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Abstract
When placing n points uniformly on a sphere their associated
Voronoi regions define a polyhedron that is for most n a fullerene.
In this paper the exceptional minimal non-fullerene polyhedra are dis-
cussed.

In this paper we study uniform distributions of points on a unit sphere.
To each distribution of n points with unit vectors R = {ry,ry,...,r,} on a
unit sphere we may associate an energy function
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E(R) =Y - (1)
i<j Vi
where d; ; = |r; — r;| is the usual Euclidean distance in 3D space. Distri-

butions with minimal energy are sought. Since finding a global minimum
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is difficult we used an approximate numerical method. It is based on the
standard gradient method [3] combined with the random walk method [15]
in order to escape from a local minimum. Thus we use a sort of simulated
annealing method.

To each point distribution we may associate a Vorono: diagram in the
following way: The sphere is cut into n regions, each region f; being associ-
ated with a point r;. The region f; contains those points on the sphere that
are closer to ¢ than to any other point of the distribution R. The collection
of all regions obtained in this way defines the Voronoi diagram V(R) on the
sphere. Until now Voronoi diagrams have been usually studied in the plane
or in the space. The reader is referred to [13] for further reading.

The Voronoi diagram V' (R) is therefore a graph embedded in the sphere.
The boundary between two regions f; anf f; is a segment of the great circle
of a unit sphere perpendicular to and bisecting the one connecting the points
r; and rj. Let e denote the number of such segments. These segments are the
edges of the Voronoi diagram. There is only a finite number v of points in
the sphere where more than two regions meet. These points are the vertices
of the Voronoi diagram. The Voronoi diagram has thus v vertices, e edges
and n regions (faces). By the Euler polyhedral formula we have

v—e+n=2. (2)

Note that Voronoi diagrams can be considered as topological polyhedra with
curved faces.

As in the case of the Voronoi diagrams in the plane the most common
situation arises when all of its vertices are trivalent although cases with higher
valencies could occur. In the latter case a perturbation of a single point in
R may remove some higher valencies and thus results in a different Voronoi
diagram. This means that the higher valencies are ”topologically unstable”.
In the trivalent Voronoi diagram the Euler formula combined with the hand-
shaking lemma 2e = 3v gives the following identities:

= 2n—4,
= 3n—6. (3)

The problem of a uniform placing of n points on a unit sphere can now be
rephrased in terms of polyhedra. The minimal energy point distribution R
defines the minimal Voronoi diagram and thus the minimal n-face polyhedron.



In the further text V,, denotes a Voronoi polyhedron with n faces having the
minimal energy.

If for a given n a single minimum exists and if the corresponding poly-
hedron is trivalent we may expect that the numerical calculation will yield a
stable solution that will correctly describe the topological type of the polyhe-
dron. This reasoning can be partially reversed. If numerical experiments give
always the Voronoi diagrams of the same topological type, we may conclude
that the likelihood of this solution of being the correct minimum is high.

Our preliminary experiments indicate an interesting fact that minimal
Voronoi polyhedra are indeed trivalent (with a single exception found). Even
more, almost all of them are topologically equivallent to fullerenes, i.e. triva-
lent polyhedra whose faces consist of hexagons and exactly 12 pentagons.
We observed only a small number of exceptions. Since no fullerenes with
v =2,4,6,8,10,12,14, 16, 18, 22 vertices exist, it is clear that the minimal
Voronoi polyhedra will be non-fullerene for n = 3,4,5,6,7,8,9,10,11,13.
Our experiments indicate that even in the cases of higher n where fullerenes
exist we found two cases: v = 32 and v = 38, for which the minimal Voronoi
polyhedra are non-fullerene.

Although the complete results on fullerenes obtained with our experi-
ments will appear elsewhere [12], for the sake of completeness we identify
the remaining minimal Voronoi polyhedra up to n = 22 as the fullerenes:
‘/12:2011,‘/14:2421,‘/15:2611,‘/16:2812,‘/17:3021,‘/19:341
5, Vo = 36 : 13, and Vo = 40 : 40, where notation is the same as in Atlas
Tables A.1.- A.4. of reference [6].

Conjecture 1 Only a finite number of the minimal non-fullerene Voronoi
polyhedra exists.

Here we present the minimal energies and drawings of the above excep-
tions together with their structure of faces. The results are collected in Table
1. Beside the minimal energies we present there also their normalized values.
The average (per pair of particles) energy E is defined as:

=1 (4)

(3)
2

Table 1. The list of the minimal non-fullerene Voronoi polyhedra V, with n
faces and v vertices. The numbers ny, ng, nq4, ns and ng denote the numbers of



2-,3-,4-,5- and 6-gons, respectively. In the next two columns the corresponding
minimal (E) (1) and average (E) (4) energies on the unit sphere are given.

n| v |ny m3 Ng N5 Ng Energy E

31213 1.00000000 | 0.333
4 | 4 4 2.25000000 | 0.375
5| 6 2 3 4.25000000 | 0.425
6 | 8 6 6.75000000 | 0.450
7 |10 5 2 10.25000000 | 0.488
8 | 12 8 14.33679108 | 0.512
9 |14 3 6 19.25286878 | 0.535
10 | 16 2 8 25.04135972 | 0.556
11|18 2 8 1| 31.83472164 | 0.579
13 | 22 1 10 2 | 47.77330898 | 0.612
18 | 32 2 8 8 | 104.31468528 | 0.682
21 | 38 1 10 10| 150.32512274 | 0.716

We can observe that the values of the average energy (F) follow approx-
imately the \/n rule. Indeed, the least square fitting has given the approxi-
mation:

E =0.1275n%%116 4+ 0.1313

Therefore, the maximal energy £ behaves approximately as n®? what
can be estimated from simple physical arguments as well.

The drawings of the minimal non-fullerene Voronoi polyhedra together
with their Schlegel diagrams[11] are given in Figure 1.

Figure 1. The drawings of the minimal non-fullerene Voronoi polyhedra to-
gether with their Schlegel diagrams.

V3 (3 faces, 2 vertices)
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Vis (13 faces, 22 vertices)

Vis (18 faces, 32 vertices)
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Vo1 (21 faces, 38 vertices)

From the above drawings the following properties of the above minimal
polyhedra are deduced.

e V35 is the well-known ©-graph. It has two vertices on the poles and
three parallel edges as meridians.

e V), is the complete graph K on the sphere as the regular tetrahedron.
e V5 is the trigonal prism. Its graph is the Cartesian product K, x Cj.

e Vj is the cube Ky x Ky x K.



V7 is the pentagonal prism Ky x Cj

The next graph, Vg is the only non-trivalent graph among all minimal
polyhedra. It can be obtained from a bichromatic cycle Cy by adding
two vertices b and w and 8 edges in such a way that 4 white vertices of
Cy are joined to w and all black vertices of Cg are joined to b.

Vg has a pronounced pair of antipodal vertices surrounded by three
pentagons, defining a 3-fold axis of rotation.

Vio is a generalized Petersen graph GP(8,2). It can be also obtained
from Vg by truncating both of its four-valent vertices.

V1, is showing a lower symmetry than the previous polyhedra.

Vi3 is the largest in the series of non-fullerenes ”by mathematical ar-
gument”. Namely, for n = 2,3, ..., 11 the fullerenes are ruled out since
the smallest fullerene is the dodecahedron which happens to be V.
Since fullerenes on v vertices exist for v =20+ 2k, k > 0,k # 1, see for
instance [9], a fullerene on 22 vertices does not exist hence Vi3 cannot
be a fullerene.

Vig has two opposite twisted quadrilaterals whose centers define a 4-
fold alternating axis of improper rotation. This property is also valid
for Vip. Note that Vig is of lower energy as defined in (1) than all 6
non-isomorphic fullerenes on 32 vertices|[6].

There are 17 non-isomorphic fullerenes on 38 vertices[6]. It turns out
that a non-fullerene V5, is obtained when minimizing the function (1).
This and the previous polyhedron are the only known polyhedra where
non-fullerenes ”beat” fullerenes of the same size. V5, has a distinguished
edge whose midpoint is fixed by each of the symmetries of the polyhe-
dron. The distinguished edge lies on the border of two pentagons, and
each of its endpoints is surounded by three pentagons. This property
can also be found in other two cases Vi; and Vi3 with the same point
group Cs,. Note that the face opposite to the distinguished edge is a
quadrilateral in Vg and V5; but is a hexagon in Vi;.



The above polyhedra could be characterized by their point groups and
related graphs by their automorphisms groups. The connection between ge-
ometrical symmetry and graph automorphisms is an involved problem, but
the first results appeared recently[7, 10, 2]. In the Table 2 the point groups
and the orders |Aut(V},)| of the automorphisms groups of the minimal non-
fullerene Voronoi polyhedra V,, are given. Further, the numbers of vertex,
edge and face orbits of the automorphisms groups Aut(V},) are given. Let us
recall, that a vertex orbit of Aut(G) of a graph G is the subset of vertices of
G which is invariant under the action of Aut(G). In an analogous way the
edge and face orbits are defined.

Table 2. The orders |Aut(V,,)| of the automorphism groups, numbers of ver-
tex, edge and face orbits, and point groups of the minimal non-fullerene Voronoi
polyhedra V, with n faces and v vertices.

n | v | |Aut(V,)| | vertex orbits | edge orbits | face orbits | Point group
3] 2 12 1 1 1 Dig
4 1 4 24 1 1 1 Ty
51 6 12 1 p p Dsy
6 | 8 48 1 1 1 Oy,
7110 20 1 p p Dsy
8 |12 16 2 2 1 Sy
9 | 14 12 3 3 P Ds,
10 | 16 16 2 3 2 Sy
11 | 18 4 6 9 Y Cay
13 ] 22 4 7 11 6 Cay
18 | 32 16 3 Y 3 Sy
21| 38 4 10 18 9 Csy

Although the problem of finding the minimal configuration of points on
a unit sphere is as old as the Thompson model of the atom, and since then
has been studied in such diverse fields as stereochemistry, botany, virology,
information theory, office assignment problem, etc. [4, 14, 8, 5, 1], resulting
in large number of papers, here we focused for the first time attention to a
situation in which the points are associated with the faces of the polyhedra.
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As our computer experiments indicate that fullerenes minimize the energy
function (1) in almost all cases, we restricted our attention here to the 12
known exceptions to this finding. The smallest 10 exceptions arise from
the mathematical arguments of non-existence of corresponding fullerenes.
The last two exceptions, although not being prohibited by mathematical
arguments to be fullerenes, turned out to be non-fullerenes.

All V,, except Vg are trivalent polyhedra. It is easy to see that trivalent
polyhedra are maintaining their topological properties even when the min-
imal configuration of points are slightly distorted due to numerical errors.
No V,, contains a face of size larger than 6. For n > 6 only quadrilaterals,
pentagons and hexagons are candidates for the faces.

It would be interesting to know topological properties of the minimal
polyhedra in advance, without actually computing them, at least for some
cases. It would be also interesting to know which topological properties
remain invariant under numerical errors, type of surface on which the points
are placed, etc. Especially, it would be interesting to study the influence of
the choice of the energy function. For instance, instead of the 1/7? potential,
a more usual Coulomb 1/r potential or even more general function 1/r% can
be considered. The work on these questions is in the progress.

Finally, the most important question that we address in a follow-up pa-
per [12] is the systematic study of larger minimal polyhedra V/,, their relation
to fullerenes and especially to those experimentally detected up to now in
chemical laboratories.
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