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Abstract

Given a pair of n × n matrices A and B, we consider the problem of finding values λ such that the
matrix A +λB has a multiple eigenvalue. Our approach solves the problem using only the standard
matrix computation tools. By formulating the problem as a singular two-parameter eigenvalue
problem, we construct matrices ∆1 and ∆0 of size 3n2 × 3n2 with the property that the regular
eigenvalues of the singular pencil ∆1 −λ∆0 are the values λ, such that A +λB has a multiple eigen-
value. We show that these values can be computed numerically from ∆1 and ∆0 by the staircase
algorithm.

AMS classification: 65F15, 15A18, 15A69.
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1. Introduction

For a given pair of n × n complex matrices A and B we would like to find all points (λ, µ) such
that the matrix A + λB has a multiple eigenvalue µ. For a nice introduction to the problem, its
properties, and applications, see [6]. We are motivated by a note in [6] that there appears to be no
globally convergent numerical method for the problem of finding all such values λ. In this paper
we present a method that finds all the solutions using only standard eigenvalue computation tools.
The method is very sensitive and can be applied for small matrices only. In this way the method is
not competitive to the numerical method from [6], yet it is quite elegant and provides new insight
into the problem.

In the next section we introduce some basic properties of the problem. Section 3 contains a
brief overview of the method MFRD from [6]. In Section 4 we introduce our main tool, two-
parameter eigenvalue problems. Then we present some auxiliary results in Section 5. In Section 6
we present an approach that finds only solutions such that A + λB has an eigenvalue of geometric
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multiplicity at least two, while in Section 7 we present a method that returns all solutions and is
appropriate for generic matrices A and B. In Section 8 we present the staircase algorithm for the
extraction of the regular eigenvalues from a singular matrix pencil. In Section 9 we provide some
numerical examples and give some conclusions in Section 10.

2. Basic properties

If we take the characteristic polynomial p(λ, µ) = det(A + λB− µI), then points (λ, µ) such that
µ is a multiple eigenvalue of A + λB are solutions of the polynomial system

p(λ, µ) = 0
pµ(λ, µ) = 0.

A generic situation for a multiple eigenvalue is a double eigenvalue. From Bézout theorem it
follows that for generic matrices A and B there are n(n − 1) values of λ such that A + λB has a
double eigenvalue.

A double eigenvalue µ of A + λB can be semisimple or non-semisimple. In the semisimple
case the geometric multiplicity of eigenvalue µ is 2 and there exist linearly independent vectors x1

and x2 such that

(A + λB − µI)x1 = 0
(A + λB − µI)x2 = 0.

In the non-semisimple case geometric multiplicity of µ is 1 and there exist linearly independent
vectors x and y such that

(A + λB − µI)x = 0
(A + λB − µI)y = x.

For generic matrices A and B, there exist n(n−1) values of λ such that A+λB has a non-semisimple
double eigenvalue.

3. The method of fixed relative distance (MFRD)

Jarlebring, Kvaal, and Michiels use the following idea in [6]. If A+λB has a double eigenvalue
µ, then for a small perturbation δλ the matrix A + (λ + δλ)B has two eigenvalues close to µ.

Suppose that λ is such that µ and (1 + ε)µ, where ε is small, are eigenvalues of A + λB. Such
pair (λ, µ) could be used as an initial approximation for the local iterative (Newton’s) method. We
can write this as the following: there exist nonzero vectors x and y, such that

(A + λB − µI)x = 0
(A + λB − µ(1 + ε)I)y = 0.

(1)

This is a two-parameter eigenvalue problem (see Section 4), which is nonsingular for ε , 0.
By solving the above two-parameter eigenvalue problem by one of the existing numerical

methods we get initial approximations for Newton’s method that computes the final solutions.
This combination is a globally convergent method that computes all of the solutions.
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Parameter ε in (1) is a regularization parameter. If ε is close to 0, then the problem is close
to being singular and the methods for nonsingular two-parameter eigenvalue problems have dif-
ficulties. On the other hand, if ε is far away from 0, the obtained approximations can be very
poor.

In our approach we take ε = 0 and study the obtained singular two-parameter eigenvalue
problem. As a result we obtain a method that can compute all pairs (λ, µ) without a need for local
iterative methods and is, up to our knowledge, the first method with such properties.

4. Two-parameter eigenvalue problems

The algebraic two-parameter eigenvalue problem has the form

(A1 + λB1 + µC1)x1 = 0,
(2)

(A2 + λB2 + µC2)x2 = 0,

where Ai, Bi, and Ci are ni × ni complex matrices, λ, µ ∈ C, and xi ∈ C
ni . A pair (λ, µ) is an eigen-

value if it satisfies (2) for nonzero vectors x1, x2, and the tensor product x1⊗x2 is the corresponding
eigenvector. If we introduce matrices

∆0 = B1 ⊗C2 −C1 ⊗ B2,

∆1 = C1 ⊗ A2 − A1 ⊗C2, (3)
∆2 = A1 ⊗ B2 − B1 ⊗ A2,

then the problem (2) is related to a coupled pair of generalized eigenvalue problems

∆1z = λ∆0z,
(4)

∆2z = µ∆0z

for a decomposable tensor z = x1 ⊗ x2 (for details see, e.g., [1]).
We say that a two-parameter eigenvalue problem is nonsingular if there exists a nonsingular

linear combination of matrices ∆0,∆1, and ∆2. For an overview of available numerical methods
for nonsingular problems, see, e.g., [4] and references therein.

In a singular two-parameter eigenvalue problem both matrix pencils (4) are singular. There
exists a numerical method, presented in [9], that computes the regular eigenvalues of (2) from the
common regular part of (4). For the generic singular case it is shown in [8] that the regular eigen-
values of (2) and (4) do agree. For other types of singular two-parameter eigenvalue problems the
relation between the regular eigenvalues of (4) and the regular eigenvalues of (2) is not completely
known, but the numerical examples indicate that the method from [9] can be successfully applied
to such problems as well.

5. Auxiliary results

In this section we briefly review the Kronecker canonical form. More about the subject can be
found in, e.g., [2], [3], and [11].
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Definition 1. Let S − λT ∈ Cm×n be a matrix pencil. Then there exist nonsingular matrices P ∈
Cm×m and Q ∈ Cn×n such that

P−1(S − λT )Q = S̃ − λT̃ = diag(S 1 − λT1, . . . , S k − λTk)

is the Kronecker canonical form (KCF). Each block S i − λTi for i = 1, . . . , k must be of one of the
following forms: Jd(α),Nd, Ld, or LT

d , where blocks

Jd(α) =


α − λ 1

. . .
. . .
. . . 1

α − λ

 ∈ C
d×d, Nd =


1 −λ

. . .
. . .
. . . −λ

1

 ∈ C
d×d,

Ld =


−λ 1

. . .
. . .

−λ 1

 ∈ Cd×(d+1), LT
d =


−λ

1 . . .
. . . −λ

1

 ∈ C
(d+1)×d,

represent a finite regular block, an infinite regular block, a right singular block, and a left sin-
gular block, respectively. To each Kronecker block we associate a Kronecker chain of linearly
independent vectors as follows:

a) A finite regular block Jd(α) is associated with vectors u1, . . . , ud that satisfy

(S − αT )u1 = 0,
(S − αT )ui+1 = Tui, i = 1, . . . , d − 1.

b) An infinite regular block Nd is associated with vectors u1, . . . , ud that satisfy

Tu1 = 0,
Tui+1 = S ui, i = 1, . . . , d − 1.

c) A right singular block Ld is associated with vectors u1, . . . , ud+1 that satisfy

Tu1 = 0,
Tui+1 = S ui, i = 1, . . . , d,

0 = S ud+1.

d) A left singular block LT
d , d ≥ 1, is associated with vectors u1, . . . , ud that satisfy

Tui = S ui+1, i = 1, . . . , d − 1.

Definition 2. The normal rank of a square matrix pencil S − λT is

nrank(S − λT ) = max
λ∈C

rank(S − λT ).

A value λ0 ∈ C, such that rank(S − λ0T ) < nrank(S − λT ), is a finite regular eigenvalue.
4



Košir shows in [7] that the kernel of ∆ = A⊗D− B⊗C can be constructed from the Kronecker
chains of matrix pencils A − λB and C − µD. This construction will be very important in the
following sections as ∆-matrices related to two-parameter eigenvalue problems have this structure.

Theorem 3 ([7, Theorem 4]). A basis for the kernel of ∆ = A ⊗ D − B ⊗ C is the union of sets of
linearly independent vectors associated with the following types of pairs of Kronecker blocks:

a) (Jd1(α1), Jd2(α2)), where α1 = α2,
b) (Nd1 , Nd2), (Nd1 , Ld2), (Ld1 , Nd2), (Ld1 , Jd2(α)), (Jd1(α), Ld2), and (Ld1 , Ld2),
c) (Ld1 , LT

d2
), and (LT

d2
, Ld1), where d1 < d2,

where the left block of each pair belongs to the pencil A − λB and the right block belongs to the
pencil C − µD.

For each pair of Kronecker blocks from a) we can construct an associated set of linearly
independent vectors z1, . . . , zd in the kernel of ∆ as follows. Let u1, . . . , ud1 form a Kronecker chain
associated with the block Jd1(α1) of the pencil A − λB and let v1, . . . , vd2 form a Kronecker chain
associated with the block Jd2(α2) of the pencil C − µD. Then d = min(d1, d2) and

z j =

j∑
i=1

ui ⊗ v j+1−i, j = 1, . . . , d.

In the above theorem we omitted the constructions of vectors in the kernel for all pairs of Kro-
necker blocks from b) and c) because they are not relevant to our case. For a complete description,
see [7].

6. Eigenvalues of geometric multiplicity at least two

In the following we assume that A and B are generic matrices in a sense that for all but a finite
number of values λ the matrix A + λB has n simple eigenvalues. If we set ε = 0 in (1), then we
obtain a two-parameter eigenvalue problem

(A + λB − µI)x = 0
(A + λB − µI)y = 0.

(5)

The corresponding ∆-matrices of size n2 × n2 are

∆0 = I ⊗ B − B ⊗ I,
∆1 = A ⊗ I − I ⊗ A.

Theorem 4. The normal rank of pencil ∆1 − λ∆0 is n2 − n. A value λ0 ∈ C is a regular eigenvalue
of pencil ∆1 − λ∆0 if and only if the matrix A + λ0B has a multiple eigenvalue with geometric
multiplicity at least two.
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Proof. We can write

∆1 − λ∆0 = (A + λB) ⊗ I − I ⊗ (A + λB) (6)

and apply Theorem 3, which states that a basis for the null space of ∆1 − λ0∆0 can be constructed
from the Kronecker chains of the matrix pencil A + λ0B − µI.

For a generic λ0 the matrix A + λ0B has n algebraically simple eigenvalues µ1, . . . , µn with the
corresponding n linearly independent eigenvectors x1, . . . , xn. The eigenvalues of ∆1 − λ0∆0 are
µi − µ j for i, j = 1, . . . , n. It follows from (6) that dim(Ker(∆1 − λ0∆0)) = n, where the linearly
independent vectors in the kernel are xi ⊗ xi for i = 1, . . . , n. We see that each algebraically simple
eigenvalue adds one linearly independent vector to the null space. As the matrices ∆0 and ∆1 are
of size n2 × n2, the normal rank of ∆1 − λ∆0 is n2 − n.

Let now λ0 be such that the matrix A + λ0B has an eigenvalue µ0 of multiplicity d > 1.

a) If µ0 is geometrically simple then the pencil A + λ0B − µI has Jd(µ0) block in its KCF. It
follows from Theorem 3 that µ0 contributes d linearly independent vectors to the null space
of ∆1 − λ0∆0, therefore rank(∆1 − λ0∆0) = nrank(∆1 − λ∆0).

b) If µ0 has geometric multiplicity g more than one, then there are g Jordan blocks Jdi(µ0) in
the KCF of A + λ0B − µI, such that d1 + · · · + dg = d. One can see from the construction
in Theorem 3 that µ0 now contributes more than d linearly independent vectors to the null
space of ∆1 − λ0∆0. The rank of ∆1 − λ∆0 drops at λ0 and λ0 is a regular eigenvalue. 2

To make things clear, let us review the situation from Theorem 4 when µ0 is a double eigenvalue
of A + λ0B.

a) Let µ0 be a non-semisimple eigenvalue with the eigenvector x and root vector y. The linearly
independent vectors from the null space of ∆1 − λ0∆0 are x ⊗ x and x ⊗ y + y ⊗ x. A double
eigenvalue λ0 contributes two linearly independent vectors to the null space and the rank of
the pencil ∆1 − λ∆0 does not change at λ = λ0.

b) Let µ0 be a semisimple eigenvalue with linearly independent eigenvectors x1 and x2. The
linearly independent vectors from the null space of ∆1 − λ0∆0 are x1 ⊗ x1, x2 ⊗ x2, x1 ⊗ x2,
and x2 ⊗ x1. A double eigenvalue λ0 contributes four linearly independent vectors to the null
space and the rank of the pencil ∆1 − λ∆0 drops for two at λ = λ0.

From the above we can conclude that the rank of ∆1 − λ∆0 drops only at points λ = λ0 such
that the matrix A + λ0B has a multiple eigenvalue with geometric multiplicity at least two. The
smallest such example is a double semisimple eigenvalue. If we apply the numerical algorithm
from Section 8 on pencil ∆1 − λ∆0, then we get all such solutions.

However, this approach does not detect values λ0 that give multiple eigenvalues of geometric
multiplicity one. In particular, it does not detect double non-semisimple eigenvalues, which are
the generic multiple eigenvalues. For these solutions we use a different two-parameter eigenvalue
problem in the next section.
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7. Second version

In order to obtain also the values λ0 such that A + λ0B has a multiple eigenvalue of geometric
multiplicity one, we take the following nonlinear two-parameter eigenvalue problem

(A + λB − µI)x = 0
(A + λB − µI)2y = 0.

(7)

If A + λ0B has a double eigenvalue µ0 with an eigenvector x, then it is easy to see that (7) has a
solution, where y is either the second linearly independent eigenvector in the case of a semisimple
eigenvalue or the corresponding root vector if the eigenvalue µ0 is non-semisimple.

The second equation in (7) is a quadratic bivariate polynomial with matrix coefficients. Its full
expansion is

(A2 + λ(AB + BA) − 2µA + λ2B2 − 2λµB + µ2I)y = 0.

We linearize the above equation as
A

2 AB + BA −2A
0 I 0
0 0 I

︸                      ︷︷                      ︸
P

+λ

 0 B2 −B
−I 0 0
0 0 0

︸           ︷︷           ︸
Q

+µ

 0 −B I
0 0 0
−I 0 0

︸          ︷︷          ︸
R


 y
λy
µy

 = 0. (8)

This is one of the possible linearizations of two-parameter polynomial eigenvalue problems, for
more details on linearizations, see [5].

Now we form a linear two-parameter eigenvalue problem by taking the first equation from (7)
and (8). The corresponding ∆-matrices of size 3n2 × 3n2 are

∆0 = B ⊗ R + I ⊗ Q

∆1 = −I ⊗ P − A ⊗ R.

In order to simplify some of the following proofs, we introduce the Tracy–Singh product of
partitioned matrices [10].

Definition 5. Let an m × n matrix A be partitioned into the mi × n j blocks Ai j and a p × q matrix
B into the pk × ql blocks Bkl such that m =

∑r
i=1 mi, n =

∑s
j=1 n j, p =

∑t
k=1 pk, and q =

∑u
l=1 ql. The

Tracy–Singh product A � B is a mp × nq matrix, defined as

A � B = (Ai j � B)i j = ((Ai j ⊗ Bkl)kl)i j,

where the (i j)th block of the product is the mi p × n jq matrix Ai j � B, of which the (kl)th subblock
equals the mi pk × n jql matrix Ai j ⊗ Bkl.

Theorem 6 ([10, Theorem 5]). In the case of balanced partitioning, where in both matrices A
and B all blocks are of the same size, the Tracy–Singh product A � B and the Kronecker product
A ⊗ B are permutation equivalent.
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In some cases it is more convenient to work with the Tracy-Singh product instead of the Kro-
necker product as some properties are easier to prove. All our block matrices have balanced
partition, so this is just a reordering of columns and rows. We denote by TS the map that reorders
the elements of A ⊗ B so that TS (A ⊗ B) = A � B. Also, we denote ∆̃i = TS (∆i) for i = 0, 1.

Lemma 7. For generic n × n matrices A and B, the normal rank of matrix pencil ∆1 − λ∆0 is
3n2 − n.

Proof. First we show that for a generic matrix A the rank of ∆1 is 3n2 − n. If we apply the Tracy-
Singh reordering, we get

∆̃0 = TS (∆0) =

 0 I ⊗ B2 − B ⊗ B B ⊗ I − I ⊗ B
−I ⊗ I 0 0
−B ⊗ I 0 0

 (9)

and

∆̃1 = TS (∆1) =

−I ⊗ A2 −I ⊗ (AB + BA) + A ⊗ B 2I ⊗ A − A ⊗ I
0 −I ⊗ I 0

A ⊗ I 0 −I ⊗ I

 . (10)

From the second block row in the equation

∆̃1

w1

w2

w3

 = 0 (11)

it follows that w2 = 0, while the third row gives w3 = (A ⊗ I)w1. When we insert w2 and w3 in the
first row of (11), we obtain

−(I ⊗ A − A ⊗ I)2w1 = 0.

There are n linearly independent solutions of the above equation that have the form xi ⊗ xi, where
xi is the eigenvector of matrix A for i = 1, . . . , n. Therefore, rank(∆1) = rank(∆̃1) = 3n2 − n.

On the other hand, if (µ0, x) is an eigenpair of A + λ0B, then clearly (A + λ0B − µ0)2x = 0 and

x ⊗

 x
λ0x
µ0x

 ∈ Ker(∆̃1 − λ0∆̃0).

Since we have n such eigenpairs in the generic case, rank(∆̃1 − λ0∆̃0) ≤ 3n2 − n. Together with
rank(∆̃1) = 3n2−n this shows that in the generic case the normal rank of the matrix pencil ∆1−λ∆0

is indeed 3n2 − n. 2
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We can write

−(∆1 − λ∆0) = (A + λB) ⊗ R + I ⊗ (P + λQ) (12)

and apply Theorem 3. It follows that the null space of ∆1 − λ0∆0 depends on the KCF of pencils
A + λ0B − µ(−I) and P + λ0Q − µR. The first pencil A + λ0B + µI is clearly regular and has only
regular Jordan blocks in its KCF. The following lemma shows that the second pencil P +λ0Q−µR
is regular as well, but does contain some infinite blocks in addition.

Lemma 8. For each λ0, the KCF of the matrix pencil P + λ0Q − µR consists of n blocks N1 and a
regular part of dimension 2n.

Proof. The rank of matrix R is 2n. Vectors in the null space of R have the form 0
z

Bz

 (13)

for an arbitrary nonzero vector z. Since the vector

(P + λ0Q)

 0
z

Bz

 =

∗z
∗

 (14)

is clearly nonzero, the matrices P + λ0Q and R do not have a common null space. It is also easy to
see that (14) can not belong to the image of R, where the second block of all vectors is zero. As a
result the pencil P + λ0Q − µR has no Kronecker chains of length two or more for blocks N or L
and we can conclude that the KCF has n infinite regular blocks N1 and a regular part of dimension
2n. 2

In the next theorem we show that, on contrary to the situation in Section 7, the regular eigenval-
ues of ∆1 −λ∆0 agree with the values λ0 such that A +λ0B has a multiple eigenvalue µ0, regardless
of the geometric multiplicity of µ0. In order to show this, we need the following two lemmas.

Lemma 9. If the KCF of the pencil A + λ0B + µI contains a block J1(−µ0) with the corresponding
eigenvector x, then the pencil P + λ0Q − µR contains a block Jk(−µ0) of size k ≥ 2 whose first two
vectors in the corresponding Kronecker chain are x

λ0x
µ0x

 , and

00x
 . (15)

Proof. Clearly, from (A + λ0B − µ0I)x = 0 we get (A + λ0B − µ0I)2x = 0 and after linearization
(8) we obtain

(P + λ0Q + µ0R)

 x
λ0x
µ0x

 = 0.
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The following relation shows that vectors (15) indeed form the initial part of a Kronecker chain:

(P + λ0Q + µ0R)

00x
 =

(−2A − λ0B + µ0I)x
0
x

 =

(λ0B − µ0I)x
0
x

 = −R

 x
λ0x
µ0x

 . 2 (16)

Lemma 10. If the KCF of the pencil A + λ0B + µI contains a block Jd(−µ0) of size d ≥ 2 with the
corresponding eigenvector x and the first root vector y, then the pencil P + λ0Q − µR contains a
block Jk1(−µ0) of size k1 ≥ 1 with the corresponding eigenvector y

λ0y
µ0y


and a block Jk2(−µ0) of size k2 ≥ 3 whose first three vectors in the corresponding Kronecker chain
are  x

λ0x
µ0x

 ,
00x

 − 1
2

 y
λ0y
µ0y

 , and −
1
2

00y
 .

Proof. For the root vector y we have (A + λ0B − µ0I)2y = 0 and then, similar as in the previous
lemma, it follows that

(P + λ0Q + µ0R)

 y
λ0y
µ0y

 = 0.

So,
[
yT λ0yT µ0yT

]T
is an eigenvector corresponding to a block Jk1(−µ0) of size at least 1.

The second block Jk2(−µ0) starts with the eigenvector
[
xT λ0xT µ0xT

]T
. Equation (16) gives

the second vector in the Kronecker chain. But, we also have the third vector. From (A + λ0B −
µ0I)y = x we derive

(P + λ0Q + µ0R)

00y
 =

(−2A − λ0B + µ0I)y
0
y

 = −R


 y
λ0y
µ0y

 − 2

00x



and therefore the size k2 is at least 3. 2

Theorem 11. For generic n × n matrices A and B, a value λ0 ∈ C is a regular eigenvalue of the
pencil ∆1 − λ∆0 if and only if the matrix A + λ0B has a multiple eigenvalue.

Proof. We know from Lemma 7 that nrank(∆1 − λ∆0) = 3n2 − n. For a fixed λ0 we can obtain
the null space of ∆1 − λ0∆0 by applying Theorem 3 on (12). As we know that none of the pencils
A+λ0B+µI and P+λ0Q−µR contain singular blocks, all vectors from the null space of ∆1−λ0∆0

come from combinations of Jordan blocks.
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If λ0 is such that A+λ0B has n algebraically simple eigenvalues, then it follows from Lemma 9
that the KCF of P+λ0Q−µR contains n Jordan blocks of size 2 or more. As we know from Lemma
8 that the regular part of P + λ0Q − µR has dimension 2n, the size of each Jordan block is exactly
2. It now follows from Theorem 3 that each eigenvalue µ0 of A + λ0B contributes one dimension
to the null space of ∆1 − λ0∆0 which has dimension n and rank(∆1 − λ0∆0) = nrank(∆1 − λ∆0).

We want to show that rank(∆1 − λ0∆0) < nrank(∆1 − λ∆0) if and only if A + λ0B has a multiple
eigenvalue. We first study the case when A + λ0B has a double eigenvalue µ0.

a) If µ0 is semisimple, then the KCF of the pencil A + λ0B + µI contains two blocks J1(−µ0).
We know from Lemma 9 that to each of the blocks there corresponds a block J2(−µ0) in
the KCF of the pencil P + λ0Q − µR. From Theorem 3 it follows that combinations of the
above blocks contribute 4 linearly independent vectors to the null space of ∆1 − λ0∆0. Thus,
rank(∆1 − λ0∆0) = nrank(∆1 − λ∆0) − 2 and λ0 is a regular eigenvalue.

b) Let µ0 be non-semisimple with the corresponding eigenvector x and root vector y. Then, the
KCF of the pencil A+λ0B+µI contains a block J2(−µ0). We know from Lemma 10 that this
block has corresponding blocks J1(−µ0) and J3(−µ0) in the KCF of the pencil P +λ0Q−µR.
It follows from Theorem 3 that µ0 contributes 3 linearly independent vectors to the null
space of ∆1 − λ0∆0. This gives rank(∆1 − λ0∆0) = nrank(∆1 − λ∆0) − 1 and λ0 is a regular
eigenvalue.

If A + λ0B has an eigenvalue µ0 of multiplicity d greater than 2, then we know from Lemma
9 and Lemma 10 that to each block J1(−µ0) of A + λ0B + µI there corresponds a block Jk(−µ0),
k ≥ 2, of P + λ0Q − µR, while to each block Jd(−µ0), d ≥ 2, of A + λ0B + µI there correspond
blocks Jk1(−µ0), k1 ≥ 1, and Jk2(−µ0), k2 ≥ 3, of P + λ0Q − µR. In addition, the sum of the
dimension of all J(−µ0) blocks of P + λ0Q − µR is 2d. It is easy to see from Theorem 3 that all
possible combinations of blocks give enough linearly independent vectors in the null space that
rank(∆1 − λ0∆0) < nrank(∆1 − λ∆0) and λ0 is a regular eigenvalue. 2

As before, let us review in detail the situation when µ0 is a double eigenvalue of A + λ0B.
a) If µ0 is semisimple with the corresponding linearly independent eigenvectors x1 and x2, then

the linearly independent vectors from the null space of ∆1 − λ0∆0 are

x1 ⊗

 x1

λ0x1

µ0x1

 , x1 ⊗

 x2

λ0x2

µ0x2

 , x2 ⊗

 x1

λ0x1

µ0x1

 , and x2 ⊗

 x2

λ0x2

µ0x2

 .
A double eigenvalue λ0 contributes four linearly independent vectors to the null space and
the rank of the pencil ∆1 − λ∆0 drops for two at λ = λ0.

b) If µ0 is non-semisimple with the corresponding eigenvector x and root vector y, then the
linearly independent vectors from the null space of ∆1 − λ0∆0 are

x ⊗

 x
λ0x
µ0x

 , x ⊗

 y
λ0y
µ0y

 , and y ⊗

 x
λ0x
µ0x

 + x ⊗

00x
 .

A double eigenvalue λ0 now contributes three linearly independent vectors to the null space
and the rank of the pencil ∆1 − λ∆0 drops for one at λ = λ0.
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We know from the above that in the generic case the regular part of the pencil ∆1 − λ∆0 has
dimension n2 − n, as each λ0, such that A + λ0B has a nonsemisimple double eigenvalue, is a
regular eigenvalue of the pencil ∆1−λ∆0. We say more about the Kronecker structure of the pencil
∆1 − λ∆0 in the following lemma.

Lemma 12. For generic n × n matrices A and B, the KCF of ∆1 − λ∆0 contains n2 N1 blocks, n L
blocks of length at least one, n LT blocks, and a regular part of dimension n2 − n.

Proof. From (9) one can find the structure of the vectors from the null space of ∆̃0. It is easy to
see that for an arbitrary pair of nonzero vectors x and y,

∆̃0

 0
x ⊗ y

x ⊗ By

 = 0. (17)

This gives n2 linearly independent vectors from Ker(∆̃0). In addition, if xi is an eigenvector of
matrix B for the eigevalue ηi, i.e, Bxi = ηixi, then

∆̃0

 0
xi ⊗ xi

0

 = ∆̃0

 0
0

xi ⊗ xi

 , i = 1, . . . , n. (18)

Together with (17) this gives n2 + n linearly independent vectors from Ker(∆̃0).
We know from the proof of Lemma 7 that ∆̃1 has n-dimensional null space. As all vectors in

the null space of ∆̃1 have nonzero first block it is obvious that the intersection of null spaces of ∆̃1

and ∆̃0 is trivial. Therefore, the pencil ∆1 − λ∆0 has no L0 blocks. We can conclude that the pencil
∆1 − λ∆0 has n2 Nk blocks and n Lk blocks, where the dimensions k ≥ 1 of the blocks are yet to be
determined.

For each Lk or Nk+1 block for k ≥ 1 there must exist a chain of linearly independent vectors
that starts with ∆̃0v1 = 0, continues by ∆̃0vi+1 = ∆̃1vi for i = 1, . . . , k, and ends with ∆̃1vk+1 = 0 in
case of an Lk block. Let us now show that all N blocks are of size one. Suppose that ∆̃0v = 0. If
vector v belongs to an Lk or Nk block of size k ≥ 2, then there exists a vector w, such that

∆̃0w = ∆̃1v. (19)

From

∆̃0

w1

w2

w3

 =

(I ⊗ B2 − B ⊗ B)w2 + (B ⊗ I − I ⊗ B)w3

−w1

−(B ⊗ I)w1

 (20)

and

∆̃1

 0
v2

v3

 =

 ∗−v2

−v3


12



we see that a necessary condition for (19) is that v3 = (B ⊗ I)v2. A brief inspection of the vectors
from (17) and (18) shows that only n linearly independent vectors from the null space of ∆̃0 satisfy
this condition. These are the vectors of the form 0

xi ⊗ xi

ηixi ⊗ xi

 , (21)

where Bxi = ηixi for i = 1, . . . , n.
With some additional computation it is possible to explicitly write down the vectors w that

satisfy (19) if we take vector (21) for the initial vector v. From

∆̃1

 0
xi ⊗ xi

ηixi ⊗ xi

 =

ηixi ⊗ Axi − xi ⊗ BAxi

−xi ⊗ xi

−ηixi ⊗ xi

 =

(B ⊗ I − I ⊗ B)xi ⊗ Axi

−xi ⊗ xi

−ηixi ⊗ xi


and the first block from (20), which we rewrite as

(I ⊗ B2 − B ⊗ B)w2 + (B ⊗ I − I ⊗ B)w3 = (B ⊗ I − I ⊗ B)
(
w3 − (I ⊗ B)w2

)
,

it follows that the vector (the solution is not unique)

w =

 xi ⊗ xi

0
xi ⊗ Axi


satisfies (19).

Therefore, the n vectors from (21) are the initial vectors of L chains of length at least one,
while the remaining n2 vectors from the null space of ∆̃0 belong to n2 N1 blocks. Finally, we know
that the number of LT blocks of the matrix pencil ∆1 − λ∆0 is equal to the number of L blocks. 2

The above lemma shows how difficult it is to prove anything about the KCF of the pencil
∆1 − λ∆0. We did not manage to prove the complete structure for generic matrices A and B, but,
based on numerical experiments in Matlab using the GUPTRI package [2, 3], we believe that the
generic structure is as follows:

a) If n = 2k + 1, then the pencil contains n blocks Lk+1, n blocks LT
k , n2 blocks N1, and a regular

part of size n(n − 1).
b) If n = 2k, then the pencil contains k blocks Lk, k blocks Lk+1, k blocks LT

k−1, k blocks LT
k , n2

blocks N1, and a regular part of size n(n − 1).

8. The algorithm

For a pair of n × n matrices A and B, we would like to find all values λ such that the matrix
A+λB has a multiple eigenvalue. We form a singular two-parameter eigenvalue problem (7), where
we linearize the second equation as (8). This gives a singular two-parameter eigenvalue problem,
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whose regular eigenvalues (λ, µ) are such that the matrix A + λB has a double eigenvalue µ. One
could apply the general numerical algorithm for singular two-parameter eigenvalue problems from
[9] to compute these eigenvalues.

As we only need the regular eigenvalues of the singular pencil ∆1 − λ∆0, we can modify
and simplify the algorithm. It is enough to apply the staircase algorithm from [11] to extract the
regular part of ∆1−λ∆0. The basic steps of the staircase algorithm are column-row and row-column
compressions.

Algorithm 13. Row-column compression. Given an m × n matrix pencil S − λT, the algorithm
returns a compressed matrix pencil S 1 − λT1.

1. Compute the singular value decomposition T = U1Σ1V∗1 .
2. Partition U1 = [U1a U1b] such that U1a has r = rank(S ) columns.
3. If r = m then exit and return S 1 = S and T1 = T (no compression).
4. Compute the singular value decomposition H = U2Σ2V∗2 , where H = U∗1bS .
5. Partition V2 = [V2a V2b] such that V2a has c = rank(H) columns.
6. Now we have

U∗1(S − λT )V2 =

[
× S 1

× 0

]
− λ

[
× T1

× 0

]
,

where S 1 = U∗1aS V2b and T1 = U∗1aTV2b are r × (n − c) matrices.

One step of Algorithm 13 returns the projected pencil S 1−λT1. The KCF of S 1−λT1 is related
to the KCF of the initial pencil S − λT in the following way:

a) each Lk block of S − λT gives an Lk block of S 1 − λT1,
b) each LT

k block of S − λT gives an LT
k−1 block of S 1 − λT1 for k ≥ 1,

c) each Nk block of S − λT gives an Nk−1 block of S 1 − λT1 for k ≥ 2,
d) blocks N1 and LT

0 of S − λT vanish in S 1 − λT1,
e) regular parts of both pencils are of the same size.

A dual form of Algoritm 13 is the column-row compression presented in Algorithm 14. It
returns a compressed pencil S 1 − λT1 with the KCF related to the KCF of S − λT in the same way
as above, with the only exception that the roles of Lk and LT

k blocks are exchanged.

Algorithm 14. Column-row compression. Given an m × n matrix pencil S − λT, the algorithm
returns a compressed matrix pencil S 1 − λT1.

1. Compute the singular value decomposition T = U1Σ1V∗1 .
2. Partition V1 = [V1a V1b] such that V1a has r = rank(S ) columns.
3. If r = n then exit and return S 1 = S and T1 = T (no compression).
4. Compute the singular value decomposition H = U2Σ2V∗2 , where H = S V1b.
5. Partition U2 = [U2a U2b] such that U2a has c = rank(H) columns.
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6. Now we have

U∗2(S − λT )V1 =

[
× ×

S 1 0

]
− λ

[
× ×

T1 0

]
,

where S 1 = U∗2aS V1b and T1 = U∗2aTV1b are (m − c) × r matrices.

In order to extract the regular part from a singular pencil ∆1 − λ∆0, we first apply as many
row-column compressions as possible (Algorithm 13), followed by column-row compressions
(Algorithm 14). We call this procedure the staircase algorithm. The final pencil contains only
the regular part from which we can obtain the values λ as eigenvalues.

A vital part of the above procedure is a correct detection of ranks of submatrices in the algo-
rithms for the column-row and row-column compression. If we know in advance the Kronecker
structure of the initial singular pencil, which is the case if we use the approach from Section 7 for
a generic pair of matrices A and B, then we can simplify the algorithm and use methods like rank
revealing QR that are cheaper than the singular value decomposition.

9. Numerical results

The numerical results were obtained using Matlab R2007b, where the Kronecker structures
were computed using the GUPTRI package [2, 3].

Example 15. We take matrices

A =

 1 −2 3
−1 1 2
1 1 −1

 , B =

 1 −1 1
1 1 3
−1 1 1


and form a singular two-parameter eigenvalue problem (7), where we linearize the second equation
as (8). The corresponding ∆-matrices are of size 27 × 27. The Kronecker structure of the pencil
∆1 − λ∆0 consists of 3 blocks L2, 3 blocks LT

1 , 9 blocks N1 and a regular part of size 6.
The following table shows how the staircase algorithm from Section 7 extracts the regular part

from the singular pencil. We start with row-column compressions and then, when they are not
possible anymore, we switch to column-row compressions.

action size KCF
initial pencil 27 × 27 3L2, 3LT

1 , 9N1, R(6)
R-C compression 15 × 15 3L2, 3LT

0 , R(6)
R-C compression 12 × 15 3L2, R(6)
C-R compression 9 × 12 3L1, R(6)
C-R compression 6 × 9 3L0, R(6)
C-R compression 6 × 6 R(6)
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In the end we obtain a 6 × 6 regular matrix pencil. Its eigenvalues are the six solutions of the
initial problem. We write them together with the corresponding values µ, such that A + λB has a
double eigenvalue µ.

λ µ

1.5628 0.3651
−2.2078 −0.5000
−1.1690 ± 0.8436i −2.9137 ± 1.3289i

0.2735 ± 0.0988i 2.3914 ± 0.1452i

Example 16. We take the matrix A from the previous example and B = diag(2, 2, 3) − A. For
λ0 = 1 the matrix A + λ0B = diag(2, 2, 3) clearly has a semisimple double eigenvalue.

As before, if we take the singular two-parameter eigenvalue problem (7), then the correspond-
ing ∆-matrices are of size 27 × 27. The KCF of the pencil ∆1 − λ∆0 now consists of 1 block L1, 2
blocks L2, 1 block LT

0 , 2 blocks LT
1 , 9 blocks N1, and a regular part of size 8. We can extract the

regular part using the staircase algorithm. The following table shows the intermediate Kronecker
structures in the staircase algorithm that extracts the regular part from the singular pencil.

action size KCF
initial pencil 27 × 27 1L1, 2L2, 1LT

0 , 2LT
1 , 9N1, R(8)

R-C compression 15 × 16 1L1, 2L2, 2LT
0 , R(8)

R-C compression 13 × 16 1L1, 2L2, R(8)
C-R compression 10 × 13 1L0, 2L1, R(8)
C-R compression 8 × 10 2L0, R(8)
C-R compression 8 × 8 R(8)

We obtain an 8×8 regular matrix pencil. Its eigenvalues are the solutions of the initial problem,
where the solution λ = 1, which gives a semisimple double eigenvalue, appears with multiplicity
four. The values λ with the corresponding eigenvalues µ are presented in the following table.

λ µ

0.9292 ± 0.1987i 2.2723 ± 0.6372i
0.6324 ± 0.0558i 2.1585 ± 0.0228i
1.0000 2.0000

Example 17. We take the same pair of matrices as in the previous example, but this time we
apply the singular system (5) from Section 6, which can detect only semisimple solutions. The
corresponding ∆-matrices are of size 9×9. The staircase algorithm, applied to the pencil ∆1−λ∆0,
extracts the regular part 2 × 2 in the following way.

action size KCF
initial pencil 9 × 9 1L0, 2L1, 1LT

0 , 2LT
1 , R(2)

R-C compression 6 × 7 1L0, 2L1, 2LT
0 , R(2)

R-C compression 4 × 7 1L0, 2L1, R(2)
C-R compression 2 × 4 2L0, R(2)
C-R compression 2 × 2 R(2)

16



The final regular part has double eigenvalue 1. As explained in Section 6, this approach detects
only values λ, such that A + λB has a semisimple double eigenvalue.

Example 18. Steps of the staircase algorithm rely on the right decision about the numerical rank.
This is the reason why the algorithm is very sensitive and can in double precision be used in prac-
tice only for matrices not larger then 10 × 10. For larger matrices the gap between the significant
singular values and those that should be zero virtually disappears and the obtained results have no
meaning.

The following table shows the gaps between the smallest nonzero and the next singular value
for random matrices of size 10×10 in the staircase algorithm applied to the matrix pencil ∆1−λ∆0

from Section 7. We repeated the computation in higher precision where the gaps are clearly visible.
This shows that the algorithm should work in exact arithmetic, whereas in practice it is limited to
small examples only.

matrix size k σk σk+1 σ̃k σ̃k+1

300 × 300 190 1.8e-01 1.4e-14 1.8e-01 2.0e-110
190 × 190 180 8.3e-03 2.0e-15 8.3e-03 9.8e-88
180 × 180 170 8.3e-03 3.2e-14 8.3e-03 1.6e-86
170 × 170 160 8.3e-03 5.7e-13 8.3e-03 5.2e-85
160 × 160 150 8.3e-03 1.3e-11 8.3e-03 1.1e-83
10 × 160 5 2.0e-01 2.6e-06 2.0e-01 3.8e-79

150 × 155 145 8.3e-01 4.9e-11 8.3e-01 3.0e-83
95 × 10 5 2.4e-01 1.0e-02 2.4e-01 4.0e-76

In the above table, k denotes the rank of the submatrix, σk and σk+1 are singular values com-
puted in double precision in Matlab, while σ̃k and σ̃k+1 are singular values computed in virtual
precision arithmetic in Matlab from initial matrices vpa(A,80) and vpa(B,80).

10. Conclusions

We present a method that can find all values λ such that the matrix A + λB has a multiple
eigenvalue and uses only standard numerical linear algebra tools. The method returns a nonsingu-
lar generalized eigenvalue problem such that its eigenvalues are the values λ that we are looking
for. This is an elegant way to solve the double eigenvalue problem, but unfortunately, due to its
sensitivity, it is numerically limited to matrices of small size only.
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[5] M. E. Hochstenbach, A. Muhič, B. Plestenjak, On linearizations of the quadratic two-parameter eigenvalue
problems, Linear Algebra Appl. 436 (2012) 2725–2743.

[6] E. Jarlebring, S. Kvaal, W. Michiels, Computing all pairs (λ, µ) such that λ is a double eigenvalue of A + µB,
SIAM J. Matrix Anal. Appl. 32 (2011) 902–927.
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