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1 Introduction

We consider the nonlinear two-parameter eigenvalue problem (N2EP)

T1(λ ,µ)x1 = 0,
T2(λ ,µ)x2 = 0,

(1.1)

where Ti(λ ,µ) is an ni× ni complex matrix, whose elements are analytic functions
of λ ,µ ∈C, and xi ∈Cni for i = 1,2. Matrices could be of different sizes, but to keep
things simple, from now on we assume that n1 = n2 = n.

We are searching for nonzero vectors x1,x2 and values λ ,µ such that (1.1) is
satisfied. In such case we say that the pair (λ ,µ) is an eigenvalue and the tensor
product x1⊗ x2 is the corresponding (right) eigenvector. Similarly, if y1 and y2 are
nonzero vectors such that yH

1 T1(λ ,µ) = 0 and yH
2 T2(λ ,µ) = 0, then y1⊗ y2 is the

corresponding left eigenvector.
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The N2EP can be seen as a generalization of both the nonlinear eigenvalue prob-
lem (NEP) and the two-parameter eigenvalue problem (2EP). The eigenvalues of (1.1)
are the solutions of the following system of bivariate characteristic functions

f1(λ ,µ) := det(T1(λ ,µ)) = 0,
f2(λ ,µ) := det(T2(λ ,µ)) = 0.

(1.2)

Similar as the NEP, the problem (1.1) can have zero, finite, or infinite number
of eigenvalues. We assume that the set of eigenvalues is zero-dimensional, i.e., each
eigenvalue (λ ,µ) is an isolated point, so that the problem of numerical computation
of some or all of the eigenvalues is well defined.

The paper if organized as follows. In Sect. 2, some motivating problems are pre-
sented. In Sect. 3, some basic facts about a related linear two-parameter eigenvalue
problem are given. In Sect. 4 we give some theoretical results on N2EPs with sim-
ple eigenvalues. The main part of the paper are numerical methods for the N2EP in
Sect. 5, which are followed by numerical examples in Sect. 6.

2 Motivating problems

An example of a N2EP is the quadratic two-parameter eigenvalue problem (Q2EP)
[15,22] of the form

Q1(λ ,µ)x1 := (A00 +λA10 +µA01 +λ 2A20 +λ µA11 +µ2A02)x1 = 0,
Q2(λ ,µ)x2 := (B00 +λB10 +µB01 +λ 2B20 +λ µB11 +µ2B02)x2 = 0,

(2.1)

where Ai j,Bi j are given n× n complex matrices. A Q2EP of a simpler form, with
some of the quadratic terms λ 2, λ µ , and µ2 missing, appears in delay-differential
equations (DDEs) with the single delay [15].

The eigenvalues of the Q2EP (2.1) are the roots of the system of bivariate charac-
teristic polynomials det(Qi(λ ,µ)) = 0 for i = 1,2. It follows from Bézout’s theorem
(see, e.g., [7]) that in the generic case the Q2EP (2.1) has 4n2 eigenvalues.

As a Q2EP can be linearized as a singular linear two-parameter eigenvalue prob-
lem [10,22], we cannot consider it entirely as a genuine nonlinear example. This is
not true for the following N2EP

(A0−λ I +µA1 +µα A2)x1 = 0,
(A1 +λ µI +µA0 +µ1−α A2)x2 = 0,

(2.2)

where α > 0 is not an integer. Problem (2.2) occurs in the study of critical delays
of DDEs with two or more non-commensurate delays. For more details about the
problem and its numerical solution, see Example 6.2.
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3 Linear problem

A (linear) two-parameter eigenvalue problem (2EP) has the form

A1x1 = λB1x1 +µC1x1,

A2x2 = λB2x2 +µC2x2,
(3.1)

where Ai,Bi, and Ci are n× n complex matrices. We can study (3.1) in the tensor
product space Cn⊗Cn by defining the so-called operator determinants

∆0 = B1⊗C2−C1⊗B2,

∆1 = A1⊗C2−C1⊗A2,

∆2 = B1⊗A2−A1⊗B2

(for details see, e.g., [3]). We say that the 2EP (3.1) is nonsingular when ∆0 is non-
singular. In this case the matrices ∆

−1
0 ∆1 and ∆

−1
0 ∆2 commute and (3.1) is equivalent

to a coupled pair of generalized eigenvalue problems

∆1z = λ∆0z,
∆2z = µ∆0z

(3.2)

for a decomposable tensor z = x1⊗ x2.
For an overview of numerical methods for 2EPs, see, e.g., [9]. If n is small, we can

solve the coupled pair (3.2). An algorithm of this kind, based on the QZ algorithm, is
presented in [9]. Its complexity is O(n6) because the ∆ -matrices are of size n2×n2.
Therefore, when n is large it is not feasible to compute all eigenpairs. Instead, we can
compute few eigenpairs with iterative methods. The Jacobi–Davidson type method
[9,13] with harmonic Ritz values can compute eigenvalues (λ ,µ) that are close to a
given target (λT ,µT ), while the Sylvester–Arnoldi type method [19] gives very good
results in applications from mathematical physics where we need the eigenvalues
with the smallest |µ|.

There are some iterative methods that can be applied to compute a solution close
to a good initial approximation. One such method is the tensor Rayleigh quotient it-
eration (TRQI) from [24], which is a generalization of the standard Rayleigh quotient
iteration (see, e.g., [8]) and computes one eigenpair at a time.

4 Simple eigenvalues

In this section we give some theoretical results on simple eigenvalues of a N2EP and
discuss similarities and differences with the NEP.

For a start we recall the situation in the one-parameter case. Let λ∗ be an eigen-
value of a NEP A(λ )x= 0, where the elements of matrix A are analytic functions of λ .
The geometric multiplicity mg(λ∗) of λ∗ is equal to the nullity of A(λ∗), and the alge-
braic multiplicity ma(λ∗) is equal to the multiplicity of λ∗ as a root of det(A(λ )) = 0.
We know that mg(λ∗)≤ ma(λ∗) holds for each eigenvalue λ∗.
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If (λ∗,µ∗) is an eigenvalue of the N2EP (1.1), then its geometric multiplicity is

mg(λ∗,µ∗) = nullity(T1(λ∗,µ∗)) ·nullity(T2(λ∗,µ∗)).

Algebraic multiplicity ma(λ∗,µ∗) is the multiplicity of (λ∗,µ∗) as a root of the system
(1.2). The Jacobian of (1.2) is nonsingular in an algebraically simple eigenvalue.
Following a proof for the NEP in [27, Proposition 2.1], we can show that also for the
N2EP the algebraic simplicity of an eigenvalue implies the geometric simplicity.

Proposition 4.1 Each algebraically simple eigenvalue of the N2EP (1.1) is geomet-
rically simple.

Proof Let (λ∗,µ∗) be an algebraically simple eigenvalue of (1.1) and suppose that its
geometric multiplicity is mg ≥ 2. Without loss of generality we can assume that in
this case k := nullity(T1(λ∗,µ∗)) ≥ 2. Then there exist permutation matrices P̀ and
Pr such that the (n− k)× (n− k) block A11(λ∗,µ∗) is nonsingular, where

P̀ T1(λ ,µ)PT
r =

[
A11(λ ,µ) A12(λ ,µ)
A21(λ ,µ) A22(λ ,µ)

]
=: A(λ ,µ).

For (λ ,µ) close to (λ∗,µ∗), block A11(λ ,µ) is nonsingular and we can write

L(λ ,µ)A(λ ,µ)R(λ ,µ) =
[

A11(λ ,µ) 0
0 S(λ ,µ)

]
=: D(λ ,µ),

where

L(λ ,µ) =
[

In−k 0
−A21(λ ,µ)A−1

11 (λ ,µ) Ik

]
, R(λ ,µ) =

[
In−k −A−1

11 (λ ,µ)A12(λ ,µ)
0 Ik

]
,

and
S(λ ,µ) = A22(λ ,µ)−A21(λ ,µ)A−1

11 (λ ,µ)A12(λ ,µ)

is the Schur complement of A11(λ ,µ).
Since rank(D(λ∗,µ∗)) = n−k and A11(λ∗,µ∗) is nonsingular, S(λ∗,µ∗) = 0. The

determinant f1(λ ,µ) := det(T1(λ ,µ)) agrees up to the sign with det(D(λ ,µ)) =
det(A11(λ ,µ))det(S(λ ,µ)). Since S(λ∗,µ∗) = 0 and the size of the block S(λ ,µ)
is at least 2× 2, it follows that ∂

∂λ
det(S(λ∗,µ∗)) = ∂

∂ µ
det(S(λ∗,µ∗)) = 0 and thus

∂ f1
∂λ

(λ∗,µ∗) =
∂ f1
∂ µ

(λ∗,µ∗) = 0. The Jacobian of f1(λ ,µ) and f2(λ ,µ) at (λ∗,µ∗) is
then singular and (λ∗,µ∗) is a multiple eigenvalue, which is a contradiction. ut

If λ∗ is an algebraically simple eigenvalue of the NEP A(λ )x = 0, then A(σ)
is nonsingular for σ 6= λ∗ sufficiently close to λ∗. On the contrary, if (λ∗,µ∗) is
an algebraically simple eigenvalue of the N2EP (1.1) then there always exist points
(σ ,τ) 6= (λ∗,µ∗) arbitrarily close to (λ∗,µ∗) such that one of the matrices T1(σ ,τ)
or T2(σ ,τ) is singular. In fact, it follows from the nonsingularity of the Jacobian of
(1.2) in (λ∗,µ∗) and the implicit function theorem that in a small neighbourhood of
(λ∗,µ∗) there exists a parametric curve (λi(t),µi(t)), where t ∈ (−ε,ε), such that
λi(0) = λ∗, µi(0) = µ∗, and det(Ti(λi(t),µi(t))) = 0 for t ∈ (−ε,ε) for i = 1,2. The
eigenvalue (λ∗,µ∗) is the only intersection of curves (λ1(t),µ1(t)) and (λ2(t),µ2(t)).
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If y and x are the left and the right eigenvector of an algebraically simple eigen-
value λ∗ of a NEP A(λ )x = 0, then it is well-known that yHA′(λ∗)x 6= 0, see, e.g., [2,
23,27]. In [21] this relation is generalized to the following proposition for the N2EP.

Proposition 4.2 ([21, Proposition 3.2]) Let (λ∗,µ∗) be an algebraically simple eigen-
value of the N2EP (1.1), and let x1⊗ x2 and y1⊗ y2 be the corresponding right and
left eigenvector. Then the matrix[

yH
1

∂T1
∂λ

(λ∗,µ∗)x1 yH
1

∂T1
∂ µ

(λ∗,µ∗)x1

yH
2

∂T2
∂λ

(λ∗,µ∗)x2 yH
2

∂T2
∂ µ

(λ∗,µ∗)x2

]
(4.1)

is nonsingular.

The above result is used in the next section to show the quadratic convergence of
a generalization of the inverse iteration to the N2EP close to an algebraically simple
eigenvalue. It is also a part of the selection criteria that enables us to compute more
than one eigenvalue using the Jacobi–Davidson method [11].

5 Numerical methods

In this section we generalize some numerical methods for NEPs to N2EPs. For an
overview of numerical methods for the NEP, see, e.g., [20,26]. All methods in this
section can be applied to a truly N2EP, i.e, such that cannot be transformed into
a polynomial one. The methods can of course be applied to the polynomial two-
parameter eigenvalue problem (P2EP) as well, but let us remark that there are other
specific methods for P2EPs, like the linearization to a singular 2EP [10,22] and the
Jacobi–Davidson method [11].

5.1 Inverse iteration

First of the methods that can be generalized to N2EP is the inverse iteration, intro-
duced by Ruhe in [26]. In this method we choose nonzero vectors v1,v2 ∈ Cn and
apply Newton’s method to F(x1,x2,λ ,µ) = 0, where

F(x1,x2,λ ,µ) :=


T1(λ ,µ)x1
T2(λ ,µ)x2
vH

1 x1−1
vH

2 x2−1

 .
The vector vi is used to normalize the eigenvector xi, so it should not be orthogonal to
xi for i = 1,2. If (x(k)1 , x(k)2 , λk,µk) is the current approximation for the eigenpair, then
we get the update from the linear system

JF(x(k)1 , x(k)2 , λk,µk)


∆x(k)1

∆x(k)2
∆λk
∆ µk

=−


T1(λk,µk)x

(k)
1

T2(λk,µk)x
(k)
2

vH
1 x(k)1 −1

vH
2 x(k)2 −1

 (5.1)
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with the Jacobian

JF(x(k)1 , x(k)2 , λk,µk) =


T1(λk,µk) 0 ∂T1

∂λ
(λk,µk)x

(k)
1

∂T1
∂ µ

(λk,µk)x
(k)
1

0 T2(λk,µk)
∂T2
∂λ

(λk,µk)x
(k)
2

∂T2
∂ µ

(λk,µk)x
(k)
2

vH
1 0 0 0
0 vH

2 0 0

 . (5.2)

Let us assume that the matrices T1(λk,µk) and T2(λk,µk) are nonsingular. We can
further assume that x(k)1 and x(k)2 are normalized, i.e., vH

1 x(k)1 = vH
2 x(k)2 = 1. It now fol-

lows from the bottom two rows of (5.1) that vH
1 ∆x(k)1 = vH

2 ∆x(k)2 = 0. By multiplying
the top two rows of (5.1) by vH

1 and vH
2 , respectively, we obtain a 2×2 linear systemvH

1 T1(λk,µk)
−1 ∂T1

∂λ
(λk,µk)x

(k)
1 vH

1 T1(λk,µk)
−1 ∂T1

∂ µ
(λk,µk)x

(k)
1

vH
2 T2(λk,µk)

−1 ∂T2
∂λ

(λk,µk)x
(k)
2 vH

2 T2(λk,µk)
−1 ∂T2

∂ µ
(λk,µk)x

(k)
2

[∆λk

∆ µk

]
=

[
−1

−1

]

for ∆λk and ∆ µk. Once ∆λk and ∆ µk are known, we get the corrections

∆x(k)1 =−T1(λk,µk)
−1
(
T1(λk,µk)+∆λk

∂T1
∂λ

(λk,µk)+∆ µk
∂T1
∂ µ

(λk,µk)
)
x(k)1 ,

∆x(k)2 =−T2(λk,µk)
−1
(
T2(λk,µk)+∆λk

∂T2
∂λ

(λk,µk)+∆ µk
∂T2
∂ µ

(λk,µk)
)
x(k)2

(5.3)

from the top two rows of (5.1). This gives the approximation for the eigenvector

x(k+1)
1 =−∆λkT1(λk,µk)

−1 ∂T1
∂λ

(λk,µk)x
(k)
1 −∆ µkT1(λk,µk)

−1 ∂T1
∂ µ

(λk,µk)x
(k)
1 ,

x(k+1)
2 =−∆λkT2(λk,µk)

−1 ∂T2
∂λ

(λk,µk)x
(k)
2 −∆ µkT2(λk,µk)

−1 ∂T2
∂ µ

(λk,µk)x
(k)
2 .

The overall algorithm is presented in Algorithm 1. The complexity of one step is
O(n3). Note that Step 8 is just for precaution in numerical computation as in theory
vectors x(k+1)

1 and x(k+1)
2 should already be normalized.

Algorithm 1 Inverse iteration (InvIter)

1: Start with λ0, µ0, v1, v2, x(0)1 , and x(0)2 such that vH
1 x(0)1 = vH

2 x(0)2 = 1.
2: for k = 0,1,2, . . . until convergence do
3: Compute a1 = T1(λk,µk)

−1 ∂T1
∂λ

(λk,µk)x
(k)
1 and a2 = T2(λk,µk)

−1 ∂T2
∂λ

(λk,µk)x
(k)
2 .

4: Compute b1 = T1(λk,µk)
−1 ∂T1

∂ µ
(λk,µk)x

(k)
1 and b2 = T2(λk,µk)

−1 ∂T2
∂ µ

(λk,µk)x
(k)
2 .

5: Solve [
vH

1 a1 vH
1 b1

vH
2 a2 vH

2 b2

][
∆λk

∆ µk

]
=

[
−1
−1

]
.

6: Update λk+1 = λk +∆λk and µk+1 = µk +∆ µk .
7: Compute x(k+1)

1 =−∆λka1−∆ µkb1 and x(k+1)
2 =−∆λka2−∆ µkb2.

8: Normalize x(k+1)
1 = x(k+1)

1 /(vH
1 x(k+1)

1 ) and x(k+1)
2 = x(k+1)

2 /(vH
2 x(k+1)

2 ).
9: end for

Steps 3 and 4 rely on the nonsingularity of T1(λk,µk) and T2(λk,µk). Let us show
that in practice this does not present a difficulty. When we are close to the solution,
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T1(λk,µk) and T2(λk,µk) are nearly singular and we can expect that vectors a1,a2,b1,
and b2 have huge norm, which then also applies to the matrix in Step 5. However,
the condition number of this matrix stays bounded as in vicinity of the eigenpair it is
close to a diagonally scaled matrix (4.1), where the scaling factors are expected to be
of a similar magnitude. A rough justification is as follows.

Let (x(k)1 , x(k)2 , λk,µk) be close to (x1,x2,λ∗,µ∗), where (λ∗,µ∗) is an algebraically
simple eigenvalue with the right and left eigenvectors x1⊗ x2 and y1⊗ y2. Then the
smallest singular value σin of Ti(λk,µk) is close to zero and the corresponding right
and left singular vectors are close to xi and yi, respectively. It follows that

ai ≈
yH

i
∂Ti
∂λ

(λ∗,µ∗)xi

σin
xi, bi ≈

yH
i

∂Ti
∂ µ

(λ∗,µ∗)xi

σin
xi

for i = 1,2 and[
vH

1 a1 vH
1 b1

vH
2 a2 vH

2 b2

]
≈
[

σ
−1
1n

σ
−1
2n

][yH
1

∂T1
∂λ

(λ∗,µ∗)x1 yH
1

∂T1
∂ µ

(λ∗,µ∗)x1

yH
2

∂T2
∂λ

(λ∗,µ∗)x2 yH
2

∂T2
∂ µ

(λ∗,µ∗)x2

]
.

In practice we do not have to worry if Ti(λk,µk) is singular, because, similar as
in the inverse power method, rounding errors prevent the method from getting into
trouble. A safe alternative with no worries is to solve (5.1) as a (2n+ 2)× (2n+ 2)
linear system. However, this is approximately four times more expensive since we do
not exploit the block structure of the Jacobian matrix.

Theorem 5.1 Let (λ∗,µ∗) be an algebraically simple eigenvalue of the N2EP (1.1)
and let x1⊗ x2 be the corresponding right eigenvector such that vH

1 x1 = vH
2 x2 = 1.

Then the inverse iteration has quadratic convergence close to the solution.

Proof Since this is Newton’s method, it is enough to show that the Jacobian (5.2) is
nonsingular at (x1,x2,λ∗,µ∗). So, suppose that the Jacobian is singular. Then there
exist vectors z1,z2 and scalars α1,α2, not all of them being zero, such that

JF(x1,x2,λ∗,µ∗)


z1
z2
α1
α2

= 0. (5.4)

If we multiply the first and the second equation of (5.4) by yH
1 and yH

2 , respectively,
where y1⊗ y2 is the left eigenvector of (λ∗,µ∗), we obtain[

yH
1

∂T1
∂λ

(λ∗,µ∗)x1 yH
1

∂T1
∂ µ

(λ∗,µ∗)x1

yH
2

∂T2
∂λ

(λ∗,µ∗)x2 yH
2

∂T2
∂ µ

(λ∗,µ∗)x2

][
α1

α2

]
= 0.

As we know from Proposition 4.2 that the above system is nonsingular for an alge-
braically simple eigenvalue, it follows that α1 = α2 = 0.

From the first and the second equation of (5.4) we now see that there should exist
scalars β1 and β2 such that z1 = β1x1 and z2 = β2x2, as the null spaces of T1(λ∗,µ∗)
and T2(λ∗,µ∗) have dimension 1. But then the last two equations of (5.4) read as
β1vH

1 x1 = β2vH
2 x2 = 0, which yields β1 = β2 = 0 and we have a contradiction. ut
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The inverse iteration was applied to 2EPs in [16] and as a part of the continuation
method in [24]. On both occasions the method was enhanced by a generalization of
the Rayleigh quotient for the 2EP. In the next subsection we introduce several gener-
alizations of the Rayleigh quotient for N2EPs that could be used for such purpose.

5.2 Residual inverse iteration

In each step of the inverse iteration we spend many operations for solving the linear
systems with the matrices T1(λk,µk) and T2(λk,µk). The same difficulty appears in
the inverse iteration for the NEP. Neumaier showed in [23] that in the NEP we can
use a fixed matrix instead, if we are prepared to trade the quadratic convergence for a
linear one.

This approach can be generalized to the N2EP as follows. Starting from (5.3) and
following arguments from [23] we write

x(k)i − x(k+1)
i = Ti(λk,µk)

−1
(
Ti(λk,µk)+∆λk

∂Ti
∂λ

(λk,µk)+∆ µk
∂Ti
∂ µ

(λk,µk)
)
x(k)i

= Ti(λk,µk)
−1
(
Ti(λk+1,µk+1)+O

(
(|∆λk|+ |∆ µk|)2

))
x(k)i

= Ti(λk,µk)
−1Ti(λk+1,µk+1)x

(k)
i +O

(
(|∆λk|+ |∆ µk|)2

)
for i = 1,2. We can approximate Ti(λk,µk)

−1 by Ti(σ ,τ)−1, where (σ ,τ) is a fixed
shift close to the eigenvalue, if we have an approximation for (λk+1,µk+1). To obtain
such approximation, we generalize the Rayleigh functional to N2EP.

If x(k)1 ⊗ x(k)2 is an approximation for the eigenvector, then the first generaliza-
tion of the Rayleigh functional are solutions of the following, in general nonlinear,
bivariate system

x(k)1
H

T1(λk+1,µk+1)x
(k)
1 = 0,

x(k)2
H

T2(λk+1,µk+1)x
(k)
2 = 0.

(5.5)

For a new approximation (λk+1,µk+1) we take the solution of (5.5) that is closest
to (λk,µk). For the 2EP the system (5.5) has exactly one solution. It is called the
tensor Rayleigh quotient and is equal to the pair (ρ1,ρ2), where

ρ1(x
(k)
1 , x(k)2 ) :=

(x(k)1
H

A1x(k)1 )(x(k)2
H
C2x(k)2 )− (x(k)1

H
C1x(k)1 )(x(k)2

H
A2x(k)2 )

(x(k)1
H

B1x(k)1 )(x(k)2
H
C2x(k)2 )− (x(k)1

H
C1x(k)1 )(x(k)2

H
B2x(k)2 )

,

ρ2(x
(k)
1 , x(k)2 ) :=

(x(k)1
H

B1x(k)1 )(x(k)2
H

A2x(k)2 )− (x(k)1
H

A1x(k)1 )(x(k)2
H

B2x(k)2 )

(x(k)1
H

B1x(k)1 )(x(k)2
H
C2x(k)2 )− (x(k)1

H
C1x(k)1 )(x(k)2

H
B2x(k)2 )

.

For example, if we take the Q2EP, then (5.5) has 4 solutions in the general case. At
least one of these four solutions is an eigenvalue if x(k)1 ⊗ x(k)2 is an exact eigenvector.

We can think of (5.5) as a one-sided Rayleigh functional, because we use the
same vectors on the left and the right side. We could use the two-sided version in-
stead, where we use approximation for the left eigenvector on the left side. If, similar



Numerical methods for nonlinear two-parameter eigenvalue problems 9

to the NEP, we use T1(σ ,τ)−Hv1 ⊗ T2(σ ,τ)−Hv2 for an approximation to the left
eigenvector, we obtain the following system for the two-sided Rayleigh functional:

vH
1 T1(σ ,τ)−1T1(λk+1,µk+1)x

(k)
1 = 0,

(5.6)
vH

2 T2(σ ,τ)−1T2(λk+1,µk+1)x
(k)
2 = 0.

Instead of solving (5.6) we perform one step of Newton’s method using (λk,µk) as an
initial approximation. As we show in Theorem 5.2, this is enough for convergence.
This yieldsvH

1 T1(σ ,τ)−1 ∂T1
∂λ

(λk,µk)x
(k)
1 vH

1 T1(σ ,τ)−1 ∂T1
∂ µ

(λk,µk)x
(k)
1

vH
2 T2(σ ,τ)−1 ∂T2

∂λ
(λk,µk)x

(k)
2 vH

2 T2(σ ,τ)−1 ∂T2
∂ µ

(λk,µk)x
(k)
2

[∆λk

∆ µk

]
=−

[
γ1

γ2

]
, (5.7)

where γi = vH
i Ti(σ ,τ)−1Ti(λk,µk)x

(k)
i for i = 1,2. The values λk+1 = λk +∆λk and

µk+1 = µk + ∆ µk present a generalization of Lancaster’s one-parameter Rayleigh
functional [18].

Hence, when we use the residual iteration, we first compute the new eigenvalue
approximation (λk+1,µk+1) from (5.7). The new eigenvector approximation before
normalization is then

z1 = x(k)1 −T1(σ ,τ)−1T1(λk+1,µk+1)x
(k)
1 ,

z2 = x(k)2 −T2(σ ,τ)−1T2(λk+1,µk+1)x
(k)
2 .

Algorithm 2 Residual iteration (ResIter)

1: Start with λ0, µ0, v1, v2, x(0)1 , and x(0)2 such that vH
1 x(1)0 = vH

2 x(2)0 = 1.
2: for k = 0,1,2, . . . until convergence do
3: Compute a1 = T1(λ0,µ0)

−1 ∂T1
∂λ

(λk,µk)x
(k)
1 and a2 = T2(λ0,µ0)

−1 ∂T2
∂λ

(λk,µk)x
(k)
2 .

4: Compute b1 = T1(λ0,µ0)
−1 ∂T1

∂ µ
(λk,µk)x

(k)
1 and b2 = T2(λ0,µ0)

−1 ∂T2
∂ µ

(λk,µk)x
(k)
2 .

5: Compute γ1 = vH
1 T1(λ0,µ0)

−1T1(λk,µk)x
(k)
1 and γ2 = vH

2 T2(λ0,µ0)
−1T2(λk,µk)x

(k)
2 .

6: Solve [
vH

1 a1 vH
1 b1

vH
2 a2 vH

2 b2

][
∆λk

∆ µk

]
=

[
−γ1

−γ2

]
.

7: Update λk+1 = λk +∆λk and µk+1 = µk +∆ µk .
8: x(k+1)

1 = x(k)1 −T1(λ0,µ0)
−1T1(λk+1,µk+1)x

(k)
1

9: x(k+1)
2 = x(k)2 −T2(λ0,µ0)

−1T2(λk+1,µk+1)x
(k)
2

10: Normalize x(k+1)
1 = x(k+1)

1 /(vH
1 x(k+1)

1 ) and x(k+1)
2 = x(k+1)

2 /(vH
2 x(k+1)

2 ).
11: end for

The above procedure is presented in Algorithm 2, where we use the initial eigen-
value approximation (λ0,µ0) as a fixed shift (σ ,τ). The residual iteration has linear
convergence if the initial approximation is close to the eigenpair.
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Theorem 5.2 Let (λ∗,µ∗) be an algebraically simple eigenvalue of the N2EP (1.1)
and let x1⊗ x2 be the corresponding right eigenvector such that vH

1 x1 = vH
2 x2 = 1. If

(λ0,µ0) is sufficiently close to the eigenvalue, then the residual iteration has linear
convergence close to the solution.

Proof We know that the inverse iteration, being a Newton’s method, has quadratic
convergence close to the solution. If we replace the Jacobian (5.2) in the inverse
iteration with the matrix

B(x(k)1 , x(k)2 , λk,µk) :=


T1(λ0,µ0) 0 ∂T1

∂λ
(λk,µk)x

(k)
1

∂T1
∂ µ

(λk,µk)x
(k)
1

0 T2(λ0,µ0)
∂T2
∂λ

(λk,µk)x
(k)
2

∂T2
∂ µ

(λk,µk)x
(k)
2

vH
1 0 0 0
0 vH

2 0 0

 ,
where the top left diagonal blocks of the Jacobian are fixed at (λ0,µ0), then the new
method has linear convergence when (λ0,µ0) is sufficiently close to (λ∗,µ∗) (see,
e.g., [17, Theorem 5.4.1]). If we assume that vH

1 x(k)1 = vH
2 x(k)2 = 1, then the solution

of the system

B(x(k)1 , x(k)2 , λk,µk)
−1


∆x(k)1

∆x(k)2
∆λk
∆ µk

=−


T1(λk,µk)x

(k)
1

T2(λk,µk)x
(k)
2

vH
1 x(k)1 −1

vH
2 x(k)2 −1


gives (5.7) for the corrections ∆λk and ∆ µk, and we get

x(k+1)
i = x(k)i −Ti(λ0,µ0)

−1
(
Ti(λk,µk)+∆λk

∂Ti
∂λ

(λk,µk)+∆ µk
∂Ti
∂ µ

(λk,µk)
)
x(k)i

= x(k)i −Ti(λ0,µ0)
−1 (Ti(λk+1,µk+1)+O

(
(|∆λk|+ |∆ µk|)2))x(k)i

for i = 1,2. This differs only for O
(
(|∆λk|+ |∆ µk|)2

)
from the vectors that are com-

puted in Steps 8 and 9 in Algorithm 2. As this difference is too small to destroy the
convergence, the residual iteration has linear convergence as well. ut

5.3 Successive linear problems

This method was also introduced by Ruhe in [26]. Its generalization to the N2EP is
as follows. We expand

T1(λk−∆λk,µk−∆ µk)x1 = 0,

T2(λk−∆λk,µk−∆ µk)x2 = 0

in the Taylor series as(
T1(λk,µk)−∆λk

∂T1
∂λ

(λk,µk)−∆ µk
∂T1
∂ µ

(λk,µk)+O
(
(|∆λk|+ |∆ µk|)2

))
x1 = 0,(

T2(λk,µk)−∆λk
∂T2
∂λ

(λk,µk)−∆ µk
∂T2
∂ µ

(λk,µk)+O
(
(|∆λk|+ |∆ µk|)2

))
x2 = 0.
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We discard higher order terms and take for (∆λk,∆ µk) the eigenvalue closest to (0,0)
of the 2EP

T1(λk,µk)x1 = ∆λk
∂T1
∂λ

(λk,µk)x1 +∆ µk
∂T1
∂ µ

(λk,µk)x1,

T2(λk,µk)x2 = ∆λk
∂T2
∂λ

(λk,µk)x2 +∆ µk
∂T2
∂ µ

(λk,µk)x2.
(5.8)

The procedure is presented in Algorithm 3.

Algorithm 3 Method of successive linear problems (SuccLP)
1: Start with λ0 and µ0.
2: for k = 0,1,2, . . . until convergence do
3: Solve the linear two-parameter eigenvalue problem

T1(λk,µk)x1 = σ
∂T1
∂λ

(λk,µk)x1 + τ
∂T1
∂ µ

(λk,µk)x1,

T2(λk,µk)x2 = σ
∂T2
∂λ

(λk,µk)x2 + τ
∂T2
∂ µ

(λk,µk)x2.

4: Select the eigenvalue (σ ,τ) that is closest to (0,0).
5: Update λk+1 = λk−σ and µk+1 = µk− τ .
6: end for

Numerical results show that the convergence is quadratic. One step has com-
plexity O(n6) when the algorithm from [9] is used to solve the 2EP in Step 3. But,
since we only need one eigenvalue of (5.8), we can merge Steps 3 and 4 and ap-
ply an iterative method that can efficiently compute the closest eigenvalue. Here, the
Jacobi–Davidson method from [13] or subspace methods from [19] could be applied.

5.4 Newton’s method on determinants

Instead of (1.1) we can consider the system of determinants (1.2). In order to apply
Newton’s method we need an efficient numerical method for the partial derivatives
∂ fi
∂λ

(λ ,µ) and ∂ fi
∂ µ

(λ ,µ), where fi(λ ,µ) := det(Ti(λ ,µ)) for i = 1,2. If fi(λ ,µ) 6= 0
then Jacobi’s formula for the derivative of the determinant yields

1
fi(λ ,µ)

· ∂ fi
∂λ

(λ ,µ) = tr
(
Ti(λ ,µ)

−1 ∂Ti
∂λ

(λ ,µ)
)
,

1
fi(λ ,µ)

· ∂ fi
∂ µ

(λ ,µ) = tr
(
Ti(λ ,µ)

−1 ∂Ti
∂ µ

(λ ,µ)
) (5.9)

for i = 1,2. Using the above formulae we can compute the derivatives in O(n3).
In [5] one can find an algorithm based on the LU factorization. To simplify

the presentation, we describe the algorithm for one-parameter only. Suppose that
det(A(λ )) 6= 0 and that PA(λ ) = LU is the result of the Gaussian elimination with
partial pivoting, where P is a permutation matrix, L is a lower triangular matrix with
ones on the diagonal and U is an upper triangular matrix. Then

f (λ ) = det(A(λ )) = det(P)
n

∏
j=1

u j j.
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If we fix the permutation matrix P, then for each ν in a small neighbourhood of λ

there exist matrices L(ν) and U(ν) such that

L(ν)U(ν) = PA(ν) (5.10)

is the LU factorization of PA(ν). By differentiating (5.10) at ν = λ we get

PA′(λ ) = L′(λ )U(λ )+L(λ )U ′(λ ) = MU +LV, (5.11)

where M := L′(λ ) is a lower triangular matrix with zeros on the diagonal and V :=
U ′(λ ) is an upper triangular matrix. Matrices M and V of the proper form that satisfy
(5.11) can be computed in O(n3) flops from A′(λ ), P, L, and U , for details, see [5] or
Algorithm 6.1 in [25]. It follows that

f ′(λ )
f (λ )

=
n

∑
j=1

v j j

u j j
.

The Newton’s method combined with the above approach to compute the deriva-
tives is presented in Algorithm 4. We assume that T1(λk,µk) and T2(λk,µk) are non-
singular. If not, we can use a slightly modified algorithm from [5] that is able to
compute f ′(λ ) by the LU factorization even when f (λ ) = 0.

Algorithm 4 Newton’s method on characteristic functions (NewtCF)
1: Start with λ0 and µ0.
2: for k = 0,1,2, . . . until convergence do
3: Compute LU factorization with partial pivoting PiTi(λk,µk) = LiUi for i = 1,2.
4: Compute a lower triangular matrix M1i with zero diagonal and an upper triangular matrix V1i such

that Pi
∂Ti
∂λ

(λk,µk) = M1iUi +LiV1i for i = 1,2.
5: Compute a lower triangular matrix M2i with zero diagonal and an upper triangular matrix V2i such

that Pi
∂Ti
∂ µ

(λk,µk) = M2iUi +LiV2i for i = 1,2.
6: Compute αi = ∑

n
j=1(V1i) j j/(Ui) j j and βi = ∑

n
j=1(V2i) j j/(Ui) j j for i = 1,2.

7: Solve [
α1 β1
α2 β2

][
∆λk
∆ µk

]
=

[
−1
−1

]
.

8: Update λk+1 = λk +∆λk and µk+1 = µk +∆ µk .
9: end for

As this is Newton’s method, the obtained method has quadratic convergence close
to an algebraically simple eigenvalue. A variant of Algorithm 4 was already applied
to the 2EP, see, e.g. [6].

5.5 Implicit determinant algorithm

A bottleneck of Algorithm 4 is the computation of partial derivatives of the deter-
minants. An alternative is based on the implicit determinant algorithm, proposed in
[29], see also [1], for the one-parameter nonlinear eigenvalue problem.
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Lemma 5.1 Let (λ∗,µ∗) be an algebraically simple eigenvalue of the N2EP (1.1)
and let x1⊗ x2 and y1⊗ y2 be the corresponding right and left eigenvector. If vectors
ui and vi are such that uH

i yi 6= 0 and vH
i xi 6= 0, then the bordered matrix

Mi(λ ,µ) :=
[

Ti(λ ,µ) ui
vH

i 0

]
(5.12)

is nonsingular at (λ∗,µ∗) for i = 1,2.

Proof Suppose that

Mi(λ∗,µ∗)

[
z
α

]
=

[
Ti(λ ,µ) ui

vH
i 0

][
z
α

]
= 0.

When we multiply the first equation by yH
i we get αyH

i ui = 0 and yH
i ui 6= 0 yields

α = 0. It follows that z = βxi for a scalar β . But βvH
i xi = 0 and vH

i xi 6= 0, therefore
β = 0. ut

Close to (λ∗,µ∗) we define vector xi(λ ,µ) and scalar gi(λ ,µ) as the solution of

Mi(λ ,µ)

[
xi(λ ,µ)
gi(λ ,µ)

]
=

[
0
1

]

for i = 1,2. Then, by Cramer’s rule,

gi(λ ,µ) =
det(Ti(λ ,µ))

det(Mi(λ ,µ))
, i = 1,2, (5.13)

and f1(λ ,µ) = f2(λ ,µ) = 0 has the same root (λ∗,µ∗) as g1(λ ,µ) = g2(λ ,µ) = 0.
By differentiating (5.13) we get the linear system

Mi(λ ,µ)

[
∂xi
∂λ

(λ ,µ) ∂xi
∂ µ

(λ ,µ)
∂gi
∂λ

(λ ,µ) ∂gi
∂ µ

(λ ,µ)

]
=−

[
∂Ti
∂λ

(λ ,µ)xi
∂Ti
∂ µ

(λ ,µ)xi

0 0

]

with the same matrix as in (5.13) and solve it to get the partial derivatives of ∂gi
∂λ

and
∂gi
∂ µ

for the Newton update. The overall method is presented in Algorithm 5.
In Algorithm 5 the matrix in Steps 3 and 4 is the same, so we have to compute the

factorization only once. One step is faster than applying (5.9) or Algorithm 4. The
algorithm depends on the vectors ui and vi. The optimal choice for ui and vi are left
and right eigenvector components ui = yi and vi = xi for i = 1,2 (see, e.g., Subsection
4.5 in [1]). If ui and vi differ much from yi and xi then Algorithm 5 can converge to a
root different than (λ∗,µ∗).
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Algorithm 5 Implicit determinant method (ImpDet)
1: Start with λ0,µ0 and nonzero vectors u1,u2,v1,v2.
2: for k = 0,1,2, . . . until convergence do

3: Solve
[

Ti(λ ,µ) ui
vH

i 0

][
xi
γi

]
=

[
0
1

]
for i = 1,2.

4: Solve
[

Ti(λ ,µ) ui
vH

i 0

][
zi wi
αi βi

]
=−

[
∂Ti
∂λ

(λ ,µ)xi
∂Ti
∂ µ

(λ ,µ)xi

0 0

]
for i = 1,2.

5: Solve [
α1 β1
α2 β2

][
∆λk
∆ µk

]
=

[
−γ1
−γ2

]
.

6: Update λk+1 = λk +∆λk and µk+1 = µk +∆ µk .
7: end for

5.6 Jacobi–Davidson method

All the above-mentioned methods require a good initial approximation to converge
to a wanted eigenvalue. In addition, they compute one eigenpair only. When we lack
such approximation we can try a Jacobi–Davidson type method. This is also a method
of choice when matrices are large and sparse. The first Jacobi–Davidson method for a
2EP was a one-sided version for a right-definite 2EP [12]. It was followed by the two-
sided version for a general 2EP [9], while the latest version [13] uses harmonic Ritz
values and works well for the interior eigenvalues. If we look at the NEP, then the
Jacobi–Davidson method was applied to a polynomial eigenvalue problem in [28],
while a version for a general NEP is presented in [4].

In Algorithm 6 we give a Jacobi–Davidson type method for a N2EP. Most of the
details are omitted as they can be found in, e.g., [11] and references therein.

Algorithm 6 Jacobi–Davidson method
1: Start with nonzero vectors s1, s2, and U10 =U20 =V10 =V20 = [ ].
2: for k = 0,1,2, . . . until convergence do
3: Expand the search space: (Ui,k−1,si)→Uik for i = 1,2.
4: Update the appropriate test space: (Vi,k−1)→ Vik for i = 1,2.
5: Extract the Ritz pair ((σ ,τ),u1⊗u2), where ui =Uikci for i = 1,2, from the projected N2EP

V H
1k T1(σ ,τ)U1kc1 = 0

V H
2k T2(σ ,τ)U2kc2 = 0.

6: Compute the residual ri = Ti(σ ,τ)ui for i = 1,2.
7: Stop if (‖r1‖2 +‖r2‖2)1/2 ≤ ε .
8: Solve approximately the correction equation, e.g.,

(I−uiu∗i )Ti(σ ,τ)(I−uiu∗i )si =−ri,

to get a new direction si ⊥ ui for i = 1,2.
9: end for

Let us give some comments on the algorithm. In Steps 3 and 4 we use the repeated
Gram-Schmidt orthogonalization so that the columns of Uik and Vik are orthonormal
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for i = 1,2. The choice of an appropriate test space depends on whether we are using
one-sided variant, two-sided variant, or harmonic Ritz values. In the basic one-sided
variant we take Vik =Uik and then Step 4 is redundant.

In Step 5 we need a numerical method that can be applied to a projected N2EP
with small matrices to compute the Ritz pairs of interest. In case of a P2EP we can
apply the linearization, compute all Ritz pairs, and then choose the most appropriate
one. For some other problems that are truly nonlinear, for example (2.2), we can
apply the methods from the previous subsections to obtain a Ritz pair. In this case
it is useful to have a good approximation for the eigenvalue, otherwise the methods
might not converge. In a typical scenario we are looking for an eigenvalue close to
a given target and the matrices are so large and sparse that the iterative iteration is
too expensive. Instead, we apply the Jacobi–Davidson method and use the iterative
iteration to solve the small projected problems.

In Step 8 we solve the correction equation only approximately by applying a few
steps of the GMRES method or another appropriate subspace method. For a better
convergence we should use preconditioning and restart the method when subspaces
become too large.

The Jacobi–Davidson method was applied to the P2EP in [11]. Using a selection
criteria that prevents the algorithm from selecting the already converged Ritz values
it is possible to compute more eigenvalues.

6 Numerical examples

Two numerical examples are given. They were obtained on 64-bit Windows version
of Matlab R2012b running on Intel 8700 processor and 8 GB of RAM. In the first
example we compare the convergence of methods on a Q2EP. In the second example
we apply inverse iteration on a N2EP related to the determination of the critical curve
of a DDE.

Example 6.1 We take the Q2EP of the form (2.1), where Ai j and Bi j are random n×n
matrices generated in Matlab as

rand(’state’, 0); k = 2;

for r = 0:k

for c=0:(k-r)

A{r+1, c+1} = rand(n)+i*rand(n);

B{r+1, c+1} = rand(n)+i*rand(n);

end

end

For n = 250, 500, and 1000 we first compute one eigenpair of the Q2EP by the
Jacobi–Davidson method from [11], which is basically Algorithm 6 adjusted to Q2EP,
and then use a perturbed solution for an initial approximation. We tested Algorithms
1, 2, 3, 4, and 5, to which we refer from now on by more descriptive names InvIter,
ResIter, SuccLP, NewtCF, and ImpDet, respectively. For numerical experiments with
the Jacobi–Davidson method (Algorithm 6) for Q2EP, see [11].

For n = 250 we give in Table 6.1 for all algorithms the norms of the eigenvalue
updates (|∆λk|2 + |∆ µk|2)1/2 in individual iterations. In addition, for InvIter and Re-
sIter, where eigenvectors are computed as well, we give the norms of the residuals
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Table 6.1 Comparison of convergence of Algorithms 1 (InvIter), 2 (ResIter), 3 (SuccLP), 4 (NewtCF),
and 5 (ImpDet) on a random Q2EP with matrices of size n = 250.

Iteration Norm of the residual Norm of the eigenvalue update

InvIter ResIter InvIter ResIter SuccLP NewtCF ImpDet

1 1.1 ·10−2 1.1 ·10−2 5.9 ·10−3 5.9 ·10−3 6.0 ·10−3 6.4 ·10−3 6.3 ·10−3

2 1.4 ·10−5 2.7 ·10−4 3.3 ·10−4 2.9 ·10−4 2.6 ·10−5 3.2 ·10−4 2.7 ·10−4

3 7.3 ·10−11 1.6 ·10−5 6.1 ·10−7 1.1 ·10−5 4.6 ·10−10 1.4 ·10−6 4.7 ·10−7

4 5.0 ·10−14 1.0 ·10−6 5.9 ·10−12 5.7 ·10−7 3.4 ·10−14 3.6 ·10−11 1.2 ·10−12

5 5.8 ·10−8 2.0 ·10−8 1.8 ·10−15 1.8 ·10−15

6 3.7 ·10−9 2.2 ·10−9

7 2.5 ·10−10 1.5 ·10−10

8 1.6 ·10−11 8.1 ·10−11

9 1.0 ·10−12 3.3 ·10−12

10 7.2 ·10−14 3.0 ·10−14

Table 6.2 Number of iterations and running times for Algorithms 1 (InvIter), 2 (ResIter), 3 (SuccLP), 4
(NewtCF), and 5 (ImpDet) applied to a random Q2EP with matrices of size n = 250, 500, and 1000.

n Number of iterations Running time in seconds

InvIter ResIter SuccLP NewtCF ImpDet InvIter ResIter SuccLP NewtCF ImpDet

250 3 8 4 4 4 0.13 0.19 0.97 0.32 0.17
500 4 9 4 5 4 0.66 0.74 3.01 2.43 0.76

1000 4 12 4 5 5 3.52 3.83 16.29 14.82 4.36

(‖T1(λk,µk)x
(k)
1 ‖2 + ‖T2(λk,µk)x

(k)
2 ‖2)1/2. It is clearly seen that ResIter has linear

convergence while the other four algorithms have quadratic convergence.
In Table 6.2 we give the number of iterations and computational times. We iterate

InvIter and ResIter until the norm of the residual drops below 10−10, while in SuccLP,
NewtCF, and ImpDet the same bound is used for the norm of the eigenvalue update.

NewtCF is slower than InvIter and ResIter. We must remark that in the numerical
experiments we replaced the Steps 4 and 5 by (5.9). In theory, Steps 4 and 5 should
be faster as they require 25% less flops than (5.9). In practice, it is difficult to im-
plement this part efficiently as all computations are done at most in Level 1 BLAS.
For instance, Algorithm 4 using an implementation of Steps 4 and 5 in C using MEX
(Matlab implementation is even much slower) requires 168 seconds for n = 1000.

In SuccLP we use subspace iteration with Ritz projections from [19] to compute
the eigenvalue closest to zero, which is to our believe the fastest available option at
the moment. Based on the properties of the algorithm from [19] it is clear that one
step of SuccLP is always more expensive than one step of InvIter. As they both have
quadratic convergence, the cheaper inverse iteration is preferred. ResIter is also very
competitive and has an advantage that by using the fixed matrix Ti(λ0,µ0) we avoid
potential difficulty of Ti(λk,µk) being singular when (λk,µk) is close to an eigenvalue.

In ImpDet we choose the vectors ui and vi as the result of one step of standard
inverse iteration on Ti(λ0,µ0) and Ti(λ0,µ0)

H , respectively, for i = 1,2. The method
is competitive to InvIter and ResIter. Its advantage is that the bordered matrix (5.12)
is nonsingular at exact eigenvalue (λ∗,µ∗).
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Example 6.2 We consider a DDE with two delays of the form

ẋ(t) = A0x(t)+A1x(t−h1)+A2x(t−h2).

The corresponding characteristic equation is

M(λ )z := (−λ I +A0 +A1e−h1λ +A2e−h2λ )z = 0, (6.1)

where nonzero z is an eigenvector and λ is the corresponding eigenvalue. In the crit-
ical delay, where the stability of the DDE changes, λ is purely imaginary. We would
like to find the critical curve, i.e., we are interested in the curve (h1,h2) for h1,h2 ≥ 0,
where the stability changes.

A usual approach is to assume that h2 = αh1 for different values of α . Then, as α

goes from 0 to ∞, we compute the points on the critical curve. When we introduce µ =
e−h1λ in (6.1) and write the conjugate equation, where, since λ is purely imaginary,
λ =−λ and µ = µ−1, we obtain (2.2). This equation can be solved for some integer
values of α , for instance α = 0,1,2, if we transform the problem into a polynomial
eigenvalue problem or into a P2EP, see, e.g., [15]. We could also take for α a rational
number with small numerator and denominator and then solve the problem as a P2EP.

This is how we get some points on the critical curve that we can use as initial ap-
proximations for other values of α and thus follow the critical curve. For the missing
values of α we can solve (2.2) using any of the proposed local methods.

For the numerical example we consider the DDE with two delays from [14]:

ut = uxx +a0(x)u+a1(x)u(x, t−h1)+a2(x)u(x, t−h2), u(0, t) = u(π, t) = 0, (6.2)

where the coefficients are a0(x) = 2+ 0.3sin(x), a1(x) = −2+ 0.2x(1− ex−π), and
a2(x) =−2−0.3x(π− x). We discretize (6.2) by the finite differences with matrices
of size 100× 100 and thus obtain A0, A1, and A2 in (2.2). For the initial point we
assume h1 = h2 and compute the critical delay by the Q2EP formulation and the
Jacobi–Davidson method as explained in [11].

It is important that (2.2) can be formulated as a Q2EP for h1 = h2. This enables
us to apply the linearization in Step 5 of Algorithm 6 and compute all Ritz values
of the projected problem. Only one eigenvalue of the related Q2EP corresponds to
the critical delay and a special selection criteria (for details, see [11]) guides the
Jacobi–Davidson method to this particular eigenvalue. This gives λ = 4.2399286i
and h1 = h2 = 0.30266688 for the initial value α0 = 1.

Let us remark that for α 6= 1 such that (2.2) cannot be formulated as a P2EP, it is
difficult to compute the critical delay without a good approximation. Namely, if we
apply the Jacobi–Davidson method, then in Step 5 of Algorithm 6 we get only one
Ritz value and there is no guarantee that the computed eigenvalue corresponds to the
critical delay.

In the second phase we set

αk = tan
(
(m− k)π

4m

)
for k = 1, . . . ,m. For each αk we take the solution from step k−1 as an initial value
for InvIter. In this way we get points where h2 < h1. For the other part of the critical
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Fig. 6.1 The critical curve (h1,h2) for
the DDE (6.2). We start in h1 = h2 =
0.30266688 and follow the curve with
the inverse iteration method.

curve we exchange the roles of h1 and h2 and repeat the procedure starting again from
α0 = 1. The results for m = 20 are presented in Figure 6.2, where the dot presents
the initial delay at h1 = h2. The computation of all 41 points including the initial one
takes just 1.5 seconds, which is much faster than reported in [14]. In addition, the
results are more accurate as we use much finer mesh.

For large and sparse matrices A0,A1, and A2 it would be more efficient to apply the
Jacobi–Davidson method in the second phase instead of InvIter. But in our particular
example, where the matrices A0,A1 and A2 are tridiagonal, InvIter is very efficient
and there is no need for the Jacobi–Davidson method.

7 Conclusions

We presented several numerical methods for nonlinear two-parameter eigenvalue
problems. The most competitive local methods are the inverse iteration with quadratic
convergence and the less expensive residual iteration with linear convergence. If
we know how to solve the smaller projected problem, then we can use the Jacobi–
Davidson method as a global method. As a practical application we presented the
computation of critical curves of delay-differential equations with multiple delays.
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