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Abstract

In the present paper a method for generating fullerenes at random
is presented. It is based on the well known Stone-Wales (SW) trans-
formation. The method could be further generalized so that other
trivalent polyhedra with prescribed properties are generated.



1. INTRODUCTION

Fullerenes and other pure carbon cages remain a subject of active re-
search. The mechanism of fullerenes growth is still not fully understood
although much has been learned'. In the present paper a method for gen-
erating fullerenes at random is presented. It is based on the well known
Stone-Wales (SW) transformation® * % % ¢ and it has been successfully im-
plemented as a part of the VEGA: a system for manipulating discrete math-
ematical structures.”® The method could be further generalized so that it
is able to narrow the selection to a population of carbon cages with special
properties.

It is known that the SW-transformation is impeded by a very high ac-
tivation energy. However, recent calculations by Heggie et al. ? show that
the presence of hydrogen and possibly carbon atoms lowers the activation
energy and makes the SW-transformation a viable route for fullerene isomers
interconversion.

From a mathematical standpoint a fullerene is planar trivalent graph
whose faces are pentagons and hexagons. Let n denote the number of vertices,
m the number of edges and r the number of faces. Furthermore, let r5 denotes
the number of pentagons and h the number of hexagons in a fullerene. Then
the following is true:

n—m+r=2  (Euler polyhedral formula for the sphere)
rs +h =r  (each face is either pentagon or hexagon)
2m =3n  (graph is trivalent)
2m = 5rs + 6h (each edge is shared between two faces) (1)

This linear system of equations readily indicates that the number of pen-
tagons is always equal to 12.

rs = 12. (2)

In addition, for a fullerene with h hexagons the number of faces, vertices and
edges is given by:

r = 12+h
n = 204 2h
m = 30+ 3h. (3)



From the above it follows that n is an even number; n > 20. It can be
shown that fullerenes exist for any even n > 20 with exception of n = 22, 19

Usually a fullerene with n vertices is denoted by C,. The smallest
fullerene is dodecahedral Cy (it is unique and contains pentagons only).

Cyo and Cyy fullerenes are depicted in Figure 1 as the generalized Petersen

graphs GP(10,2) and GP(12,2), respectively.

Figure 1. Cyg and Caoy fullerenes as generalized Petersen graphs.

In general, the number of non-isomorphic isomers of C,, fullerenes, ¢(n),
grows rapidly with n. For instance, ¢(30) = 3, ¢(40) = 40, ¢(60) = 1812; see
11

The isomers can be further divided in several classes according to the
characteristics p and ¢, where p is the number of edges shared by two pen-
tagons and ¢ is the number of vertices shared by three pentagons. Obviously,
even the class with the same characteristics p and ¢ contains non-isomorphic
fullerenes. The smallest such case can be found for n = 32 where two non-
isomorphic fullerenes with p = 18 and ¢ = 8 exist. From a chemical viewpoint
the most interesting fullerenes are those with p = ¢ = 0. They are so called
isolated-pentagon (I P) fullerenes. The smallest and most attractive case is
renowned buckminsterfullerene, the icosahedral Cgg.

2. METHOD

The basic idea of the polyhedral Stone-Wales (PSW) transformation ap-
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plies to an edge e of a polyhedron P giving a new polyhedron P’
P'= PSW(P,e). (4)

The transformation is depicted in Figure 2. It is obvious that the numbers
of vertices and edges do not change at this transformation: n(P) = n(P’),
m(P)=m(P"). As one can see, the size of two faces A and B having e as a
common edge in P is decreased by 1 in P’, while the size of two faces, C' and
D, is increased by 1 upon the transformation. Other faces of the polyhedron
remain unchanged. Let fr denote the size of face F'. Then we have:

Jar = fa—1
e = fe—1
Jor = fe+1
for = fp+1 (5)

In order to have no loops or parallel edges in the dual graph of P’, faces C
and D should not coincide or have an edge in common and sizes of faces A
and B should be greater or equal to 4. Two planar trivalent polyhedra P,
and P, are said to be equivalent (under PSW-transformations) if they can be
transformed into each other, up to homeomorphism, by a finite sequence of
PSW-transformations.

Figure 2. The polyhedral Stone-Wales transformation.

A dual of a trivalent planar polyhedron is a triangulation of a sphere. The
dual of the PSW-transformation is the so-called diagonal transformation on
triangulations, depicted on Figure 3, which was studied already by Wagner
1290 1936.



Figure 3. The diagonal transformation.

It is easy to see that the diagonal transformation is a dual transformation
to the PSW-transformation (Figure 4).

Figure 4. The diagonal flip transformation is a dual transformation to the
PSW-transformation.

Theorem 1 Two trivalent planar cubic polyhedra Py and Py are equivalent
under PSW-transformations if r(Py) = r(Py) > 4.

Proof. This theorem follows from a result of Wagner '* in which he
proved that any two triangulations of a sphere with the same number of
vertices are equivalent with respect to the diagonal transformation. The
proof uses a fact that each triangulation on n vertices can be transformed to
a normal form, having two vertices of valence n — 1.

In fact, our theorem is an interpretation of Wagner’s result in a dual form.

The result was later generalized by Negami to triangulations of other
surfaces as Theorem 1 in '3, His generalization is a theoretical basis of our
program that can generate also cubic maps on arbitrary closed surfaces.

The following corollary follows from Theorem 1.



Corollary 1 Two fullerenes Fy and Fy are equivalent under PSW-transfor-
mations if n(Fy) = n(Fy).

In order to generate fullerenes at random one can proceed as follows.
Start with an arbitrary, planar, trivalent, connected graph on n vertices
which has 12 + h faces and then apply repeatedly a number of suitable
PSW-transformations, until eventually a fullerene is obtained. Theorem 1
guarantees that a fullerene can be generated by a finite sequence of PSW-
transformations.

If we want to generate a fullerene with n vertices, m edges and r faces we
have to start with a planar polyhedral graph having these parameters. For a
fullerene with h hexagons, one can start the process with the (10 + h)-gonal
prism, which is the Cartesian product of K3 and the cycle on 10+ & vertices;
see Figure 5. At each step of the process, one has to choose an edge e on
which the PSW-transformation is performed. Our method uses an energy
function which helps choosing the best edge.

Figure 5. The Cartesian product of Ko and the cycle on 10 vertices.

Let f; denote the size of the i-th face (1 <7 < 124 h) of P. We define f

as:

5<f=5+

<6. 6
12+h — (6)

Note that f is the average face size in any fullerene and f = 5 if and only if
P is dodecahedron and f = 6 only for an infinite graphite lattice.



Now define the energy function E(P) of a polyhedron P as:

12+h N 24h
BP) = 3 I~ Tl - o )

The term 24h/(12 + h) = 12(f — 5) + h(6 — 7) is subtracted in order to

guarantee the following:

. B(P)>0,
2. FE(P)=0 if and only if P is a fullerene. (8)

In order to see whether the PSW transformation increases or decreases
the energy of P, one has to consider only the energy difference A, E(P):

AE(P) = E(P')— E(P) = E(PSW(P,e)) — E(P) =
= |far = fl = 1fa= fI+ e = fI = f5 = f]+
+ |fer=fl+lfe =+l = fl+ o= fl= _
= fa—=1=fl=1fa=fl+ =1 fI=1fs = [I+
+ |fe+1=fl+fe=fl+1fp+1=fl+|fo—f1 (9

which contains eight terms.

We say that some edge e is "best” if for each edge ¢’ the inequality
A E(P) < AuE(P) holds.

The following selection rule is applied: Any best edge e can be selected if
A.E(P) < 0, otherwise, an edge among the first v edges with the lowest value
of A E(P) is selected with equal probability. Here v is an experimentally
chosen constant. It turns out that v = 3 is appropriate for small fullerenes
and v = 5 for large (n > 80) fullerenes.

If we want to generate fullerenes with specified p and ¢ parameters the
following function is selected:

12+h . 24},
E(P) = \fi — 1=
2 12+

+1p—7l+1¢—7 (10)

where p and ¢ are the characteristics of the current polyhedron P and p and ¢
are the target values. This energy function is used for instance for generating
IP fullerenes.

One step of the algorithm has time complexity O(n). We have to update
only energy differences A (P) for all edges e in faces influenced by PSW
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(A", B',C', D" from Figure 2). Other values A.(P) remain unchanged and
we can find the first v edges with the lowest value of A E(P) in O(n) time
complexity.

The energy function was generalized in order to generate arbitrary triva-
lent polyhedra. Let 7; denote the target number of faces of size ¢ and r; the
current value of faces of size i. Now, the energy function F(P) is defined as:

B(P) = 3 |ri = 7 (1)

The selection will remain the same as before. However, the computation
process is slower since more book-keeping is needed. Due to the different
energy function (11), energy differences A (P) for all edges e have to be
updated in each step of the algorithm. Time complexity remains O(n).

Using this generalized algorithm cubic graphs embedded in other oriented
surfaces can be generated using different starting graphs.

We have experimented with further generalisation of the energy function
where the parameters p, and ¢, are added and they refer to faces of arbitrary
size s (not necessarily pentagons):

E(P):Z|T¢—T_Z'|—|—|p5—p_s|—|—|qs—@|. (12)
=3

3. NUMERICAL EXPERIMENTS

Now we are ready to present the results of numerical experiments.

In Table 1 the minimum and the average number of iterations together
with the average computational time necessary for generating a fullerene on
n vertices, n = 20,30,...,110 and using the energy function (9) is given.
For each n, one hundred random fullerenes have been generated. Thus, the
average number of iterations and the average time of generation was calcu-
lated using these 100 experiments. The computations have been performed
on 66 MHz 486/DX2 PC. Figures 6-9 present the same data fitted with least

square polynomials.



Table 1.

The average number of iterations, the minimum number of iter-

ations and the average computational time for generating a fullerene on n =

20,30, ..., 110 vertices calculated using fifty experiments.

aver. number | min. number | aver. comput. aver. comput. time
n of iterations | of iterations | time in seconds | per one iteration
in 1/1000 seconds
20 | 13.09 11 0.022 1.70
30 | 26.00 21 0.076 3.60
40 1 39.35 31 0.158 4.00
50 | 57.49 43 0.288 5.01
60 | 76.79 58 0.453 5.89
70 | 122.29 76 0.826 6.75
80 | 162.38 91 1.225 7.54
90 | 229.67 112 1.933 8.42
100 | 265.84 126 2.470 9.29
110 | 324.59 155 3.270 10.07
300
250
200 y
150
100
50 ®
40 60 80 100

Figure 6. The average number of iterations y for generating a fullerene on
n = 20,30, ...,110 atoms fitted with the least square parabola y = 17.45—0.8454n+
0.03352n2.
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Figure 7. The minimum number of iterations y for generating a fullerene
onn = 20,30,...,110 atoms fitted with the least square parabola y = —3.028 +

0.5454n + 0.007917n2.
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Figure 8. The average computational time y for generating a fullerene on
n = 20,30, ...,110 atoms fitted with the least square cubic polynomial y = 0.2204 —
0.01358n + 0.0002222n% + 1.406 - 10~ °n>.
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Figure 9. The average computational time y per one iteration for generating a
Sullerene on n = 20,30, ..., 110 atoms fitted with the least square linear polynomial
y = 0.6579 4 0.08636n.

4. CONCLUSIONS

A variety of algorithms to generate fullerenes is offered until now, some of
them being reliable and efficient. % !5 Here, a new algorithm is presented which
uses the polyhedral Stone-Wales transformation and random local search for local
minima of adequately chosen energy function. Moreover, by suitable modifications
of energy function we have shown how to generate other trivalent polyhedra with
prescribed properties such as face structure, avoidance of some faces to be adjacent,
etc.

The method raises a series of questions concerning the distribution of randomly
generated fullerene isomers with the respect to the choice of initial polyhedron.
Further open questions deal with whether one can reproduce realistic distribution
of a given property from the subset of randomly generated isomers. It would be
also interesting to study the’
space of trivalent polyhedra with a given number of vertices, needed to transform
one fullerene isomer into another via the sequence of PSW-transformations.
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TABLE CAPTIONS

Table 1. The average number of iterations, the minimum number of iter-
ations and the average computational time for generating a fullerene on n =
20,30, ..., 110 vertices calculated using fifty experiments.
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aver. number

min. number

aver. comput.

aver. comput. time

n of iterations | of iterations | time in seconds | per one iteration
in 1/1000 seconds

20 | 13.09 11 0.022 1.70

30 | 26.00 21 0.076 3.60

40 | 39.35 31 0.158 4.00

50 | 57.49 43 0.288 5.01

60 | 76.79 58 0.453 5.89

70 | 122.29 76 0.826 6.75

80 | 162.38 91 1.225 7.54

90 | 229.67 112 1.933 8.42

100 | 265.84 126 2.470 9.29

110 | 324.59 155 3.270 10.07
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FIGURE CAPTIONS

Figure 1. Cyg and Caoy fullerenes as generalized Petersen graphs.
Figure 2. The polyhedral Stone-Wales transformation.
Figure 3. The diagonal transformation.

Figure 4. The diagonal transformation is a dual transformation to the PSW-
transformation.

Figure 5. The Cartesian product of Ko and the cycle on 10 vertices.

Figure 6. The average number of iterations y for generating a fullerene on
n = 20,30, ...,110 atoms fitted with the least square parabola y = 17.45—0.8454n+
0.03352n2.

Figure 7. The minimum number of iterations y for generating a fullerene
onn = 20,30,...,110 atoms fitted with the least square parabola y = —3.028 +
0.5454n + 0.007917n2.

Figure 8. The average computational time y for generating a fullerene on
n = 20,30, ...,110 atoms fitted with the least square cubic polynomial y = 0.2204 —
0.01358n + 0.0002222n% + 1.406 - 10~ °n>.

Figure 9. The average computational time y per one iteration for generating a
Sullerene on n = 20,30, ..., 110 atoms fitted with the least square linear polynomial
y = 0.6579 4 0.08636n.
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