maximum relative error we denote max1≤i≤n
|λi−λ̃i|
|λi| where λi, i = 1, . . . ,n, are the

exact eigenvalues of the test matrix and λ̃i, i = 1, . . . ,n, the computed ones.

EXAMPLE 6.1. In our first example we use random s.p.d. DPSS matrices of the form

A = diag(1, . . . ,n)+ triu(uvT ,1)+ triu(uvT ,1)T +αI,

where u and v are vectors of uniformly distributed random entries on [0,1], obtained by the Matlab
function rand, and the shift α is such that the smallest eigenvalue of A is 1. The condition numbers of
these matrices are approximately n. The exact eigenvalues of A are computed in Mathematica using
variable precision. Before using eig we compute all the elements of A accurately in double precision,
so that the initial data for all three methods are of full precision. The comparison is not completely
fair as in eig we first have to reduce the matrix to the tridiagonal form where additional numerical
errors could occur.

The results in Table 6.1 show that the Cholesky LR method is competitive in accuracy with the
other two methods. In most cases, especially for larger matrices, it is slightly more accurate than the
implicit QR method. The comparison with eig shows that by exploiting the structure we can get
more accurate results. In eig some accuracy is lost in the reduction to the tridiagonal form. One
step of the Cholesky LR method has approximately the same complexity as one step of the implicit
QR method, but although Cholesky LR requires roughly 3.5 times more steps than the implicit QR
method, it runs much faster. This is due to a more efficient Matlab implementation. The same holds
for eig which runs faster than Cholesky LR although it has O(n3) complexity while the complexity
of Cholesky LR is O(n2). The difference in number of steps is also due to the fact that in implicit
QR we may choose the shift more freely as in Cholesky LR, where the shifted matrix must remain
positive definite.

EXAMPLE 6.2. We use the same construction of the test matrices as in Example 6.1. For n =
200 we generate 25 random matrices and compare the accuracy of the eigenvalues computed by the

12

TABLE 6.1
Comparison of the Cholesky LR method, implicit QR for DPSS matrices, and eig from Matlab on random s.p.d. DPSS

matrices of sizes n = 50 to n = 500 and small condition numbers. The columns are: t: running time in seconds; steps:
number of LR (QR) steps; error: the maximum relative error of the computed eigenvalues.

Cholesky LR Implicit QR eig

n t steps error t steps error t error

50 0.06 274 9.2 ·10−15 0.19 83 4.3 ·10−15 0.00 1.8 ·10−14

100 0.16 557 1.0 ·10−14 0.69 164 4.8 ·10−14 0.00 1.0 ·10−13

150 0.28 832 1.8 ·10−14 1.45 242 2.9 ·10−13 0.00 1.4 ·10−13

200 0.49 1104 2.6 ·10−14 2.59 311 3.6 ·10−13 0.02 1.2 ·10−13

250 0.72 1390 6.4 ·10−14 4.22 414 6.7 ·10−13 0.03 7.6 ·10−13

300 0.97 1660 1.3 ·10−13 6.18 486 4.7 ·10−13 0.05 1.2 ·10−13

350 1.25 1933 4.8 ·10−14 8.86 564 1.5 ·10−12 0.09 5.6 ·10−13

400 1.59 2194 1.3 ·10−13 11.95 684 4.3 ·10−12 0.14 7.8 ·10−13

450 1.94 2479 9.8 ·10−14 15.78 730 2.2 ·10−12 0.22 6.8 ·10−13

500 2.34 2741 1.0 ·10−13 19.72 821 4.5 ·10−12 0.28 3.8 ·10−13

Cholesky LR method, implicit QR for DPSS matrices, and eig. Again, the exact eigenvalues of A are
computed in Mathematica using variable precision.

FIG. 6.1. Comparison of the Cholesky LR method, implicit QR for s.p.d. DPSS matrices, and eig from Matlab on 25
random s.p.d. matrices of size n = 200.

0 5 10 15 20 25
−14

−13.5

−13

−12.5

−12

−11.5

−11

−10.5

−10

index

lo
g1

0
of

 th
e

m
ax

im
um

 re
la

tiv
e

er
ro

r

Implicit QR
Matlab eig
Cholesky LR

Results, ordered by the maximum relative error of the Cholesky LR method, are shown in Figure
6.1. We can see that the most accurate method for this particular class of matrices is the Cholesky

13

LR algorithm. The results from eig are comparable while the results of the implicit QR are slightly
worse in general.

EXAMPLE 6.3. In this example we use s.p.d. matrices A = Qdiag(1 : n)QT , where Q is a random
orthogonal matrix, obtained in Matlab as orth(randn(n)). As in the previous examples we compare
the Cholesky LR method, implicit QR for DPSS matrices, and eig from Matlab. The difference from
the previous examples is that now we have to reduce the matrix into a similar DPSS matrix before we
can apply Cholesky LR or implicit QR. We do this using the algorithm of [14], where we choose the
diagonal elements as random numbers distributed uniformly on [0,1]. There is a connection between
the Lanczos method and the reduction into a similar DPSS matrix [11] which causes that the largest
eigenvalues of A are approximated by the lower right diagonal elements of the DPSS matrix. This is
not good for the Cholesky LR method where the smallest eigenvalues are computed first. Therefore,
we apply a method that reverses the direction of the columns and rows of the DPSS matrix in linear
time [12, Chapter 2, § 8.1].

TABLE 6.2
Comparison of the Cholesky LR method, implicit QR for DPSS matrices, and eig from Matlab on random s.p.d. matri-

ces of sizes n = 500 to n = 2000 with the exact eigenvalues 1, . . . ,n. The columns are: t: running time in seconds (time for
LR and QR does not include reduction into a DPSS matrix); steps: number of LR (QR) steps; error: the maximum relative
error of the computed eigenvalues.

Cholesky LR Implicit QR eig

n t steps error t steps error t error

500 1.7 2738 3.5 ·10−14 22.1 942 2.9 ·10−13 1.8 2.4 ·10−13

1000 9.4 5404 2.1 ·10−13 108.9 1804 6.6 ·10−13 13.4 6.2 ·10−13

1500 19.8 8048 1.6 ·10−13 292.7 2641 4.6 ·10−13 50.9 4.5 ·10−13

2000 33.8 10672 4.6 ·10−13 602.2 3448 2.8 ·10−12 123.0 3.0 ·10−12

2500 52.7 13281 6.0 ·10−13 1064.7 4263 4.7 ·10−12 279.6 4.1 ·10−12

The results in Table 6.2 show that the eigenvalues of a s.p.d. matrix can be computed accurately
using a reduction into a DPSS matrix followed by the Cholesky LR method or the implicit QR method.
For larger matrices, the Cholesky LR algorithm tends to be slightly more accurate than the implicit
QR. Since both methods use the same reduced DPSS matrices, this implies that Cholesky LR is
more accurate than implicit QR. The computational times are hard to compare because of different
implementations and because the time for eig includes the reduction to the tridiagonal form while
the reduction to DPSS matrices is excluded from the times of the Cholesky LR and the implicit QR
method.

EXAMPLE 6.4. We use the same construction of the test matrices as in Example 6.3. For n =
1000 we generate 25 random matrices and compare the accuracy of the eigenvalues computed by the
Cholesky LR method, implicit QR for DPSS matrices, and eig. For the reduction into a similar DPSS
matrix we use the same approach as in Example 6.3.

Results are shown in Figure 6.2. Similar to the previous examples, the Cholesky LR method is
comparable with eig and usually gives slightly better results than the implicit QR method.

Similar tests on matrices with multiple eigenvalues and with eigenvalues λ i = 2i, i = 1, . . . ,n, were
performed. The results obtained by the three algorithms also in these cases are comparable.

7. Conclusions. We have presented a version of the Cholesky LR algorithm that exploits the
structure of positive definite DPSS matrices. We propose to combine the method with Laguerre’s

14

FIG. 6.2. Comparison of the Cholesky LR method, implicit QR for DPSS matrices, and eig from Matlab on 25 random
s.p.d. matrices of size n = 1000 with the exact eigenvalues 1, . . . ,1000.

0 5 10 15 20 25
−13

−12.8

−12.6

−12.4

−12.2

−12

−11.8

−11.6

−11.4

index

lo
g1

0
of

 th
e

m
ax

im
um

 re
la

tiv
e

er
ro

r

Implicit QR
Matlab eig
Cholesky LR

shifts. It seems natural to compare the method to the implicit QR for DPSS matrices [10]. In Cholesky
LR the eigenvalues are computed from the smallest to the largest eigenvalue, therefore the method is
very appropriate for applications where one is interested in few of the smallest or the largest eigen-
values. If the complete spectrum is computed, Cholesky LR is more expensive than implicit QR, but,
as it tends to be slightly more accurate, it presents an alternative.

The proposed method combined with the reduction to DPSS matrices [14] can also be applied to
a general s.p.d. matrix.

REFERENCES

[1] Bini, D.A., Gemignani, L., Pan, V.: QR-like algorithms for generalized semiseparable matrices. Tech. Report 1470,
Department of Mathematics, University of Pisa, 2003

[2] Chandrasekaran, S., Gu, M.: A divide and conquer algorithm for the eigendecomposition of symmetric block-
diagonal plus semi-separable matrices. Numer. Math. 96, 723–731 (2004)

[3] Delvaux, S., Van Barel, M.: Structures preserved by matrix inversion. Report TW 414, Department of Computer
Science, K.U.Leuven, Leuven, Belgium, December 2004

[4] Fasino, D.: Rational Krylov matrices and QR-steps on Hermitian diagonal-plus-semiseparable matrices. To appear
in Numer. Linear Algebra Appl.; also available from ftp://ftp.dimi.uniud.it/pub/fasino/bari.ps

[5] Golub, G.H., Van Loan, C.F.: Matrix Computations, 3rd Edition. The Johns Hopkins University Press, Baltimore,
1996

[6] Grad, J., Zakrajšek, E.: LR algorithm with Laguerre shifts for symmetric tridiagonal matrices. Comput. J. 15, 268–
270 (1972)

[7] Fiedler, M., Vavřı́n, Z.: Generalized Hessenberg matrices. Linear Algebra Appl. 380, 95–105 (2004)
[8] Mastronardi, N., Van Camp, E., Van Barel, M.: Divide and conquer type algorithms for computing the eigendecom-

position of diagonal plus semiseparable matrices. Technical Report 7 (5/2003), Istituto per le Applicazioni del

15

Calcolo ”M. Picone”, Consiglio Nazionale delle Ricerche, Rome, Italy, 2003. To appear in Numerical Algo-
rithms.

[9] Parlett, B.N.: The symmetric eigenvalue problem. Classics in Applied Mathematics, Prentice-Hall, Englewood Cliffs,
N.J., 1980

[10] Van Camp, E., Delvaux, S., Van Barel, M., Vandebril, R., Mastronardi, N.: An implicit QR-algorithm for symmetric
diagonal-plus-semiseparable matrices, Report TW 419, Department of Computer Science, K.U.Leuven, Leuven,
Belgium, March 2005.

[11] Van Camp, E., Van Barel, M., Vandebril, R., Mastronardi, N.: Orthogonal similarity transformation of a
symmetric matrix into a diagonal-plus-semiseparable one with free choice of the diagonal. Structured Nu-
merical Linear Algebra Problems: Algorithms and Applications, Cortona, Italy, September 19-24, 2004.
http://www.dm.unipi.it/∼cortona04/program.htm

[12] Vandebril, R.: Semiseparable matrices and the symmetric eigenvalue problem. PhD, K.U.Leuven, Leuven, May 2004
[13] Vandebril, R., Van Barel, R., Mastronardi, N.: A note on the representation and definition of semiseparable matrices.

Report TW 393, Department of Computer Science, K.U.Leuven, Leuven, Belgium, May 2004. To appear in
Numer. Linear Algebra Appl.

[14] Vandebril, R., Van Camp, R., Van Barel, M., Mastronardi, N.: Orthogonal similarity transformation of a symmetric
matrix into a diagonal-plus-semiseparable one with free choice of the diagonal. Report TW 398, Department of
Computer Science, K.U.Leuven, Leuven, Belgium, August 2004

[15] Wilkinson, J.: Algebraic eigenvalue problem. Numerical Mathematics and Scientific Computation, Oxford Univer-
sity Press, Oxford, 1999

16

