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Abstract

We show that the continuation method can be used to solve a weakly elliptic
two-parameter eigenvalue problem. We generalize the continuation method for a
nonsymmetric eigenvalue problem Az = Az by T.Y. Li, Z. Zeng, and L. Cong (1992
SIAM J. Numer. Anal. 29, 229-248) to two-parameter problems.

1 Introduction

We consider a system of two-parameter pencils
Wi(A) = MV + XaVie = Vo, 1=1,2, (1)

where XA = (A, \2) € C* and Vj; are symmetric n; X n; matrices over R viewed as linear
transformations on C™ .

For a weakly elliptic problem [10] we require that one of the matrices Vi1, Via, Var, Vao
is definite. Without loss of generality we may assume that Vi, is a positive definite matrix.
There exists a constant ¢ € R such that the linear substitution \; = A + cAl, Ao = A
transforms (1) into a similar problem where Vi, is a definite matrix. Hence we may further
assume that Vi, is definite. Moreover, the following lemma shows that we may assume
that V7, is an identity matrix and that Vj, is a diagonal matrix.

Lemma 1 We may assume that Vi is an identity matriz and that Viy is a diagonal
matrix.

Proof. Since Vj; is a positive definite matrix, there exists Cholesky decomposition
Vit = LLT. TFor the symmetric matrix L='V;,L~7 there exist an orthogonal matrix
@ and a diagonal matrix D such that L='V;,L=7 = QDQ"?. The equation Vigz; =
MViir + A Vigxy is equivalent to Vx| = Mo} + A\oDa, where V], = QTL 'V, L TQ
and 7} = QTLTz,. B

We say that A is an eigenvalue of the two-parameter problem (1) if

Ker W;(A) £ {0}, i=1,2.
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On the tensor product space S := C" ® C" of the dimension N := nin, we define
operator determinants

Vi Vi
Vo Vi

Vi, Vi
Vay Vb

Y

B ‘ v v
=
Vi Vi

) 1:‘ ) 2:‘

where V;; is the linear transformation on S induced by Vj;. So, VIT] = Vi; ® I and
VJJ = I ® Vi; (see Atkinson [3] for details). We assume that the two-parameter problem
(1) is nonsingular, that is the corresponding operator determinant A, is invertible. In
this case the operators I'; :== A;'A; commute [3] and the problem (1) is equivalent to the

simultaneous problem
Fiz = )\iz, 1= ]_, 2, (2)

for decomposable tensors z € S.
If A is an eigenvalue of the problem (1), then

d, := dim (ﬁ Ker [(T'; — MI)(Ty — )\2I)Nj})

5=0
is the algebraic multiplicity and
dy := dim (Ker(I'; — A J) N Ker('y — Ao1)) = dim Ker Wi (A) - dim Ker Wy (A)

is the geometric multiplicity of the eigenvalue (see [3]). We say that an eigenvalue X is
geometrically or algebraically simple when dy, = 1 or d, = 1, respectively.

Multiparameter eigenvalue problems arise in a variety of applications [2], particularly
in mathematical physics when the method of separation of variables is used to solve
boundary value problems [8, 21]. One possible way to solve a multiparameter differential
equation is to transform it into a matrix problem using discretization and solve this matrix
problem numerically.

Instead of the original problem (1) we can treat the simultaneous problem (2) that
can be solved by standard numerical methods. This approach looks interesting but it is
completely unsuitable for large matrices. Namely, the matrices in (2) are of size niny x
niny and the time complexity is O(n3n3). Therefore faster algorithms which use the
structure of the two-parameter problem are needed.

Most numerical algorithms that exist for two—parameter eigenvalue problems [6, 4, 9,
19, 18] require a definite problem. Since our weakly elliptic problem is not definite in
general, these methods cannot be applied.

Bohte [5] used Newton’s method to find an eigenvalue pair. This method can be applied
to a weakly elliptic problem, but its disadvantage is that Newton’s method requires a very
good initial approximation in order to converge. Such an approximation is hard to find if
nothing else is known besides the initial matrices.

In order to fix the problem with the initial approximations we use the continuation
method (see; for example, [1] for details about the continuation method). In this method
we construct a homotopy and we have no problems with good initial approximations as
we follow the solution curve.
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The continuation method was first applied to the multiparameter eigenvalue problems
by Miiller [16]. It was used for right definite two-parameter problems by Shimasaki [19]
and Plestenjak [18]. In this paper we show that the continuation method similar to the one
that Li, Zeng, and Cong used in [12] for the nonsymmetric eigenvalue problem Az = Az
can be applied to a weakly elliptic two-parameter problem (1).

In Section 2 we state some auxiliary results by Kosir [10] about the root subspace of
the nonderogatory eigenvalue of the two-parameter problem. In Section 3 we construct
the homotopy and show that its Jacobian is of full rank in general. In Section 4 we
show that all eigenvalues are nonderogatory and that all bifurcations are turning points.
In Section 5 we give more details about the continuation method and in Section 6 we
present some numerical results that confirm that the continuation method is competitive
with the QR algorithm for the simultaneous problem.

2 Auxiliary results

Let A = (A1, A2) be an eigenvalue of the two-parameter problem (1) and let unit vectors
zi,y; € C" be such that W;(A)z; = 0 and yfW;(A) =0 for i = 1,2. We define the matrix

By := <y1V11$1 y1V12$1> ‘ (3)

* *
y2V21I2 y2V22I2

We say that A is a nonderogatory eigenvalue if dimKer W;(A) = 1 for i = 1,2, and
dim Ker By < 1.

Lemma 2 If X\ is an algebraically simple eigenvalue of the two-parameter problem (1),
then matriz By is nonsingular.

Proof. The lemma follows from Lemma 3 in [10]. B

Lemma 3 If A = (A, \2) is a geometrically simple eigenvalue of the two-parameter prob-
lem (1), then the following is true:

a)
2
dim (ﬂ Ker [(T'; — A T)/ (T — )\ZI)QJ]) =1 + dim Ker B,.

=0

ai
5]
exists a vector z; € C" such that

b) A nonzero vector a = € C? such that Bya = 0 exists if and only if there

Wi(A)z; + a1 Vi + agVigr; = 0

fori=1,2.

Proof. The lemma follows from Theorem 5 and Theorem 15 in [10]. W
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3 A continuation method

Let Ajp € R™*™ be a diagonal matrix, A;; € R"1*™ a symmetric matrix with zeros on
its diagonal and Ay € R™*™ a symmetric matrix. Let us denote

W1 ()\, t) = )\1‘/11 + )\2‘/12 - (1 - t)AlO - t(l — t)AH — t‘/l[),
Wo(A, 1) = XVay + AoVag — (1 — t) Agg — tVia,

where t € [0,1]. Suppose that matrices Ajq and Ay are such that all the eigenvalues of
the two-parameter problem
(A10 — MV — )\2V12)$1 = 0,

(4)
(AZO — A Vo — )\2V22)I2 = 0

are algebraically simple. We introduce the homotopy
H:C"xC?xCxCx][0,1]] —C" xC"” xC xC,

Wl()\a t)xl
W2()\a t)%
s(enad + ...+ cmad, —1)

1 2 2
5(0211'21 + ...+ 02n2$2n2 — 1)

H({L‘l,fL'Q,)\l,)\z,t) = ) (5)

where c¢;; are randomly chosen real positive numbers.
A solution of the equation H(z1, 2, A, A2, t) = 0 is a solution of the two-parameter

problem

which is equal to the problem (1) at ¢ = 1 and equal to the problem (4) at ¢ = 0. Clearly,
the problem (6) is weakly elliptic for every t € [0, 1].

In the continuation method we start from the known eigenpair of (4) at ¢ = 0 and
follow the solution curve to a solution of (1) at ¢ = 1. This approach is reasonable if
the solution of the problem (4) is considerably easier to calculate than a solution of the
original problem (1). To have N independent solution curves at ¢t = 0, we further require
that all eigenvalues of the problem (4) are algebraically simple.

The following lemma, shows that it is possible to choose matrices Ay and Ay which
satisfy the above demands. From the constructive proof of the lemma a method for
obtaining the initial problem (4) and its solution can be easily derived.

Lemma 4 There exist a diagonal matriz Ajg € R"*™ and a symmetric matriz Asy €
R™*"2 such that all eigenvalues of the two-parameter problem (4) are algebraically simple.

Proof. Let us denote Ay = diag(ey, es,...,e,,) and Vio = diag(dy, ds, ..., d,,). Eigen-
pairs of the first equation of (4) are points (Ay, A2) on the lines

ej—)\l—)\gdj:(), jzl,...,nl. (7)
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When we insert A; from equation (7) into the second equation of (4), we obtain n,
generalized eigenvalue problems

(A20 - €jV21)£E2 = )\2(V22 - djV21)$2, J=1...,n. (8)

It is easy to see that nonsingularity of A implies nonsingularity of Vay — d;V5 for j =
]_, Lo, N
The lines (7) intersect in finitely many points

()\113 )\21); ) ()\lka )‘Zk) (9)

It remains to show that we can choose A,y such that all eigenvalues Ay of the generalized
problems (8) are algebraically simple and that they all differ from the Ay-coordinates of
intersections (9).

Let us show that there exists an open dense subset M of all ny X ny symmetric matrices
such that all eigenvalues of (4) are simple for Ay € M. For each j = 1,...,ny, there
exist an orthogonal matrix (); and a diagonal matrix G; = diag(gj1, g;2,- - -, gjn,) such
that

Vay — d;Vay = Q;G,Q7 .
For a fixed j € {1,...,n:} we set

Asg =€V + QijQjT,
where F; = diag(fj1, fij2,- -, fin,), and rewrite (8) as
ijL‘IQZ)\QGjZL'IQ, jzl,...,nl,
where 2!, = QJTxQ. If diagonal elements f;; satisfy the equation

fir , [
JIR 7& 20
gjk gii

for k1,

then all eigenvalues of the generalized eigenvalue problems (8) are algebraically simple. It
is easy to see that it is possible to choose fjj such that all eigenvalues Ay of the generalized
problems (8) differ from the \y-coordinates of intersections (9).

The determinant of the polynomial

Pj(A2) = det(Az — €Vo1 — Ao(Vao — d;Var))

as a polynomial in A, can be considered as a polynomial P; in all elements of the symmetric
matrix Agy. This polynomial is not identically zero because there exists Ay such that all
eigenvalues of the generalized eigenvalue problem (8) are simple. Hence, the zeros of P;
is a variety of codimension 1 in R™ ®>™5/2 and let M be its complement. Since p;();) is
not identically equal to any As-coordinate of intersections (9) there exists an open dense
subset M of all ny x ny symmetric matrices such that if Ay € M7 then all eigenvalues
Ay of the generalized problem (8) differ from all A\y-coordinates of intersections (9).

Let M = Uj%, (MjNMY). If Ay € M then all eigenvalues of (4) are algebraically
simple. &
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Remark. If Ay € M and the matrix Ay — e;V5; is positive definite for all j, then
all eigenvalues are real. Hence, if we randomly choose a symmetric matrix A%, and take
Ay = Aby + kI for large k£ € R, then all eigenvalues of (4) are real and algebraically
simple.

Eigenvalues of a weakly elliptic two-parameter problem have a very important prop-
erty. That is, either A\; and A, are both real or they are both strictly complex. Based on
this property we later use one version of the algorithm for the real and the second one for
the complex solution curve.

Lemma 5 Let A = (A, \y) be an eigenvalue of the weakly elliptic two-parameter problem
(1). Then either A\;, Ay € R or A;, Ay € R.

Proof. Take a nonzero vector x; such that
AMVizy + AoVigwy — Vigry = 0.

Then
)\1.1'?‘/11.1'1 + )\2.%?‘/12.1'1 — ZL'T‘/I()ZL'l =0.

Since all matrices Vj; are symmetric, z7Vy;21 € R for j = 0,1,2. Furthermore, V;; and
Vi2 are both definite, therefore 27Vy;21 # 0 for j = 1,2. It follows that either A\, Ay € R
or )\1, )\2 € R N

Let
G := {(x1, 79, M1, X, 1) € C™ x C"2 x C x C x [0,1] | H(x1, 22, A1, Mg, t) = 0}

denote a solution set for the homotopy (5). We say that ¢ € [0,1] is a singular point if
the two-parameter problem (6) has a multiple eigenvalue. It is easy to see that there are
only finitely many singular points ¢ € [0,1]. On each interval (a,b) C [0, 1] which does
not contain any singular point the solution set consists of N solution curves.

The Jacobian of H is a (ny + ng + 3) X (ny + ng + 2) matrix equal to

H =(H, H,, H, H, H),

where
Wi(A,¢) 0
0 Wo (At
_lq‘%-1 — ) -H.’Ez - 2( ) )
C11T11 Cin, Tin, 0
0 C21T21 - ConyTon,
Viiz, Viexy (Ayg + (1 —2t) A1y — Vig)xy
H/\l _ V2(1)£E2 : H,\2 _ V2(2)£E2 : H, = (A20 —0‘/20)552
0 0 0

We numerically follow the eigenpath by a prediction-correction scheme using the arclength
as the parameter. Let p = (z1,%2, A1, A2, t) € G. We calculate the tangent vector and
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predict the next point on the solution curve using Euler’s method. The unit tangent
vector p = (¥, X9, A1, A9, t) satisfies the equations

HmlfL.'l+Hm2.l.'2+H)\1).\1+H/\2).\2+HtZ€:0 (10)

and _ ‘
2117+ 2 l* + A + (A + €2 = 1.
A simple way to calculate the unit tangent vector is to set ¢ = 1, solve the linear system
T
H T | _ i 11
@A |\ | T tt, (11)
Az

where H g, ) = (H,, H,, H, H,,),and normalize the tangent vector. This method
works well as long as matrix H(a: ) is nonsingular. We show that this is true for an
algebraically simple eigenvalue.

Proposition 1 Let p = (x1,22, A1, A2, t) € G. Matrix H(m ) 15 nonsingular if and only
if A= (A1, A2) is an algebraically simple eigenvalue.

Proof. Suppose that (z1, 22, pu1, fto) € C" x C™ x C x C satisfies the equation

21

Z2
(@A) M1

2

It follows that

Wi(A )z + Ve, + peVisr, =
Wo (A, t)zo + 1 Vor g + poVosxy =

C11ZT11211 + -+ + Cin T1ng Z1ng - =

e =)
—~ o~~~
~— — — ~—

C21T21%21 + ** * + ConyTon, Z2n, =
On the other hand p € G and therefore

Wi(A, t)z =
W2 ()\, t)!L‘g =

2 2 _
Clidyy + - F iy Ty, =

16
17
18
19

_— = O O

(
(
(
(

— N N N

2 2
Co1To1 + 0+ Cony Loy, =

For the first part we show that if A is an algebraically simple eigenvalue, then H @)
is nonsingular. Tt follows from W;(A)* = W;(X), where XA = (A[, X2), that 27 W;(A) = 0 for



WEAKLY ELLIPTIC TWO-PARAMETER EIGENVALUE PROBLEM 8

i = 1,2. We multiply (12) and (13) by 2T and 27, respectively, and obtain a homogeneous

system
<$1TV11$1 $1TV12$1> <M1> —0 (20)

T T
Ty Vorxo 5 VorXo H2

We recognize the matrix in equation (20) as matrix By in (3) that is nonsingular by
Lemma 2, therefore j; = py = 0.

What remains of the equations (12) and (13) is Wi(A,t)z; = 0 and Wy(A,t)2z, = 0.
Since dim Ker W;(A,t) = 1 for i = 1,2, there exist oy, s € C such that z; = oy and
29 = @amg. It follows from (14) and (18) that

— 2 2 —
0= 011(6111'11 + -4 Clnlxlnl) = .

In a similar manner (15) and (19) yield ay = 0.
For the second part we assume that A is a multiple eigenvalue. To show that H @\
is singular, we consider two possibilities:

a) dimKerW;(A,t) = 1 for i = 1,2. We take a left eigenvector y; of W;(A,t) for
i = 1,2. By Lemma 3 there exist a nonzero pair (1, i) and vectors zi, 25, such
that the equations (12) and (13) hold. By adding appropriate multiples of z; and
o to 21 and 29, respectively, it is easy to see that z; and z; can be chosen in such
a way that all the equations (12)—(15) are satisfied. Then (z1, 22, 11, 2) lies in the
kernel of H(m,)\)'

b) We have at least two linearly independent eigenvectors for the eigenvalue X. Without
loss of generality we may assume that dim Ker W (A, ¢) > 1. Then there exists a
nonzero vector z; € Ker Wy (A, t) which satisfies the equation (14). B

The unit tangent vector is uniquely determined if the Jacobian H' is of full rank.
We show that for randomly chosen real matrices Aq, A1, and Aoy, H' is of full rank in
every point p € G, such that ¢ € [0,1). We need the following result which follows from
Corollary 4.4 in [14].

Lemma 6 Let A C C" and B C C". If 0 is a regular value of the polynomial map
P : Ax B — C?, then there exists real algebraic subset B' C R™ with zero measure such
that 0 is a regular value of P(-,y) : A — C? for eachy € BNR" — B,

Proposition 2 For all diagonal matrices Ay € R™*™ symmetric matrices Ay €
R™ %™ with zero diagonal entries, and symmetric matrices Agy € R™*™ in a dense open
set the Jacobian H' is of full rank at every point (x1,xe, A1, Ao, t) € G such that t € [0,1).

Proof. We treat nonzero elements of matrices Ao, Ay, and Ay as variables of H.
First we consider homotopy H as a complex transformation

H:C" xC" xCxCx[0,1] x CnmHD/2 o gra(a+D/2 _y ¢m 5« €™ x C x C,
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where we assume that matrices Aqg, A11, Ay are complex. The Jacobian of H has the

form B
H':[H(w)‘) H, Hyu, HA2],

where
S 0
Hy=1{ 0], Hap=1|5],
0 0
Si c (an Xni(ni+1)/2, and
%ZL'H T12 xlnl 0 0 0
0 T11 0 %1'12 xlnl .
0 T 0 Tz 1T,
To1 Tz tt Top, 0 0 Tt 0
0 2z 0 Tog2 - Topy :
Sy = (1-1) : 0
0 To1 0 Too =t Top,

Since vectors 1, r9 are nonzero, matrices Sy, Sy are of full rank and therefore EI’ is of full
rank for ¢t € (0,1). At ¢t = 0 all eigenvalues are algebraically simple, hence H' is of full
rank by Proposition 11. The proof now follows from the generalized Sard’s theorem [13]
and from Lemma 6. l

From now on we assume that the Jacobian H’ is of full rank at every point p € G and
t € [0,1). If follows from Proposition 2 that this is the case in general.

4 Bifurcations

In a bifurcation point at least two solution curves intersect. It is vital for our method to
be able to detect the bifurcation point and to switch onto a bifurcating branch. It is easy
to see that bifurcation points are inevitable. Namely, we start following the eigenpaths at
t = 0 where all eigenvalues are algebraically simple. Since the number of real eigenvalues
at t = 0 in general differs from the number of real eigenvalues at t = 1, there exist
transition points where real eigenvalues change into the complex ones or vice versa. Each
transition point is clearly also a bifurcation point.

Definition 1 Let p € G, t € [0,1), and let p = (afl,xg,Xl,Xg,i) be its tangent vector.
We say that p

a) is a singular point if t = 0;

b) is a turning point of order k if t = 0 and exactly k solution curves intersect in p;
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¢) is a bifurcation point if p lies in the intersection of at least two solution curves.

Singular points present numerical problems as we can not apply the equation (11) for
the tangent vector. In this section we establish the equality between the set of singular
points, the set of turning points, and the set of bifurcation points in our situation. First
of all, the following lemma shows that singular points are identical to points with multiple
eigenvalues.

Lemma 7 Let p = (21,22, M1, Ao, t) € G, t € [0,1), be a point on the solution curve and

let p = (41,2, Xl, A2, 1) be the corresponding tangent vector. Then & = 0 if and only if
A = (A1, Xo) is a multiple eigenvalue of (6).

Proof. By Proposition 1, A = (A1, A2) is a multiple eigenvalue if and only if H(m A is
singular. The result now follows from the equation (10). W

We have already verified that each transition point is a bifurcation point. It follows
from Lemma 7 that each bifurcation point is a singular point. What remains to show is
that each singular point is a transition point. This will follow from the result that all
eigenvalues of (6) are nonderogatory for ¢ € [0,1).

Lemma 8 Let A = (A1, A2) be an eigenvalue of (6) fort € [0,1). If algebraic multiplicity
of X is greater than two, then X is a nonderogatory eigenvalue.

Proof. Suppose that there exists a derogatory eigenvalue with algebraic multiplicity
greater than two. We show that in such a case dim Ker H' > 2, which is a contradiction
to Proposition 2. Since dim Ker H(a:,)\) < dimKer H', it is enough to find two linearly
independent vectors in Ker H(a:,)\)' We have to consider the following four situations.

a) dim Ker W;(A,t) = 2 for i = 1,2. By the same arguments as in the proof of Propo-
sition 1 it follows that there exist vectors z; € Ker Wi (A, t) and 2z, € Ker Wy(A, t)

such that (z1,0,0,0), (0, 22,0,0,0) € Ker Hgz )

b) Geometric multiplicity of A is greater or equal to 3 and there exists i € {1,2}
such that dim Ker W;(A,¢) > 3. Without loss of generality we may assume that
dim Ker Wy (A, t) = 3. Tt follows that there exist linearly independent vectors 21, 25 €

Ker Wy (A, t) such that (z;,0,0,0) € Ker H g, fori=1,2.

¢) Geometric multiplicity of A is 2. Suppose that dim Ker Wi (A,¢) = 2 and let z, €
Wa(A,t). Then there exist two linearly independent vectors x1,7; € Ker Wi (A, )
and there exist a nonzero pair (aj, as) € C? and vectors z; € C" such that

Wi(A)zi + a1 Vi, + aaVigr; = 0

fori = 1,2 (see [11, Section 6]). We consider H(m,)\) in the point (x1, 29, A1, A, t). It
is easy to see that ¢y := (21, 22, a1, a3) € Ker H(a:,)\)' On the other hand, there exists
a linear combination z of vectors xi,z; such that o5 := (2,0,0,0) € Ker H g x-
The vectors ¢1 and ¢ are clearly linearly independent.
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d) Geometric multiplicity of A is 1. By Lemma 3, dimKer By = 2 and therefore
dimKerH(m A= 2. 1

It follows from Lemma 8 that all eigenvalues with algebraic multiplicity at least three
are nonderogatory. We handle the remaining case of a double eigenvalue in the following
lemma.

Lemma 9 Solution curve of H that starts at t = 0 does not include a point p, =
(xgo), :Ego), A&O), )\g)), tO) e G, t0 €[0,1), with the algebraic and the geometric multiplicity
of the eigenvalue A = (A&O), )\g))) both equal to 2.

Proof. Since at t = 0 all eigenvalues are algebraically simple, t® > 0. Without
loss of generahty we may assume that dim Ker Wl()\(o),t(o)) = 2. There exists a vector
7 € Ker W (AY, ) such that

(0) (0) _
C11Tq1 211 + -+ Ciny Ty 21y = 0
and
2 2 _ 1
C1121] + -+ Ciny 21p, = L.

It is easy to see that each point on the curve
¥(a) := (cos xﬁ“’ +sina 2y, a:go), A§°), )\g)), t9), aeR,

is a solution of H.
Let us consider H as an analytic function

H(z1,29, A1, X0,1) :C" xC? xCxCxC—C" xC"” xCxC.
The Jacobian H'(p,) is of full rank and by the Implicit Function Theorem there are unique

analytic functions
xl(u),xQ(u),)\l(u),)\Z(u),t(u), (21)
defined in a neighbourhood A C C of 0 such that

H(zqy(u), zo(u), A1(u), Ao(u), t(u)) =0 (22)

for each u € A and #(0) = ¢, 2;(0) = xgo), Ai(0) = )\EU) for i = 1,2. Differentiating (22)
with respect to u yields
dzy dxsy d\ d)\y dt

H, H, H,, H,, H 0. 23
vy e+ g o o Hie = (23)

The matrix H g, ) = =[H, H,, H, H,,]issingular at p, due to the multiple eigen-

value A. Since the Jacobian H' = [H(m,)\) Ht] is of full rank, at u = 0, H; # 0 and
(23) yields £(0) = 0. One of the solution curves is ¥ where ¢ = () and consequently ¢ is
constant for all solution curves which pass p. This is a contradiction to the assumption
that p lies on the solution curve which starts at £ = 0. l
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Proposition 3 Let p = (21, 2, A1, Ao, t) be a singular point of H. Then p is a bifurcation
point.

Proof. If follows from Lemma 7, Lemma 8, and Lemma 9 that A = (A, \y) is a
nonderogatory eigenvalue. Therefore, A is a geometrically simple eigenvalue and k solution
curves intersect at p, where k is the algebraic multiplicity of A. H

The order of a turning point p = (1, 2, A1, A2, t) equals the algebraic multiplicity of
A = (M, X2). Therefore, it is possible to determine the order of the turning point using
the algorithm for computing a basis for the root subspace at a nonderogatory eigenvalue,
which was treated in [17]. The following proposition by Li and Wang describes the
behaviour of solution curves in a turning point.

Proposition 4 [15, Proposition 2.4] Let p be a turning point of order k and lety; C G,
J=1,...,k, be the k solution curves passing through p. Then the tangent vectors of -,
at p differ only by complex scalar factors of the form e'™/* for certain 1 < |I| < k.

In practice, turning points of orders higher than 2 do occur very rarely. From now on we
therefore assume that all turning points are quadratic. If necessary, a slight modification
of our algorithm could treat the general case.

The situation in a quadratic turning point is depicted in Figure 1. The left solution
curve v is real and the right solution curve 7' is complex. They join in a turning point
pr which is a transition point from real to complex space. It follows from Proposition 4
that if ¢ is the tangent vector for v at py then i¢ is the tangent vector for 7/ at the same
point. This allows us to switch to another branch and continue to follow the solution
curve.

Figure 1: Change from real to complex space in a turning point.

5 The method

First of all, we find a diagonal matrix A;q and a symmetric matrix Asq such that at
t = 0 all eigenvalues are algebraically simple and that the initial problem (4) is easily
solved. We can follow the proof of Lemma 4 to construct matrices Ao and Ay and to
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calculate the eigenpairs of the initial problem (4). We take a random matrix for A;; that
is required only in order that the Jacobian H' is of full rank. Based on the discussion
from the previous section we assume that all turning points are quadratic.

The method is a generalization of the method by Li, Zeng, and Cong in [12].

5.1 Following the solution curve

Let p, := (xgo),xgo),)\go),)\g)),t(o)) € G. We set £ = 1, solve the linear system (11),
normalize the solution, and obtain the unit tangent vector p, := (il,ig,}\l,}\g,i). We
have to choose the correct sign of £ in p,. In the initial point at ¢ = 0 we always choose
t > 0. For t > 0 we choose a sign such that the real part of the inner product of the
tangent vector p, and the tangent vector from the previous step is positive. This strategy
guarantees that we follow the curve in the same direction.

We consider two situations.

1. £ > 0. In this case we use the following prediction-correction scheme. First, we
calculate Euler’s prediction point

P P P P -
Dp = («’L'g )wxg )7)‘§ )J)‘é )7t(P)) = Po +hp0’

where h is a stepsize (see Subsection 5.3 for details). Next, we calculate new point
P = (xgl), xgl), )\gl), )\gl),t(l)) on the solution set G using p, as an initial approxi-
mation. We search for p, in the plane which contains p, and is perpendicular to
the tangent vector p,. A different approach is used whether we follow a real or a

complex curve.

If A € R?, we add the equation

Po(p —pp) =0 (24)

to the equation H(p,) = 0 and solve the obtained system with Newton’s method
using pp as an initial approximation.

If A ¢ R?, then we add the real part of the equation (24) to the equation H(p,) = 0.
We consider the obtained system as a real system of 2n; 4+ 2ns + 5 equations in
2n1 + 2ns + 5 unknowns and use Newton’s method as in the previous real case.

2. t < 0. In this case we passed a turning point. We use a special algorithm to detect a
turning point py (see Subsection 5.2 for details). We continue the calculation from
pp using ip, as the tangent vector.

We end the algorithm when ¢ is close enough to 1.

5.2 Calculation of the turning point

Suppose that after one step of the prediction-correction scheme we obtain a point p; with
the unit tangent vector p, := (#{", 2", A AWM {0 and i) < 0. We passed a turning
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point p, = (ng),ng),)\ST),)\gT),t(T)) where the tangent vector p, has the component
+T) = .

If we are following a real curve then for the part of the curve between points p, and
p; we can use A\; or Ay as a parameter. If we choose A; then the following algorithm

calculates the turning point p;.

1. Calculate (D) 1)+ (0)
FONY — i

N = 0 (25)
as an approximation for the value of A\; at the turning point p;y. Compute the
stepsize

. )\g2) . )\SO)
i

that returns Euler’s prediction point pp = p, + hp, such that )\gp) = )\52).

Solve the system H(x?),xg), )\52), )\52),75(2)) = 0, where )\?) is fixed, with Newton’s

method using the initial approximation ('), z{ A7), ¢(P).

2. If {(p,) > 0, then replace p, with p,, otherwise replace p, with p,.
3. If |{(p,)| is small enough, then set p; = p,, otherwise repeat step 1.

A similar strategy is used for a complex curve. In this case we use the imaginary part
of \; as a parameter. The last two steps of the algorithm are the same as in the real case.
The modified first step is:

1. Calculate Im()\?)) from (25) as an approximation for Im()\gT)) at the turning point.

Compute the stepsize
2 0
p I — )
L (0
Im(A”)
that returns Euler’s prediction point pp such that that Im()\gp)) = Im()\?)).
Consider the system H(x?), xg), )\52), Ag2), t@?) = 0, where Im()\?)) is fixed, as a real
system of 2n; 4+ 2ns, +4 equations in 2n; 4+ 2n, +4 unknowns. Solve it with Newton’s
method using the initial approximation (xgp), xgp), Re()\gp)), )\gp), ().

5.3 Adjusting the step size

In the beginning we choose the initial stepsize h in accordance with the size of the tangent
vector t. In the algorithm we decrease or increase the stepsize corresponding to the
behaviour of the solution curve.

e If any of the following situations appear, then we decrease the stepsize to h/2 and
return to the last well-calculated point:

a) Newton’s method fails to converge from a given prediction point to a nearby
point on the solution curve;
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b) search for a bifurcation point fails to converge;
c¢) we calculate ¢, < t;

d) the angle between the two consecutive tangent vectors (respectively, eigenvec-
tors) is larger than the maximal allowed angle.

e If the curve is flat, then we increase the stepsize to 2h. The criteria for this is a
small angle between the two consecutive tangent vectors and a small angle between
the two consecutive eigenvectors.

e If the prediction t¥ = t(*) + ht is greater than 1, then we decrease h so that t¥ = 1.

5.4 Avoiding the curve switching

In contrast to a right definite two-parameter problem, where the minimal angle between
eigenvectors exists [18], eigenvectors can be arbitrary close in our case. Because of this
it may happen that in a numerical process we switch from one solution curve to another.
Curve switching may appear for many reasons, for instance:

e the stepsize is too large;
e the criteria for convergence of Newton’s method is not strict enough;
e the maximal allowed angle between the two consecutive eigenvectors is too large.

To avoid curve switching we use more strict criteria for stepsize control and conver-
gence of Newton’s method and we restrict the allowed angle between the two consecutive
eigenvectors.

From our numerical experiments it follows that the phenomenon of curve switching is
not so frequent that it would be advisable to follow all curves with high precision. Instead
of this we follow all curves with moderate precision. In the end we compare all eigenvalues
and if we find two close eigenvalues we compare their eigenvectors. If the eigenvectors are
also close to each other then it is very likely that a curve switching did appear when we
followed one of these two curves. We repeat the computation for both curves using higher
precision and stricter criteria.

If the problem (1) has a multiple eigenvalue such that the geometric multiplicity is
smaller than the algebraic one, then at least two curves collide at ¢t = 1 independently of
the precision used. If such an eigenvalue is nonderogatory, then it is possible to calculate
a basis for the root subspace using the algorithm in [17]. Kosir proved in [10, Theorem
19] that if A is a real geometrically simple eigenvalue of a weakly elliptic system (1), then
A is a nonderogatory eigenvalue.

5.5 Time complexity

If we treat the simultaneous problem (2) by standard numerical methods then the time

complexity is O(n$n3). Using this approach we are dealing with matrices of order nin,.

On the other hand, matrices in the continuation method are of moderate size O(n; + ny)



WEAKLY ELLIPTIC TWO-PARAMETER EIGENVALUE PROBLEM 16

and one step of Newton’s method has time complexity O((n;+n5)?). We have to multiply
this quantity first with nyn, as we are following n,ns solution curves and second with the
number of steps that Newton’s method is used per curve. If we take n = n; = ny and
denote the average number of times that Newton’s method is evaluated per curve by ¢(n),
then the time complexity of the continuation method is O(n’@(n)).

Numerical experiments in the next section indicate that it is possible that ¢(n) is of
order o(n) and that the continuation method requires less operations for large n than the
simultaneous problem (2). In order to confirm or reject this hypothesis further properties
of the algorithm have to be studied and experiments with larger matrices have to be
performed.

The continuation method allows an elegant parallel implementation. Each processor
can follow its own solution curve, therefore n? processors can decrease the time complexity
to O(n®@(n)). Let us also remark that no sophisticated parallel computers are needed for
the parallel computation of the solution curves. We simply divide n? curves between the
available serial computers and join their results when they finish. For comparison, if we
use n? processors then the time complexity of the parallel algorithm for the simultaneous
problem (2) is O(n*) [7, 20].

Another advantage of the continuation method is its low consumption of memory.
The simultaneous problem requires O(n*) data for the matrices, while the continuation
method requires only O(n?). As a result, the size of the main memory does not limit the
continuation method as much as it does the simultaneous problem.

6 Numerical examples

The method was implemented in Matlab and tested numerically on randomly generated
weakly elliptic two-parameter problems. The results show that the complexity of the con-
tinuation method is comparable with the complexity of solving the simultaneous problem
(2) with standard methods.

We generate a random weakly elliptic problem with matrices of size n using the fol-
lowing sequence:

rand(’state’,0);

Vil=eye(n); p=rand(n,1); V12=diag(p); p=rand(n); V10=p+p’;
p=rand(n); V21=p+p’; p=rand(n); V22=p+p’; p=rand(n); V20=p+p’;
c=rand(n,2)/2+0.5;

We tested the method for different values of n and compared the number of operations
with the solution of the simultaneous problem (2). The continuation method successfully
calculated all 2025 eigenpairs for the largest matrices on test of order n = 45.

In the algorithm we use 10~ 7 as the minimal allowed stepsize h. We end the algorithm
when |t — 1| < 107°. In each step we iterate the Newton’s method until the residue

1
(WA Oz]* + (W2 (X, £)z2]|*)

is less than 1077 for t < 1—107° and less than 107'° for ¢ > 1—107°. To continue, the real
part of the inner product between the last two consecutive eigenvectors has to be greater
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than 0.85, otherwise we decrease the stepsize h. The same applies to the eigenvector part
of the last two consecutive tangent vectors. On the other hand, if both inner products
have the real part larger than 0.95, we increase the stepsize.

In the end we compare the eigenpairs and recalculate all the curves where

IA =X <1072(1 + [|A]))
and the minimum singular value of the matrix
($1®5L'2 x’1®x'2)

is smaller than 1073.

For the matrix Ajy we take Ajp = diag(1l,...,n) and for Ay we take Ayy = 0. Tt is
easy to see that if we take Ay = diag(m,m +1,...,n + m), where m = nl|Vy||, then all
initial eigenpairs are algebraically simple and real.

Table 1 shows the statistics for different matrix orders. The total number of opera-
tions for the continuation method in the second column also includes operations for the
recalculated curves. It is clearly seen from the fourth column that the ratio is decreas-
ing. The fifth column contains the average number of evaluations of Newton’s method
per curve and the sixth column contains the average number of bifurcations per curve.
Practically all solution curves contain bifurcation points and there are no easy paths as
in the algorithm by Li, Zeng, and Cong (see [12]).

Matrix order | Number of operations ratio Aver. no. of | Aver. no. of
n continuation QR (cont. : QR) steps bifurcations
Y 50.7 - 10° 82.4-10* 61.5 210 1.4
10 13.5-108 49.3 - 107 27.5 317 1.2
15 16.0 - 10° 51.9- 107 30.7 256 2.7
20 57.0-10° 29.5-108 19.3 594 2.2
25 19.3 - 10'° 11.3-10° 17.0 720 3.0
30 46.1 - 10 32.8 - 10° 14.1 778 3.3
35 10.3 - 101 81.2-10° 12.7 868 3.2
40 21.2 - 10! 18.0 - 1010 11.8 975 3.2
45 36.1- 10" | 36.6-10'° 9.9 956 2.8

Table 1: Statistics for n = 5,10,...,45. Flops count for the continuation method, for
the simultaneous problem (2), their ratio, the average number of evaluations of Newton’s
method per curve and the average number of bifurcations per curve.

Table 2 shows how repeated computation of some curves contribute the total number
of operations. The percentage of operations for recalculated curves is greater from the
percentage of recalculated curves itself. This is a consequence of higher precision and
more strict criteria used for repeated computation.

Since higher precision and more strict criteria is used, repeated computation require
more operations per curve than the initial computation. The number of recalculated
curves can be decreased by more strict criteria but this increases the number of operations
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Matrix order Number of Percentage of Percentage of flops
n recalculated curves | recalculated curves | for recalculated curves
15 12 5.3 14.4
20 10 2.5 4.1
25 2 0.3 0.5
30 31 3.4 5.0
35 26 2.1 4.4
40 40 2.5 2.6
45 52 2.6 4.7

Table 2: Statistics for recalculated curves for n = 15,20, ..., 45.

per curve in the initial stage. On the other hand, more relaxed criteria increases the
number of recalculated curves and decreases the number of operation in the initial stage.
In order to minimize the total number of operations one should carefully calibrate the
criteria.
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