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AbstractRecently the problem of drawing graphs became a hot subject inmathematical and computer sciences. In the present paper two ofthe graph drawing algorithms, namely those of Kamada-Kawai andFruchterman-Reingold are for the �rst time applied to chemistry intheir original two dimensional (2D) versions as well in their generalizedthree dimensional (3D) version developed by us. In addition, thealgorithm based on the adjacency matrix eigenvectors has been alsotested.All three algorithms in their 2D and 3D versions are tested on aseries of molecules, especially on fullerenes and toroidal pure carboncages, the so-called torusenes. The conformations obtained o�er arather good guess of starting geometries for more sophisticated meth-ods. The drawings obtained by the Fruchterman-Reingold algorithmare superior to those generated by Kamada-Kawai algorithm.In addition, all molecular graphs studied have been also repre-sented by the so-called Schlegel diagrams for whose generation a novelalgorithm was developed. Schlegel diagrams are important for iden-tifying and analysing topological properties of large spatial carbonclusters.
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INTRODUCTIONWhen representing molecules with graphs the individuality of constituentatoms and character of chemical bonds is mostly suppressed but the connec-tivity is emphasised in its pure form.Atoms are represented by vertices of graphs which are conveniently de-picted as points and chemical bonds by edges which are drawn as straightlines. As positions of points are completely arbitrary there is an in�nitenumber of ways to draw a given graph.However, by imposing some aesthetic or other criterion, the admissiblenumber of ways to draw a graph is reduced. Recently, the problem of draw-ing graphs became a hot subject in mathematical and computer sciences. Aseries of international conferences on the subject is being organized annu-ally since 1992 [1]. This topic has important applications in key computertechnologies such as software engineering, database design and visual inter-faces. Further applications can be found in architectural and circuit design,project management, in mathematical �elds such as computational geome-try, topological graph theory, ordered sets, and many others. However graphdrawing algorithms have been developed primarily for presentations of graphsin plane.In the present paper two of the graph drawing algorithms [2],[3] are forthe �rst time applied to chemistry in their original 2D version as well asin their generalized three dimensional version developed by us. In parallel,the algorithm bassed on the adjacency matrix eigenvectors has been alsotested. Moreover, the algorithm to present so-called Schlegel diagram of apolyhedron is developed.All the above algorithms belong to the class of so-called spring embeddingalgorithms [4]. They are all descendants of the Eades' algorithm [5]. Sinceall of them give aesthetically acceptable drawings we name them NiceGraphmodels. The methods have been successfully implemented and form a partof the package Vega developed at the IMFM/TCS in Ljubljana.The methods developed here are not a substitute for more advancedquantum-chemical methods but rather they o�er a noble guess of plausi-ble starting geometries for more sophisticated methods. As they are simpleto apply, we recommend them for quick determination of molecular geome-tries, especially when many isomers of a given molecule have to be searched.This is for instance the case in fullerene molecules which are the object of3



intense current research in chemistry, physics and material sciences[6].THE ALGORITHM OF KAMADA AND KAWAILet G = (V;E) be a graph with n = jV j vertices and m = jEj edges.The graph-theoretical distance dij between vertices vi and vj is the smallestnumber of edges between vi and vj. The distances dij are integers rangingfrom 1 for the �rst neighbours up to the diameter D, the largest distance ina graph.Let us make a drawing of graph G in three dimensional Euclidean space.To each vertex vi a point �!ri = (xi; yi; zi) is associated in 3D-space. TheEuclidean distance Dij = j�!ri � �!rj j is associated with a pair of vertices viand vj. The quantity (Dij � dij)2 measures the deviation of the Euclideanfrom graph-theoretical distance. Overall deviation of Euclidean with respectto graph-theoretical distances in a graph G is given byE = E(�!r1 ;�!r2 ; : : : ;�!rn ;G) =X 12kij(Dij � dij)2where summation goes over all possible pairs of vertices.According to Kamada and Kawai a graph is modelled as a system of ballsand springs. If so, the energy function E could be understood as the elasticenergy associated with a particular drawing (�!r1 ;�!r2 ; : : : ;�!rn ) of a graph G.The contribution kij(Dij�dij)2=2 is the elastic energy of a spring of the forceconstant k where d plays a role of the equilibrium distance.The problem of graph drawing is reduced to �nding positions of vertices(balls) in such a way that the energy of a system of springs becomes minimal.It is reasonable to assume that kij are inversely proportional to dij :kij = K=dijwhere K is an arbitrary positive constant.The minimum of E is determined by:@E@xi = 0; @E@yi = 0; @E@zi = 0; i = 1; 2; : : : ; n4



i.e. by the system of 3n non-linear equations. We solve these equationsnumerically. For each vertex vi the quantity�i =vuut@E@xi 2 + @E@yi 2 + @E@zi 2is calculated.In each step of the algorithm the vertex vi with the maximum�i is chosenand E is considered as the function of only three variables xi; yi and zi. Byapplying the Newton method the related equations become linear and wehave to solve the linear system in three variables until �i becomes less thansome threshold value �. After that the next maximal �i is found and theprocedure is repeated. In another words only one point is moved at eachiteration.By omitting the third coordinate z the two dimensional version of thealgorithm is derived. Indeed, the 2D version was �rst developed. The 2Dand 3D versions of the Kamada and Kawai algorithm will be denoted in thefurther text by KK2 and KK3, respectively.Time complexity for the calculation of the graph-theoretical distances isO(n3). In the �rst step of the algorithm all �i have to be calculated. Timecomplexity for this is O(n2). Time complexity for each following step is O(n)since values �i only have to be updated.THE ALGORITHM OF FRUCHTERMAN ANDREINGOLDIn this model graph is again modelled as a physical system. Repulsiveforces are calculated between every pair of vertices and attractive forces arecalculated between every pair of adjacent vertices. Forces are used to calcu-late velocity for every time quantum ( instead of acceleration as it is usualin physical systems ). The aim of the algorithm is to �nd the static equlib-ria, i.e. the state with zero resultant forces for all vertices. The 2D and 3Dversions of the Fruchterman and Reingold algorithm will be denoted in thefurther text by FR2 and FR3, respectively.If d is the distance between the two vertices, then the attractive force fais calculated as fa = d2=k5



and the repulsive force fr is calculated asfr = k2=d:Here k denotes the optimal distance between vertices calculated at the be-ginning of the algorithm ask = Cqarea=number of verticeswhere the constant C is found experimentally. It is easy to see that for thepath of length two k is the distance where the forces would cancel each otherout and in a general graph k is the average distance where the resultantforces for all vertices equal zero.In each step of the algorithm resultant forces of all vertices are calculatedand all vertices are moved in the directions of the resultant forces. Thedisplacements are controlled by the temperature parameter T and by theborders of the area. Vertices cannot be displaced outside frame and the sizeof the displacement �v of the vertex v with the resultant force Fv is�v = min(T; jFvj):In each step the temperature is reduced using some cooling function.One step of the algorithm has time complexity O(n2 +m):THE ALGORITHM FOR DRAWING SCHLEGEL DIA-GRAMSSchlegel diagrams are planar representations of polyhedral graphs andtherefore they are suitable to represent fullerenes. These diagrams clearlyshow the connectivity of atoms in fullerenes.A graph can be modelled as a system of balls and elastic bands wherethe vertices of the outer face are �xed on regular polygon. We seek for thestate of static equlibria. This algorithm is derived from the Fruchterman andReingold algorithm by deleting all repulsive forces and �xing vertices of anouter face.Some further modi�cations were made in order to obtain better �gures.If we want to end with approximately equally arranged faces, bands closeto the peripheral ring should be stronger than the bands in the middle of6



the �gure. Otherwise we end with a large number of crowded small facesin the middle and large faces on the border of the �gure. For this purposeperiphericity pv of a vertex v is introduced as the length of the shortest pathbetween the vertex and the outer face.The size of the attractive force between vertices u and v is calculated asfa = d2 exp(A2pmax � pu � pvpmax )where pmax is the maximum periphericity in the graph and the constant Ais found experimentaly. As in the previous algorithms FR2 and FR3 theresultant forces of all vertices are calculated in each step and vertices aredisplaced in the directions of the resultant forces for an ammount equal tothe minimum of the force size and the temperature T .The algorithm can be applied to non-planar graphs as long as peripheralring is speci�ed. In such cases this algorithm often provides a better insideinto the connectivity of vertices.The Schlegel diagram algorithm will be denoted in further text by SCH.One step of the algorithm has time complexity O(m):THE ALGORITHM BASED ON THE ADJACENCYMATRIX EIGENVECTORSAnother model being accepted by some fullerene research groups [7], [8],[9]is based on the consideration of the eigenvectors �!x1 ;�!x2 ; : : : ;�!xn, of the ad-jacency matrix A of a graph with n vertices. Eigenvalues are ordered as:�1 � �2 � : : :. Three consecutive eigenvectors like �!x2 ;�!x3 and �!x4 are takento build n � 3 matrix B = [�!x2 �!x3 �!x4 ]. By reading the i-th row of B,(x2i; x3i; x4i) as the 3D-coordinates of vertex i and running over all i's, inmany cases a rather decent 3D-drawing of G is achieved. In the case when agraph is not regular, results are generally better if the Laplacean matrix ofa graph is taken instead of its adjacency matrix [10].Adjacency matrix eigenvectors algorithm will be abreviated AME in thefurther text. Standard numerical algorithms that are available for Mathe-matica users were employed (Eigensystem, GramSchmidt).7



RESULTSThe basic information on a graph is the connectivity of its vertices. Here itis given by the adjacency matrix of a graph from which the graph-theoreticaldistances are calculated.The starting con�guration of points in Euclidean space, if not otherwisespeci�ed, is given at random. It could be also drawn on the screen by usinggraphical interface or given by some rule. For instance, the graph G, of snubcube could be depicted [11] as a rotagraph !4(C6 + ff2; 6g; f3; 5gg; ff1; 1g;f1; 2g; f6; 2g; f6; 3g; f5; 3g; f5; 4g; f4; 4gg), i.e. by repeating four times thecycle of length 6 with the connectivity between neighbouring paths given asin Fig. 1. Its SCH, AME, KK2, KK3, FR2 and FR3 drawings are depictedin Fig. 2.
Figure 1. The graph of snub cube represented as a rotgraph.
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KK2 KK3
FR2 FR3Figure 2. The Schlegel (SCH), adjacency matrix eigenvectors (AME), Kamada-Kawai 2D (KK2) and 3D (KK3), and Fruchterman-Reingold 2D (FR2) and 3D(FR3) NiceGraph drawings of the snub cube graph.Note that the drawings obtained by the optimization in 2D-space looklike the 2-dimensional projections of omptimized 3D-drawings. The sameapplies for other graphs as well.The starting Schlegel diagram of the celebrated icosahedral Ih : C60fullerene and its NiceGraph drawings are depicted in Fig. 3.
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KK2 KK3
FR2 FR3Figure 3. The Schlegel (SCH), adjacency matrix eigenvectors (AME), Kamada-Kawai 2D (KK2) and 3D (KK3), and Fruchterman-Reingold 2D (FR2) and 3D(FR3) NiceGraph drawings of the buckyball (Ih : C60) graph.The Schlegel diagram and the NiceGraph drawings of the C72 fullerene,a leapfrog[12] of the C24 cage are shown in Fig. 4.
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KK2 KK3
FR2 FR3Figure 4. The Schlegel (SCH), adjacency matrix eigenvectors (AME), Kamada-Kawai 2D (KK2) and 3D (KK3), and Fruchterman-Reingold 2D (FR2) and 3D(FR3) NiceGraph drawings of the C72 fullerene, a leapfrog of C24.The example depicted in Fig. 5 represents Schlegel and NiceGraph con-�gurations of the C28 cage (of Td simetry) which is the smallest fullerene upto now [13] to form in a substantial abundance.This cage behaves as a tetravalent species trapping a tetravalent atominside the cage to make endohedral fullerenes such as T i@C28,U@C28, etc.Its tetravalence is exhibited also by reacting at the four tetrahedral verticeson the outside of the Td : C28 cage to make e.g. C28H4.
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SCH AME
KK2 KK3
FR2 FR3Figure 5. The Schlegel (SCH), adjacency matrix eigenvectors (AME), Kamada-Kawai 2D (KK2) and 3D (KK3), and Fruchterman-Reingold 2D (FR2) and 3D(FR3) NiceGraph drawings of the Td : C28 fullerene.Formally, the fullerenes are de�ned as 3-valent (3-regular) graphs havingonly pentagons and hexagons as faces. If the use of heptagons is allowed too,the Euler's polyhedron formula gives:h5 = h7 + 12(1 � g)where h5 and h7 denotes the number of pentagons and heptagons, respec-12



tively. The number of hexagons, h6, is arbitrary. g denotes the genus of thesurface at which G is embedded, i.e. g = 0; 1, and 2, for sphere, torus andpretzel, respectively. The toroidal, pure carbon cages recently have receiveda considerable attention [15],[16].The above formula for h7 = 0,g = 0 gives h5 = 12, i.e. exactly 12pentagons are needed to give a spherical fullerene. For a torus (g = 1), onehas: h5 = h7:Two cases are possible. The �rst in which h5 = h7 = 0 gives toroidal poly-hexes, i.e. the toroidal fullerenes composed solely from hexagons. It is easilyto see that: 3n = 2m = 6h6 . The FR3 NiceGraph drawing of the toroidalpolyhex with h6 = 120 is depicted in Fig. 6a.The second case, h5 = h7 6= 0, gives the azulenoid cages. The FR3NiceGraph drawing of the torus with h5 = h7 = 10 (h6 = 100) is depicted inFig. 6b.
(a) (b)Figure 6. Fruchterman-Reingold 3D (FR3) NiceGraph drawings of (a) thetoroidal polyhex with 120 hexagons and (b) the azelunoid cage with 10 pentagons,100 hexagons and 10 heptagons.In the above cases it is evident that the NiceGraph algorithms are ableto recognize the genus of a surface in which the graph has to be embedded.DISCUSSIONThe algorithms presented in this paper are giving reasonable plausiblegeometries of fullerenes and other molecules graphs. The drawings obtainedby the Fruchterman-Reingold algorithm are superior to those generated bythe Kamada-Kawai algorithm. 13



However, the �nal NiceGraph con�guration are not necessarily "nice",i.e. the �nal drawings do not necessarily exhibit a geometrical symmetryindicated by the automorphisms group of a graph. This is especially true forgraphs with large number of vertices. One possible way to remedy for thisde�ciency would be to make the threshold values in computations smaller butit will increase the computation time. Another approach, which is now underdevelopment, is to use the knowledge of the automorphisms group of a graphin building up the proper geometrical symmetry of the �nal drawing[14].All algorithms presented here are written in Turbo Pascal and imple-mented in a system for manipulating discrete mathematical structures Vega[17].The NiceGraph program in its present form does not discriminate theindividuality of atoms and chemical bonds. However, the results for C28H4cage show that its plausible geometry is nevertheless achieved. The exampleof biphenyle molecule is instructive too. Its KK NiceGraph drawings wherecarbon and hydrogen atoms are treated on the equal footing rotates one ringwith respect to another but for an incorrect angle of 90o.The future developments of the program in which the individuality of thevarious chemical bonds will be reected by appropriate changes in graph-theoretical distances are highly desirable. Especially interesting would be tostudy the changes in geometry of fullerenes in which some number of carbonsis substituted by boron, nitrogen, and other atoms.A systematic comparison of geometries obtained by the mathematicalmodels like the NiceGraph, the eigenvectors of the adjacency matrix, andmore realistic, physically based models like molecular mechanics, semiempir-ical and ab initio quantum-chemical models as well as with the experimentaldata is under way by the present authors [18].CONCLUSIONSThe NiceGraph model, proposed here for applications in chemistry, iseasy to apply. The only input data are connectivity tables of a molecule andthe starting coordinates of atoms are taken at random. The �nal NiceGraphcon�guration is aesthetically acceptable and represents a plausible startinggeometry to apply some more realistic model like molecular mechanics. The14
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SA�ZETAKNiceGraph program i njegove primjene u kemijiToma�z Pisanski, Bor Plestenjak i Ante GraovacProblem risanja grafova postaje uzbudljiva tema matematike i ra�cunarskihznanosti. U ovom radu se po prvi put u kemiji primjenjuju dva postoje�ca algoritmaza risanje grafova, naime, algoritmi Kamada-Kawaija i Fruchterman-Reingolda, ito u njihovom izvornom dvodimenzionalnom (2D), i u od nas poob�cenom trodimen-zionalnom (3D) obliku. U radu je dalje testiran ve�c poznati algoritam zasnovanna vlastitim vektorima matrice susjedstva.Sva tri algoritma u njihovim 2D i 3D verzijama su testirana na seriji molekula,posebno na fullerenima i toroidnim �cisto ugljikovim kavezima. Dobivene konforma-cije predstavljaju prili�cno dobre po�cetne geometrije za to�cnije ra�cune, s time da sucrte�zi dobijeni Fruchterman-Reingoldovim algoritmom superiorni onima dobijenimKamada-Kawai algoritmom.Sve studirane molekularne grafove prikazali smo takodjer tzv. Schlegelovimdijagramima za �cije generiranje smo razvili vlastiti algoritam.
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