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Abstract

Recently the problem of drawing graphs became a hot subject in
mathematical and computer sciences. In the present paper two of
the graph drawing algorithms, namely those of Kamada-Kawai and
Fruchterman-Reingold are for the first time applied to chemistry in
their original two dimensional (2D ) versions as well in their generalized
three dimensional (3D) version developed by us. In addition, the
algorithm based on the adjacency matrix eigenvectors has been also
tested.

All three algorithms in their 2D and 3D versions are tested on a
series of molecules, especially on fullerenes and toroidal pure carbon
cages, the so-called torusenes. The conformations obtained offer a
rather good guess of starting geometries for more sophisticated meth-
ods. The drawings obtained by the Fruchterman-Reingold algorithm
are superior to those generated by Kamada-Kawai algorithm.

In addition, all molecular graphs studied have been also repre-
sented by the so-called Schlegel diagrams for whose generation a novel
algorithm was developed. Schlegel diagrams are important for iden-
tifying and analysing topological properties of large spatial carbon
clusters.



INTRODUCTION

When representing molecules with graphs the individuality of constituent
atoms and character of chemical bonds is mostly suppressed but the connec-
tivity is emphasised in its pure form.

Atoms are represented by vertices of graphs which are conveniently de-
picted as points and chemical bonds by edges which are drawn as straight
lines. As positions of points are completely arbitrary there is an infinite
number of ways to draw a given graph.

However, by imposing some aesthetic or other criterion, the admissible
number of ways to draw a graph is reduced. Recently, the problem of draw-
ing graphs became a hot subject in mathematical and computer sciences. A
series of international conferences on the subject is being organized annu-
ally since 1992 [1]. This topic has important applications in key computer
technologies such as software engineering, database design and visual inter-
faces. Further applications can be found in architectural and circuit design,
project management, in mathematical fields such as computational geome-
try, topological graph theory, ordered sets, and many others. However graph
drawing algorithms have been developed primarily for presentations of graphs
in plane.

In the present paper two of the graph drawing algorithms [2],[3] are for
the first time applied to chemistry in their original 2D version as well as
in their generalized three dimensional version developed by us. In parallel,
the algorithm bassed on the adjacency matrix eigenvectors has been also
tested. Moreover, the algorithm to present so-called Schlegel diagram of a
polyhedron is developed.

All the above algorithms belong to the class of so-called spring embedding
algorithms [4]. They are all descendants of the Eades’ algorithm [5]. Since
all of them give aesthetically acceptable drawings we name them NiceGraph
models. The methods have been successfully implemented and form a part
of the package Vega developed at the IMFM/TCS in Ljubljana.

The methods developed here are not a substitute for more advanced
quantum-chemical methods but rather they offer a noble guess of plausi-
ble starting geometries for more sophisticated methods. As they are simple
to apply, we recommend them for quick determination of molecular geome-
tries, especially when many isomers of a given molecule have to be searched.
This is for instance the case in fullerene molecules which are the object of



intense current research in chemistry, physics and material sciences[6].

THE ALGORITHM OF KAMADA AND KAWAT

Let G = (V, E) be a graph with n = |V| vertices and m = |E| edges.
The graph-theoretical distance d;; between vertices v; and v; is the smallest
number of edges between v; and v;. The distances d;; are integers ranging
from 1 for the first neighbours up to the diameter D, the largest distance in

a graph.

Let us make a drawing of graph G in three dimensional Euclidean space.
To each vertex v; a point 7; = (xi,1:,2) is associated in 3D-space. The
Euclidean distance D;; = |r_2> — r_]>| is associated with a pair of vertices v,

and v;. The quantity (D;; — d;;)* measures the deviation of the Euclidean
from graph-theoretical distance. Overall deviation of Euclidean with respect
to graph-theoretical distances in a graph G is given by

1
E=E,m,...,1;G)=> 57%‘(172'; —d;;)?

where summation goes over all possible pairs of vertices.

According to Kamada and Kawai a graph is modelled as a system of balls
and springs. If so, the energy function £ could be understood as the elastic
energy associated with a particular drawing (77, 75,..., 7, ) of a graph G.
The contribution k;;(D;; —d;;)*/2 is the elastic energy of a spring of the force
constant k& where d plays a role of the equilibrium distance.

The problem of graph drawing is reduced to finding positions of vertices
(balls) in such a way that the energy of a system of springs becomes minimal.

It is reasonable to assume that k;; are inversely proportional to d;; :

kij = [X’/dw

where K is an arbitrary positive constant.
The minimum of £ is determined by:
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i.e. by the system of 3n non-linear equations. We solve these equations
numerically. For each vertex v; the quantity
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is calculated.

In each step of the algorithm the vertex v; with the maximum A; is chosen
and F is considered as the function of only three variables z;,y; and z;. By
applying the Newton method the related equations become linear and we
have to solve the linear system in three variables until A; becomes less than
some threshold value e. After that the next maximal A; is found and the
procedure is repeated. In another words only one point is moved at each
iteration.

By omitting the third coordinate z the two dimensional version of the
algorithm is derived. Indeed, the 2D version was first developed. The 2D
and 3D versions of the Kamada and Kawai algorithm will be denoted in the
further text by KK2 and KK3, respectively.

Time complexity for the calculation of the graph-theoretical distances is
O(n?). In the first step of the algorithm all A; have to be calculated. Time
complexity for this is O(n?). Time complexity for each following step is O(n)
since values A; only have to be updated.

THE ALGORITHM OF FRUCHTERMAN AND
REINGOLD

In this model graph is again modelled as a physical system. Repulsive
forces are calculated between every pair of vertices and attractive forces are
calculated between every pair of adjacent vertices. Forces are used to calcu-
late velocity for every time quantum ( instead of acceleration as it is usual
in physical systems ). The aim of the algorithm is to find the static equlib-
ria, i.e. the state with zero resultant forces for all vertices. The 2D and 3D
versions of the Fruchterman and Reingold algorithm will be denoted in the
further text by FR2 and FR3, respectively.

If d is the distance between the two vertices, then the attractive force f,
is calculated as

fa :dz/k



and the repulsive force f, is calculated as
fr=k*/d.

Here k£ denotes the optimal distance between vertices calculated at the be-
ginning of the algorithm as

k = Cy/area/number of vertices

where the constant C' is found experimentally. It is easy to see that for the
path of length two & is the distance where the forces would cancel each other
out and in a general graph k is the average distance where the resultant
forces for all vertices equal zero.

In each step of the algorithm resultant forces of all vertices are calculated
and all vertices are moved in the directions of the resultant forces. The
displacements are controlled by the temperature parameter T' and by the
borders of the area. Vertices cannot be displaced outside frame and the size
of the displacement 6, of the vertex v with the resultant force F), is

6, = min(T, |F,]).

In each step the temperature is reduced using some cooling function.
One step of the algorithm has time complexity O(n? 4+ m).

THE ALGORITHM FOR DRAWING SCHLEGEL DIA-
GRAMS

Schlegel diagrams are planar representations of polyhedral graphs and
therefore they are suitable to represent fullerenes. These diagrams clearly
show the connectivity of atoms in fullerenes.

A graph can be modelled as a system of balls and elastic bands where
the vertices of the outer face are fixed on regular polygon. We seek for the
state of static equlibria. This algorithm is derived from the Fruchterman and
Reingold algorithm by deleting all repulsive forces and fixing vertices of an
outer face.

Some further modifications were made in order to obtain better figures.
It we want to end with approximately equally arranged faces, bands close
to the peripheral ring should be stronger than the bands in the middle of



the figure. Otherwise we end with a large number of crowded small faces
in the middle and large faces on the border of the figure. For this purpose
periphericity p, of a vertex v is introduced as the length of the shortest path
between the vertex and the outer face.

The size of the attractive force between vertices u and v is calculated as

2maav_ v~ Pu
Ju= d exp(A™ fo =P

pmax

where p,q, 1s the maximum periphericity in the graph and the constant A
is found experimentaly. As in the previous algorithms FR2 and FR3 the
resultant forces of all vertices are calculated in each step and vertices are
displaced in the directions of the resultant forces for an ammount equal to
the minimum of the force size and the temperature T'.

The algorithm can be applied to non-planar graphs as long as peripheral
ring is specified. In such cases this algorithm often provides a better inside
into the connectivity of vertices.

The Schlegel diagram algorithm will be denoted in further text by SCH.
One step of the algorithm has time complexity O(m).

THE ALGORITHM BASED ON THE ADJACENCY
MATRIX EIGENVECTORS

Another model being accepted by some fullerene research groups [7], [8],[9]
is based on the consideration of the eigenvectors w7, Z3,..., &, of the ad-
jacency matrix A of a graph with n vertices. Eigenvalues are ordered as:
A1 > Ay > .... Three consecutive eigenvectors like T3, T3 and T, are taken
to build n x 3 matrix B = [z, z3 z4]. By reading the i-th row of B,
(22i, ¥3i, ¢4;) as the 3D-coordinates of vertex ¢ and running over all ¢’s, in
many cases a rather decent 3D-drawing of G is achieved. In the case when a
graph is not regular, results are generally better if the Laplacean matrix of
a graph is taken instead of its adjacency matrix [10].

Adjacency matrix eigenvectors algorithm will be abreviated AME in the
further text. Standard numerical algorithms that are available for Mathe-
matica users were employed (Eigensystem, GramSchmidt).



RESULTS

The basic information on a graph is the connectivity of its vertices. Here it
is given by the adjacency matrix of a graph from which the graph-theoretical
distances are calculated.

The starting configuration of points in Euclidean space, if not otherwise
specified, is given at random. It could be also drawn on the screen by using
graphical interface or given by some rule. For instance, the graph G, of snub
cube could be depicted [11] as a rotagraph w4(Cs + {{2,6},{3,5}}; {{1,1},
{1,2},{6,2},{6,3},{5,3},{5,4},{4,4}}), i.e. by repeating four times the
cycle of length 6 with the connectivity between neighbouring paths given as
in Fig. 1. Its SCH, AME, KK2, KK3, FR2 and FR3 drawings are depicted
in Fig. 2.

Figure 1. The graph of snub cube represented as a rotgraph.

SCH AME



FR2 FR3

Figure 2. The Schlegel (SCH), adjacency matriz eigenvectors (AMFE), Kamada-
Kawai 2D (KK2) and 3D (KK3), and Fruchterman-Reingold 2D (FR2) and 3D

(FR3) NiceGraph drawings of the snub cube graph.

Note that the drawings obtained by the optimization in 2D-space look
like the 2-dimensional projections of omptimized 3D-drawings. The same

applies for other graphs as well.
The starting Schlegel diagram of the celebrated icosahedral I, : Cgg

fullerene and its NiceGraph drawings are depicted in Fig. 3.

SCH AME



FR2 FR3
Figure 3. The Schlegel (SCH), adjacency matriz eigenvectors (AMFE), Kamada-
Kawai 2D (KK2) and 3D (KK3), and Fruchterman-Reingold 2D (FR2) and 3D
(FR3) NiceGraph drawings of the buckyball (I}, : Cgo) graph.

The Schlegel diagram and the NiceGraph drawings of the C7, fullerene,
a leapfrog[12] of the (4 cage are shown in Fig. 4.

SCH AME
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Figure 4. The Schlegel (SCH), adjacency matriz eigenvectors (AMFE), Kamada-
Kawai 2D (KK2) and 3D (KK3), and Fruchterman-Reingold 2D (FR2) and 3D
(FR3) NiceGraph drawings of the Cro fullerene, a leapfrog of Caq.

The example depicted in Fig. 5 represents Schlegel and NiceGraph con-
figurations of the Chs cage (of T, simetry) which is the smallest fullerene up
to now [13] to form in a substantial abundance.

This cage behaves as a tetravalent species trapping a tetravalent atom
inside the cage to make endohedral fullerenes such as Ti@QC,5,UQC4, etc.
Its tetravalence is exhibited also by reacting at the four tetrahedral vertices
on the outside of the T, : Cys cage to make e.g. CysHy.
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Figure 5. The Schlegel (SCH), adjacency matriz eigenvectors (AMFE), Kamada-
Kawai 2D (KK2) and 3D (KK3), and Fruchterman-Reingold 2D (FR2) and 3D
(FR3) NiceGraph drawings of the Ty : Cas fullerene.

Formally, the fullerenes are defined as 3-valent (3-regular) graphs having
only pentagons and hexagons as faces. If the use of heptagons is allowed too,
the Euler’s polyhedron formula gives:

hs = hr +12(1 — g)

where hy and h; denotes the number of pentagons and heptagons, respec-
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tively. The number of hexagons, hg, is arbitrary. ¢ denotes the genus of the
surface at which G is embedded, i.e. ¢ = 0,1, and 2, for sphere, torus and
pretzel, respectively. The toroidal, pure carbon cages recently have received
a considerable attention [15],[16].

The above formula for h; = 0,g = 0 gives hs = 12, i.e. exactly 12
pentagons are needed to give a spherical fullerene. For a torus (¢ = 1), one
has:

hs = hr.

Two cases are possible. The first in which hs = h; = 0 gives toroidal poly-
hexes, i.e. the toroidal fullerenes composed solely from hexagons. It is easily
to see that: 3n = 2m = 6hg . The FR3 NiceGraph drawing of the toroidal
polyhex with hg = 120 is depicted in Fig. 6a.

The second case, hs = hr # 0, gives the azulenoid cages. The FR3
NiceGraph drawing of the torus with hs = hy = 10 (he = 100) is depicted in
Fig. 6b.

(a) (b)
Figure 6. Fruchterman-Reingold 3D (FR3) NiceGraph drawings of (a) the
toroidal polyhex with 120 hexagons and (b) the azelunoid cage with 10 pentagons,

100 hezxagons and 10 heptagons.

In the above cases it is evident that the NiceGraph algorithms are able
to recognize the genus of a surface in which the graph has to be embedded.

DISCUSSION

The algorithms presented in this paper are giving reasonable plausible
geometries of fullerenes and other molecules graphs. The drawings obtained
by the Fruchterman-Reingold algorithm are superior to those generated by
the Kamada-Kawai algorithm.

13



However, the final NiceGraph configuration are not necessarily "nice”,
i.e. the final drawings do not necessarily exhibit a geometrical symmetry
indicated by the automorphisms group of a graph. This is especially true for
graphs with large number of vertices. One possible way to remedy for this
deficiency would be to make the threshold values in computations smaller but
it will increase the computation time. Another approach, which is now under
development, is to use the knowledge of the automorphisms group of a graph
in building up the proper geometrical symmetry of the final drawing[14].

All algorithms presented here are written in Turbo Pascal and imple-
mented in a system for manipulating discrete mathematical structures Vega
[17].

The NiceGraph program in its present form does not discriminate the
individuality of atoms and chemical bonds. However, the results for CysHy
cage show that its plausible geometry is nevertheless achieved. The example
of biphenyle molecule is instructive too. Its KK NiceGraph drawings where
carbon and hydrogen atoms are treated on the equal footing rotates one ring
with respect to another but for an incorrect angle of 90°.

The future developments of the program in which the individuality of the
various chemical bonds will be reflected by appropriate changes in graph-
theoretical distances are highly desirable. Especially interesting would be to
study the changes in geometry of fullerenes in which some number of carbons
is substituted by boron, nitrogen, and other atoms.

A systematic comparison of geometries obtained by the mathematical
models like the NiceGraph, the eigenvectors of the adjacency matrix, and
more realistic, physically based models like molecular mechanics, semiempir-
ical and ab initio quantum-chemical models as well as with the experimental
data is under way by the present authors [18].

CONCLUSIONS

The NiceGraph model, proposed here for applications in chemistry, is
easy to apply. The only input data are connectivity tables of a molecule and
the starting coordinates of atoms are taken at random. The final NiceGraph
configuration is aesthetically acceptable and represents a plausible starting
geometry to apply some more realistic model like molecular mechanics. The
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present model is especially advisable to apply when a large number of iso-
mers has to be searched as it is the case in fullerenes.
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SAZETAK
NiceGraph program i njegove primjene u kemiji
Tomaz Pisanski, Bor Plestenjak i Ante Graovac

Problem risanja grafova postaje uzbudljiva tema matematike i racunarskih
znanosti. U ovom radu se po prvi put u kemiji primjenjuju dva postojeéa algoritma
za risanje grafova, naime, algoritmi Kamada-Kawaija i Fruchterman-Reingolda, i
to u njihovom izvornom dvodimenzionalnom (2D),i u od nas poobtenom trodimen-
zionalnom (3D) obliku. U radu je dalje testiran veé poznati algoritam zasnovan
na vlastitim vektorima matrice susjedstva.

Sva tri algoritma u njihovim 2D i 3D verzijama su testirana na seriji molekula,
posebno na fullerenima i toroidnim ¢isto ugljikovim kavezima. Dobivene konforma-
cije predstavljaju prilicno dobre potetne geometrije za to¢nije racune, s time da su
crtezi dobijeni Fruchterman-Reingoldovim algoritmom superiorni onima dobijenim
Kamada-Kawai algoritmom.

Sve studirane molekularne grafove prikazali smo takodjer tzv. Schlegelovim
dijagramima za Cije generiranje smo razvili vlastiti algoritam.
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