
On the stability of invariant subspaces of commutingmatricesToma�z Ko�sir� and Bor Plestenjak�September 18, 2001AbstractWe study the stability of (joint) invariant subspaces of a �nite set of commutingmatrices. We generalize some of the results of Gohberg, Lancaster, and Rodman forthe single matrix case. For sets of two or more commuting matrices we exhibit somephenomena di�erent from the single matrix case. We show that each root subspaceis a stable invariant subspace, that each invariant subspace of a root subspace ofa nonderogatory eigenvalue is stable, and that, even in the derogatory case, theeigenspace is stable if it is one-dimensional. We prove that a pair of commuting ma-trices has only �nitely many stable invariant subspaces. At the end, we discuss thestability of invariant subspaces of an algebraic multiparameter eigenvalue problem.1 IntroductionIn the paper we study the stability of invariant subspaces of k-tuples (k � 2) of commutingmatrices. The problem of stability arose in applications to multiparameter eigenvalueproblems [1]. The stability is crucial when numerical calculations are performed to �nd abasis of an invariant subspace [16]. In this paper, an invariant (resp. root) subspace of ak-tuple of commuting matrices always refers to a joint invariant (resp. root) subspace ofthe k-tuple.In the single matrix case (i.e., if k = 1) Gohberg, Lancaster, and Rodman [4] charac-terized all stable invariant subspaces. They showed that each root subspace is stable, eachinvariant subspace of a root subspace of a nonderogatory eigenvalue is stable, and thatdirect sums of these two types of subspaces are the only stable invariant subspaces. Wegeneralise most of these results. We show that each root subspace is stable, and that eachinvariant subspace of a root subspace of a nonderogatory eigenvalue is stable. Moreover,if there is only one invariant subspace of a root subspace of a given dimension then it isstable. In particular, if the eigenspace is one-dimensional then it is stable. We show thatalso direct sums of these types of subspaces are stable. However, we do not know if theseare the only possible stable subspaces of a k-tuple of commuting matrices.� Department of Mathematics, University of Ljubljana, Jadranska 19, SI-1000 Ljubljana, Slovenia.e-mail: tomaz.kosir@fmf.uni-lj.si and bor.plestenjak@fmf.uni-lj.siThe research was supported in part by the Ministry of Science and Technology of Slovenia.1



STABILITY OF INVARIANT SUBSPACES OF COMMUTING MATRICES 2We obtain some further results for pairs of commuting matrices. We show that a pairof commuting matrices has only �nitely many stable invariant subspaces. We consider afew examples and state a number of open problems. We conclude with some results on thestability of invariant subspaces of an algebraic multiparameter eigenvalue problem. Such aproblem has an associated k-tuple of commuting matrices. (See x6 for a brief introductionand [1] for details.) Plestenjak [16] studied a numerical algorithm for computing a basisof a root subspace at a nonderogatory eigenvalue of an associated k-tuple of commutingmatrices. Since each invariant subspace of a root subspace of a nonderogatory eigenvalueis stable there is no problem of stability in the algorithm presented in [16].2 PreliminariesLet A = fA1; : : : ; Akg, (k � 2), be a set of commuting n � n matrices over C . We saythat a subspace N of C n is A{invariant ifAlN � N ; l = 1; : : : ; k:The set of all A{invariant subspaces is denoted by Inv(A).A k-tuple � = (�1; : : : ; �k) 2 C k is an eigenvalue of a set of commuting matrices A ifKer(A� �I) := k\l=1Ker(Al � �lI) 6= f0g:A nonzero vector z 2 Ker(A� �I) is an eigenvector for � and A. The root subspace foran eigenvalue � is denoted by R�(A) and is equal to\l1+���+lk=nKer h(A1 � �1I)l1 � � � (Ak � �kI)lkiAn eigenvalue � is called geometrically simple if dimKer(A � �I) = 1. It is callednonderogatory if dim k\l=1Ker(Al � �lI)j = j; (1)for j = 1; 2; : : : ; dimR�(A). We say that an eigenvalue is derogatory if it is not non-derogatory. We remark that an eigenvalue is nonderogatory if it is geometrically simpleand dimTkl=1Ker(Al � �lI)2 � 2 (see [12, Cor. 2] and [13, Thm. 7]). Note that if theeigenvalue is nonderogatory then there is exactly one A-invariant subspace of dimensionj for each j = 0; 1; : : : ; dimR�(A). This follows from the de�nition of a nonderoga-tory eigenvalue and the fact that each invariant subspace is contained in some of theintersections in (1).If a simple recti�able contour 
l splits the spectrum of Al for l = 1; : : : ; k, then theRiezs projectors are de�ned byP (Al; 
l) := 12�i Z
l(�I � Al)�1d�;



STABILITY OF INVARIANT SUBSPACES OF COMMUTING MATRICES 3l = 1; : : : ; k. They commute and we de�neP (A;
) := P (A1; 
1) � � �P (Ak; 
k):The gap between the subspaces L and M in C n is de�ned by�(L;M) = kPL � PMk;where PL and PM are the orthogonal projectors on L andM, respectively. If L;M 6= f0gthen �(L;M) = max8<: supx2Mkxk=1 d(x;L); supx2Lkxk=1 d(x;M)9=; (2)(see Theorem 13.1.1 in [4, p. 388]).We say that an A{invariant subspace N is stable if for every � > 0 there exists � > 0such that if B = fB1; : : : ; Bkg is a set of commuting matrices with kAl � Blk < � forl = 1; : : : ; k, then there exists a B{invariant subspace M such that�(N ;M) � �:For comparison with our results we state Theorem 15.2.1 of [4, p. 448] that charac-terizes stable invariant subspaces for a single matrix.Theorem 2.1 (Gohberg, Lancaster, and Rodman) Suppose that �1; : : : ; �r are alldistinct eigenvalues of an n � n matrix A over C . A subspace N of C n is A{invariantand stable if and only if N = N1 _+ � � � _+Nr, where for each j the subspace Nj is anarbitrary A{invariant subspace of R�j (A) if dimKer(�I � A) = 1, and either Nj = f0gor Nj = R�j (A) if dimKer(�I � A) � 2.3 Stability and root subspacesIn this section we show that it su�ces to study the stability of invariant subspaces of rootsubspaces of A. The main result is that an A{invariant subspace N of C n is stable if andonly if N is a direct sum N1 _+ � � � _+Nr, where each Nj is a stable A{invariant subspaceof a root subspace of A. The following two lemmas are generalizations of Lemmas 15.3.2and 15.3.3 of [4, pp. 452-454]. The proofs are almost identical and therefore omitted.Lemma 3.1 Let 
i � C be a simple recti�able contour that splits the spectrum of Ai fori = 1; : : : ; k. Let P (A;
) = P (A1; 
1) � � �P (Ak; 
k)be the Riesz projector for A and 
 = f
1; : : : ; 
kg and let A0 = fA10; : : : ; Ak0g be therestriction of A to ImP (A;
). Let N be a subspace of ImP (A;
). Then N is a stableinvariant subspace for A if and only if N is a stable invariant subspace for A0.Lemma 3.2 Let N � C n be an invariant subspace of A = fA1; : : : ; Akg and assume thatthe contour 
i � C splits the spectrum of Ai for i = 1; : : : ; k. If N is stable for A thenP (A;
)N is a stable invariant subspace for the restriction A0 = fA10; : : : ; Ak0g of A toImP (A;
).



STABILITY OF INVARIANT SUBSPACES OF COMMUTING MATRICES 4Lemmas 3.1 and 3.2 imply the following theorem.Theorem 3.3 Let �1 = (�11; : : : ; �1k); : : : ;�r = (�r1; : : : ; �rk) be all the di�erent eigen-values of a set of commuting matrices A = fA1; : : : ; Akg. A subspace N of C n is A{invariant and stable if and only if N = N1 _+ � � � _+Nr, where Nj is a stable Aj{invariantsubspace of the restriction Aj = fAj1; : : : ; Ajkg of A to R�j (A) for j = 1; : : : ; r.Proof. Suppose that N is a stable A{invariant subspace. It is easy to see thatN = N1 _+ � � � _+Nr, where Nj = N \R�j (A) for j = 1; : : : ; r. It follows from Lemma 3.2that Nj is a stable invariant subspace of the restriction Aj for j = 1; : : : ; r.Next assume that each Nj is a stable Aj{invariant subspace. Lemma 3.1 implies thatNj is a stable invariant subspace for A and therefore the direct sum N = N1 _+ � � � _+Nr isa stable invariant subspace for A.Theorem 3.3 is similar to but weaker than Theorem 2.1 as it does not characterize thestable invariant subspaces. In particular, it is not yet clear which invariant subspaces of aroot subspace at a derogatory eigenvalue are stable. Nevertheless, it enables us to studyonly the restriction of a set of commuting matrices to a root subspace.Now we are able to show that as it is the case for a single matrix a root subspace is astable invariant subspace for a set of commuting matrices.Theorem 3.4 If � = (�1; : : : ; �k) is an eigenvalue of a set of commuting matrices A =fA1; : : : ; Akg then the root subspace R�(A) is a stable invariant subspace.Proof. Let 
i � C be such closed contour that �i lies inside 
i and all the othereigenvalues of Ai lie outside 
i for i = 1; : : : ; k. It follows that the root subspace R�(A)is equal to the image of the Riesz projector P (A;
) = P (A1; 
1) � � �P (Ak; 
k):Let B = fB1; : : : ; Bkg be a set of commuting matrices. If kBi�Aik is su�ciently smallthen the matrix �I �Bi is invertible for every � 2 
i and the Riesz projector P (Bi; 
i) iswell de�ned. For each � > 0 there exists � > 0 such that if kBi � Aik < � then it followskP (Bi; 
i)� P (Ai; 
i)k < � (see [4, p. 448] for details).The subspace ImP (B;
), where P (B;
) = P (B1; 
1) � � �P (Bk; 
k), is invariant for B.It is easy to see that for each � > 0 there exists � > 0 such that if kP (Bi; 
i)�P (Ai; 
i)k < �for i = 1; : : : ; k then it follows that�(ImP (B;
); ImP (A;
)) < �:As a consequence ImP (A;
) is a stable invariant subspace.Theorem 3.3 implies that it is enough to treat only sets of nilpotent commuting matri-ces. First we show that invariant subspaces of root subspaces of nonderogatory eigenvaluesare stable. This also coincides with the theory for the single matrix case.A chain of subspaces f0g =M0 �M1 � � � � � Mn = C nis called complete if dimMi = i for i = 0; 1; : : : ; n. It is well known fact that a setof commuting matrices is simultaneously similar to a set of upper-triangular commuting



STABILITY OF INVARIANT SUBSPACES OF COMMUTING MATRICES 5matrices. It follows then that for every set of commuting matrices there exists a completechain of invariant subspaces.The following theorem is a generalization of Theorem 15.2.3 of [4, p. 449]. The proofis very similar and it is omitted.Theorem 3.5 Let A = fA1; : : : ; Akg be a set of commuting matrices. For a given � > 0,there exists � > 0 such that the following holds: if B = fB1; : : : ; Bkg is such a set ofcommuting matrices that kAi�Bik < � for i = 1; : : : ; k and fMjg is a complete chain ofB{invariant subspaces, then there exists a complete chain fNjg of A{invariant subspacessuch that �(Nj;Mj) < � for j = 1; : : : ; n� 1.Corollary 3.6 If 0 = (0; : : : ; 0) is a nonderogatory eigenvalue of a set of nilpotent com-muting matrices A = fA1; : : : ; Akg then each A{invariant subspace is stable.Proof. Since the eigenvalue 0 is nonderogatory the set A has only one j-dimensionalinvariant subspace Nj for j = 0; 1; : : : ; n. (See the de�nition of a nonderogatory eigenvalueand the remark following it.) Subspaces N0; : : : ;Nn form a complete chain and we canapply Theorem 3.5.Corollary 3.7 Let A = fA1; : : : ; Akg be a set of nilpotent commuting matrices. If N isthe only A{invariant subspace of the dimension dimN , then N is a stable A{invariantsubspace.Proof. Recall that there always exists a complete chain of invariant subspaces for A.Suppose that A has only one invariant subspace N of the dimension dimN . It followsthen that the subspace N is a part of all complete chains of invariant subspaces. Theresult now follows from Theorem 3.5.A simple consequence of Corollary 3.7 is stability of the eigensubspace of a geometri-cally simple eigenvalue. The eigenvalue need not be nonderogatory and this result di�ersfrom the single matrix case. Namely, in the single matrix case, it follows that if aneigenspace is one-dimensional then the eigenvalue is nonderogatory and the stability fol-lows by Theorem 2.1. On the other hand, in the case of a set of commuting matrices thereexist eigenvalues that are geometrically simple and derogatory (see Example 3.9).Corollary 3.8 If � = (�1; : : : ; �k) is a geometrically simple eigenvalue of a set of com-muting matrices A = fA1; : : : ; Akg then the eigenspace Ker(A��I) is a stable invariantsubspace.Example 3.9 Suppose that n = 3 and that ei, i = 1; 2; 3; are the standard basis vectorsfor C 3 . Then A = 24 0 1 00 0 00 0 0 35 ; B = 24 0 0 10 0 00 0 0 35



STABILITY OF INVARIANT SUBSPACES OF COMMUTING MATRICES 6is a pair of commuting matrices that is geometrically simple and derogatory. By Corollary3.8 the eigenspace L(e1) is a stable invariant subspace. Here L(X) is the linear span ofthe set of vectors X.Assume that � is a small positive number. Consider now two commuting perturbations:24 0 1 00 0 �0 0 0 35 ; 24 0 0 10 0 00 0 0 35 and 24 0 1 00 0 00 0 0 35 ; 24 0 0 10 0 00 � 0 35 :It is easy to observe that L(e1; e2) is the only two-dimensional invariant subspace for the�rst perturbation and that L(e1; e3) is the only two-dimensional invariant subspace forthe second perturbation. Therefore the pair fA;Bg has no stable invariant subspace ofdimension 2.If we take the transposed matricesAT = 24 0 0 01 0 00 0 0 35 ; BT = 24 0 0 00 0 01 0 0 35then L(�e2+�e3), for (�; �) 2 C 2nf0; 0g, are all the one-dimensional invariant subspacesof fAT ; BTg, while L(e2; e3) is the only two-dimensional invariant subspace. It follows byCorollary 3.6 that L(e2; e3) is stable. The above analysis of pair fA;Bg also shows thatthere is no stable one-dimensional invariant subspace for fAT ; BTg.The example L(e2; e3), which is a two-dimensional eigenspace for fAT ; BTg, shows thateigenspaces of dimension more than one can be stable invariant subspaces for sets of twoor more commuting matrices. This di�ers from a single matrix case where it follows fromTheorem 2.1 that all the eigenspaces of dimension two or more that are proper subspacesof a root subspace are unstable invariant subspaces.Problem 3.10 The main problem that remains open is to characterize all stable invariantsubspaces of a k-tuple of nilpotent commuting matrices.Question 3.11 It is known that for a �xed dimension d the variety of d-dimensionalinvariant subspaces of a single nilpotent matrix is connected [8, 17]. Is the variety ofd-dimensional invariant subspaces of a k-tuple of nilpotent commuting matrices still con-nected?4 A pair of commuting matricesIf the set contains only two commuting matrices, then we are able to show some additionalresults. First we show that although a pair of commuting matrices A and B may havein�nitely many invariant subspaces, it has only �nitely many stable invariant subspaces.We use the fact that the set of pairs of commuting matrices where one of the matricesis nonderogatory is dense in the set of all pairs of commuting matrices. It was pointedout to us by one of the referees that this was an old result proved �rst by Motzkin and



STABILITY OF INVARIANT SUBSPACES OF COMMUTING MATRICES 7Taussky [15] and rediscovered several times. (See [6].) We reproduce here a proof given byGuralnick [6]. We do so for the convinience of the reader and to facilitate the discussionon commuting triples of matrices.We say an n� n matrix is generic if it has n distinct eigenvalues.Theorem 4.1 If fA;Bg is a pair of commuting n�n matrices over C then it has �nitelymany stable invariant subspaces.Proof. It follows from Theorem 3.3 that it is enough to consider only a commutingpair of nilpotent matrices. If (0; 0) is a nonderogatory eigenvalue for fA;Bg, then thereare only �nitely many invariant subspaces which are all stable as a result of Corollary 3.6.Thus we assume that (0; 0) is a derogatory eigenvalue.Let A = XJX�1, where J = diag(Jn1; : : : ; Jnr)is the Jordan canonical form for A. Since (0; 0) is a derogatory eigenvalue for fA;Bg, 0is a derogatory eigenvalue for A and r � 2. For distinct �1; : : : ; �r the matrixR = X diag(�1In1 + Jn1; : : : ; �rInr + Jnr)X�1is nonderogatory and commutes with matrix A.The matrix B� = B + �R (3)commutes with A for arbitrary � 2 C . Matrix B� is nonderogatory except for �nitelymany values of �. Therefore it is possible to choose arbitrary small � > 0 such that B� isnonderogatory.Assume now that B� is nonderogatory. Then there exists a polynomial p such thatA = p(B�). For an arbitrary � > 0 we can approximate B� with a generic matrix G suchthat kB� � Gk � �. Since A = p(B�), there exists � > 0 such that kA � p(G)k � � forkB �Gk � �, i.e. pair (p(G); G) is close to pair (A;B).Since G is a generic matrix, it has only �nitely many invariant subspaces and it followsthat the pair fA;Bg has only �nitely many stable invariant subspaces.Observe that in the above proof the polynomial p can be chosen so that both G andp(G) are generic.The following lemma shows that for a pair of commuting matrices stable invariantsubspaces are determined by invariant subspaces of nearby generic commuting pairs.Lemma 4.2 Let fA;Bg be a pair of commuting nilpotent matrices and let N be anfA;Bg{invariant subspace. Then N is stable if and only if for every � > 0 there exists � >0 such that if f eA; eBg is a pair of generic commuting matrices with k eA�Ak; k eB�Bk < �then there exists a f eA; eBg{invariant subspace M such that �(N ;M) � �:Proof. We only need to show that the condition is su�cient for the stability of N .Suppose that for every � > 0 there exists � > 0 such that if f eA; eBg is a pair of genericcommuting matrices with k eA � Ak; k eB � Bk < � then there exists a f eA; eBg{invariantsubspace M such that �(N ;M) � �:



STABILITY OF INVARIANT SUBSPACES OF COMMUTING MATRICES 8Let N be an unstable invariant subspace for fA;Bg. Then for each m = 1; 2; : : : thereexist commuting pair fAm; Bmg and �m > 0 such that kAm � Ak; kBm � Bk < 1=m andthat �(N ;Mm) � � + �m for all invariant subspaces Mm of fAm; Bmg. It follows fromTheorem 3.5 that there exists #m > 0 such that #m < 1=m and that if f eAm; eBmg is acommuting pair that satis�es k eAm � Amk; k eBm � Bmk < #m then for each f eAm; eBmg{invariant subspace eP there exist fAm; Bmg{invariant subspace P such that �(P; eP) ��m=2:Since it is possible to �nd a generic commuting pair arbitrarily close to the originalcommuting pair (see the proof of Theorem 4.1), for each m = 1; 2; : : : this implies theexistence of a generic commuting pair f eAm; eBmg such that k eAm � Ak; k eBm � Bk < 2=mand that �(N ;Mm) > � for all invariant subspaces Mm of f eAm; eBmg. This contradictsthe initial assumption and thus it follows that N has to be a stable invariant subspace.Question 4.3 Is the set of stable invariant subspaces of any k-tuple (k � 3) of commutingmatrices �nite?Question 4.4 For a single matrix an invariant subspace is stable if and only if it corre-sponds to an isolated point of the variety of invariant subspaces. Is this the case also fora pair (or more generally for a k-tuple, k � 3) of commuting matrices? (See also Example4.6.)Remark 4.5 If a set contains three or more commuting matrices then, in general, it isnot possible to construct a nearby generic commutative set as it is done for pairs in theproof of Theorem 4.1. Suppose that we have a set of commuting matrices fA;B;Cg. Ifwe follow the proof of Theorem 4.1 then it fails in the moment when we want to use thematrix B�. This matrix commutes with A but not necessarily with C. Guralnick [6] haseven shown that in the general case of three or more commuting matrices it is not possibleto approximate the set with a set of generic commuting matrices (see also [7, 9, 10]).For this reason it is not possible, in general, to extend the proof of Theorem 4.1 to thecommutative sets with more than two matrices. It follows from the results of Guralnick [6]that the approximation for commuting k-tuples, k � 4; is possible if the size n of matricesis at most 3 and is not possible in general if n � 4. For triples of commuting matrices,it follows by results of Holbrook and Omladi�c in [10] that the approximation is possible ifthe size n is at most 5 and is not possible if n � 30. For the remaining n, it is not knownif the approximation is possible. The bounds for n in [10] are an improvement of boundsgiven earlier by Germanic [6] and Guralnick and Sethuraman [7]. We conclude that thesame arguments as in the proof of Theorem 4.1 show that if k = 3 and n � 5 or k � 4 andn � 3 then a k-tuple of commuting n� n matrices has only �nitely many stable invariantsubspaces.Note that Lemma 4.2 can not be generalized to the arbitrary sets of three or morecommuting matrices for the same reasons as Theorem 4.1.



STABILITY OF INVARIANT SUBSPACES OF COMMUTING MATRICES 9Example 4.6 Suppose that n = 4 and that ei, i = 1; 2; 3; 4; are the standard basis vectorsfor C 4 . Let A = 2664 0 1 0 00 0 0 10 0 0 10 0 0 0 3775 and B = 2664 0 0 1 00 0 0 10 0 0 10 0 0 0 3775be a pair of commuting matrices. It is geometrically simple and derogatory. By Corollary3.8 the eigenspace L(e1) is a stable invariant subspace. Recall that L(X) is the linear spanof the set of vectors X. It is easy to show that two-dimensional invariant subspaces formthe family L(e1; �e2 + �e3) and three-dimensional invariant subspaces form the familyL (e1; e2 + e3; �e4 + �(e2 � e3)) ; where (�; �) 2 C 2nf(0; 0)g.Assume that � is a small positive number. Consider now two commuting perturbationsof fA;Bg: 2664 0 1 0 00 0 0 10 0 0 10 � �� 0 3775 ;2664 0 0 1 00 0 0 10 0 0 10 � �� 0 3775and 2664 0 1 0 00 0 0 1�8 0 0 10 ��4 �4 0 3775 ;2664 0 0 1 0�8 0 0 12�8 0 0 1 + �40 ��4 + �8 �4 0 3775 :The �rst perturbed pair is nilpotent and nonderogatory. Its complete chain of invariantsubspaces is f0g � L(e1) � L(e1; e2 + e3) � L(e1; e2 + e3; e4) � C 4 : The second perturbedpair has four distinct eigenvalues. Corresponding joint eigenvectors are:2664 1��3��3 � �5�6 3775 ;2664 1�i�3�i�3 + i�5��6 3775 ;2664 1i�3i�3 � i�5��6 3775 ;2664 1�3�3 + �5�6 3775 :All its two-dimensional invariant subspaces are near the subspace L(e1; e2+ e3) and all itsthree-dimensional subspaces are near the subspace L(e1; e2; e3). These perturbations showthat there is no three-dimensional stable invariant subspace for the pair fA;Bg. It alsofollows that two-dimensional invariant subspaces other than L(e1; e2 + e3) are not stable.However, neither were we able to �nd a commuting perturbation that would show thatL(e1; e2+ e3) is not stable, nor were we able to show that it is a stable invariant subspace.Remark 4.7 We observe that the subspace L(e1; e2+e3) in the above example is the onlyjoint marked two-dimensional invariant subspace [4, p. 83] for matrices A and B. Beforewe discuss this statement we give the de�nition of a marked invariant subspace.Let A be a n� n matrix over C . The sequence of vectors x1; : : : ; xk, x1 6= 0, such that(A� �I)xi = �xi�1 ; i = 2; : : : ; k0 ; i = 1;



STABILITY OF INVARIANT SUBSPACES OF COMMUTING MATRICES 10is a Jordan chain of matrix A for the eigenvalue �. Let N � C n be an invariant subspaceof A 2 C n�n . We say that N is marked if there exists a basisB = fx11; x12; : : : ; x1n1 ; x21; : : : ; x2n2 ; : : : ; xr1; : : : ; xrnrg (4)consisting of Jordan chains of A and there exist indexes 0 � tj � nj such thatfx11; x12; : : : ; x1t1 ; x21; : : : ; x2t2 ; : : : ; xr1; : : : ; xrtrgis a basis for N .In other words, N is a marked invariant subspace of A if it is possible to choose itsbasis in such a way that it is extendable to a basis for C n consisting of Jordan chainsof A. The notion of marked invariant subspace was �rst de�ned by Gohberg, Lancaster,and Rodman [4, p. 83]. See [3] for an interesting characterization of marked invariantsubspaces.Now we return to Example 4.6. Observe that the subspaces L(e1; e3) and L(e1; e2+ e3)are the only two-dimensional marked invariant subspaces of A and that L(e1; e2) andL(e1; e2 + e3) are the only two-dimensional marked invariant subspaces of B. (See also[4, Example 2.9.1, pp. 83-84].)More generally, suppose that fA;Bg is a pair of commuting nilpotent matrices. Sup-pose further that B is a Jordan basis for A given in (4) and that nj are chosen so thatn1 � n2 � � � � � nr � 1. The Jordan basis B for A can be further chosen in such a waythat vector Bxij is in the span of vectors xkl with either l = j and k > i or l < ni� j andk arbitrary (see e.g. the proof of Lemma 3 in [2]). Let B� be the matrix (3) de�ned inthe same way as in the proof of Theorem 4.1. Recall from the proof there that for � > 0but small enough the matrix B� is nonderogatory. It follows from our particular choiceof the Jordan basis B that the spectrum of B� is equal to f��1; ��2; : : : ; ��rg and that themultiplicity of the eigenvalue ��j is equal to nj. Recall from the proof of Theorem 4.1 thatA = p(B�) for some polynomial p. Then it follows that each invariant subspace of B�, andtherefore also of the commuting pair fA;B�g, is a marked invariant subspace of A. Thus,better understanding of the set of joint marked invariant subspaces of A and B might shedsome light on problem of characterization of the set of stable invariant subspaces for pairfA;Bg.The above observation led as to pose the following question.Question 4.8 Is a stable invariant subspace of a pair of commuting matrices markedinvariant subspace for each of the matrices?5 Connection to algebraic multiparameter spectraltheoryIn this section we study the stability of invariant subspaces of an algebraic multiparametereigenvalue problem. We consider an algebraic multiparameter system W:Wi(�) = kXj=1 Vij�j � Vi0; i = 1; 2; : : : ; k; (k � 2);



STABILITY OF INVARIANT SUBSPACES OF COMMUTING MATRICES 11where � = (�1; : : : ; �k) are parameters and Vij are ni � ni matrices over C .The tensor product space C n1 
 C n2 
 � � � 
 C nk is isomorphic to C N , where N =n1n2 � � �nk. Linear transformations V yij on C N are induced by Vij, i = 1; 2; : : : ; k; j =0; 1; : : : ; k; and de�ned byV yij(x1 
 x2 
 � � � 
 xk) = x1 
 � � � 
 Vijxi 
 � � � 
 xkand linearity. On C N we also de�ne operator determinants�0 = �������� V y11 V y12 � � � V y1kV y21 V y22 � � � V y2k... ... ...V yk1 V yk2 � � � V ykk ��������and �i = ��������� V y11 � � � V y1;i�1 V y10 V y1;i+1 � � � V y1kV y21 � � � V y2;i�1 V y20 V y2;i+1 � � � V y2k... ... ... ...V yk1 � � � V yk;i�1 V yk0 V yk;i+1 � � � V ykk
���������for i = 1; : : : ; k.A multiparameter system W is called nonsingular if the corresponding operator de-terminant �0 is invertible. In the case of a nonsingular multiparameter system W, weassociate withW a k-tuple of commuting linear transformations � = f�1; : : : ;�kg, where�i = ��10 �i, i = 1; : : : ; k (see [1, Thm. 6.7.1]).An k-tuple � 2 C k is called an eigenvalue of the multiparameter systemW if allWi(�)are singular. If Ker(�� �I) := k\i=1Ker(�i � �iI) 6= f0g;then � is an eigenvalue of �. Let �(W) and �(�) denote the set of all the eigenvalues ofW and �, respectively. It was shown by Atkinson [1, Thm. 6.9.1] that �(W) = �(�) andthat Ker(�� �I) = KerW1(�)
 KerW2(�)
 � � � 
KerWk(�):An eigenvalue � of a multiparameter system W is called nonderogatory [13] if � is anonderogatory eigenvalue of the associated system �.We say that M� C N is an invariant subspace forW if�iM�M; i = 1; : : : ; k:We say that an invariant subspace N of the multiparameter system (5) is stable if for agiven � > 0 there exists � > 0 such that the following holds: if a nonsingular multiparam-eter system W0: W 0i (�) = kXj=1 V 0ij�j � V 0i0; i = 1; 2; : : : ; k; (5)



STABILITY OF INVARIANT SUBSPACES OF COMMUTING MATRICES 12is such that kVij � V 0ijk < �for all (i; j) then there exists an invariant subspace M of W0 such that�(N ;M) < �:The stability is very important for the numerical calculation, for example, for thecalculation of a basis for the root subspace of a nonderogatory eigenvalue [13, 16]. If theinvariant subspace is not stable then we can not expect stable numerical calculation.Since �i for i = 1; : : : ; k commute the stability of invariant subspaces for the alge-braic multiparameter problem is closely related to the stability of invariant subspaces forcommuting matrices. Multiparameter system W0 is equivalent to the associated system�0ix = �ix; x 6= 0; i = 1; : : : ; k: (6)It is obvious that for each � > 0 there exists � > 0 such that ifkVij � V 0ijk < �for all (i; j) then k�i � �0ik < �; i = 1; : : : ; k:As a result we can apply a part of the theory on the stability of invariant subspacesof commuting matrices to the stability of invariant subspaces of multiparameter systems.The problems of stability are connected but not identical since in the study of stabilityfor multiparameter eigenvalue problems we have to restrict the set of commuting matricesonly to the matrices that form associated systems of multiparameter systems.For instance, let N be an invariant subspace of a multiparameter system W. If N is astable invariant subspace for the commuting set � = f�1; : : : ;�kg, then N is also a stableinvariant subspace of W. The converse is not necessarily true since an arbitrary set ofcommuting matrices is not necessarily an associated system of a multiparameter system.If we take for example matrices�1 = 2664 0 0 0 00 0 0 00 0 0 10 0 0 03775 ; �2 = 2664 0 0 0 10 0 0 20 0 0 30 0 0 03775 ;then �1 and �2 are not associated with any multiparameter system (see [11, Example2.13]).Summary of results that can be applied to the multiparameter eigenvalue problemsis as follows. It follows from Theorem 3.4 that the complete root subspace is a stableinvariant subspace. Corollary 3.6 yields that all invariant subspaces of root subspaceof a nonderogatory eigenvalue are stable. This means that it is possible to numericallystable compute the basis for the root subspace of a nonderogatory eigenvalue [13, 16]. Italso follows from Corollary 3.8 that the eigenspace of a geometrically simple eigenvalue isstable.
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