
A continuation method for a weakly elliptictwo-parameter eigenvalue problemBor PlestenjakIMFM/TCS, University of Ljubljana, Jadranska 19, SI-1000 Ljubljana, SloveniaFebruary 19, 2000AbstractWe show that the continuation method can be used to solve a weakly elliptictwo-parameter eigenvalue problem. We generalize the continuation method for anonsymmetric eigenvalue problem Ax = �x by T.Y. Li, Z. Zeng, and L. Cong (1992SIAM J. Numer. Anal. 29, 229{248) to two-parameter problems.1 IntroductionWe consider a system of two-parameter pencilsWi(�) = �1Vi1 + �2Vi2 � Vi0; i = 1; 2; (1)where � = (�1; �2) 2 C 2 and Vij are symmetric ni � ni matrices over R viewed as lineartransformations on C ni .For a weakly elliptic problem [10] we require that one of the matrices V11; V12; V21; V22is de�nite. Without loss of generality we may assume that V11 is a positive de�nite matrix.There exists a constant c 2 R such that the linear substitution �1 = �01 + c�02, �2 = �02transforms (1) into a similar problem where V12 is a de�nite matrix. Hence we may furtherassume that V12 is de�nite. Moreover, the following lemma shows that we may assumethat V11 is an identity matrix and that V12 is a diagonal matrix.Lemma 1 We may assume that V11 is an identity matrix and that V12 is a diagonalmatrix.Proof. Since V11 is a positive de�nite matrix, there exists Cholesky decompositionV11 = LLT . For the symmetric matrix L�1V12L�T there exist an orthogonal matrixQ and a diagonal matrix D such that L�1V12L�T = QDQT . The equation V10x1 =�1V11x1 + �2V12x1 is equivalent to V 010x01 = �1x01 + �2Dx01; where V 010 = QTL�1V10L�TQand x01 = QTLTx1.We say that � is an eigenvalue of the two-parameter problem (1) ifKerWi(�) 6= f0g; i = 1; 2:1



WEAKLY ELLIPTIC TWO-PARAMETER EIGENVALUE PROBLEM 2On the tensor product space S := C n1 
 C n2 of the dimension N := n1n2 we de�neoperator determinants�0 = ����V y11 V y12V y21 V y22 ���� ; �1 = ����V y10 V y12V y20 V y22 ���� ; �2 = ����V y11 V y10V y21 V y20 ���� ;where V yij is the linear transformation on S induced by Vij. So, V y1j = V1j 
 I andV y2j = I 
 V2j (see Atkinson [3] for details). We assume that the two-parameter problem(1) is nonsingular, that is the corresponding operator determinant �0 is invertible. Inthis case the operators �i := ��10 �i commute [3] and the problem (1) is equivalent to thesimultaneous problem �iz = �iz; i = 1; 2; (2)for decomposable tensors z 2 S.If � is an eigenvalue of the problem (1), thenda := dim N\j=0Ker �(�1 � �1I)j(�2 � �2I)N�j�!is the algebraic multiplicity anddg := dim (Ker(�1 � �1I) \ Ker(�2 � �2I)) = dimKerW1(�) � dimKerW2(�)is the geometric multiplicity of the eigenvalue (see [3]). We say that an eigenvalue � isgeometrically or algebraically simple when dg = 1 or da = 1, respectively.Multiparameter eigenvalue problems arise in a variety of applications [2], particularlyin mathematical physics when the method of separation of variables is used to solveboundary value problems [8, 21]. One possible way to solve a multiparameter di�erentialequation is to transform it into a matrix problem using discretization and solve this matrixproblem numerically.Instead of the original problem (1) we can treat the simultaneous problem (2) thatcan be solved by standard numerical methods. This approach looks interesting but it iscompletely unsuitable for large matrices. Namely, the matrices in (2) are of size n1n2 �n1n2 and the time complexity is O(n31n32). Therefore faster algorithms which use thestructure of the two-parameter problem are needed.Most numerical algorithms that exist for two{parameter eigenvalue problems [6, 4, 9,19, 18] require a de�nite problem. Since our weakly elliptic problem is not de�nite ingeneral, these methods cannot be applied.Bohte [5] used Newton's method to �nd an eigenvalue pair. This method can be appliedto a weakly elliptic problem, but its disadvantage is that Newton's method requires a verygood initial approximation in order to converge. Such an approximation is hard to �nd ifnothing else is known besides the initial matrices.In order to �x the problem with the initial approximations we use the continuationmethod (see; for example, [1] for details about the continuation method). In this methodwe construct a homotopy and we have no problems with good initial approximations aswe follow the solution curve.



WEAKLY ELLIPTIC TWO-PARAMETER EIGENVALUE PROBLEM 3The continuation method was �rst applied to the multiparameter eigenvalue problemsby M�uller [16]. It was used for right de�nite two-parameter problems by Shimasaki [19]and Plestenjak [18]. In this paper we show that the continuation method similar to the onethat Li, Zeng, and Cong used in [12] for the nonsymmetric eigenvalue problem Ax = �xcan be applied to a weakly elliptic two-parameter problem (1).In Section 2 we state some auxiliary results by Ko�sir [10] about the root subspace ofthe nonderogatory eigenvalue of the two-parameter problem. In Section 3 we constructthe homotopy and show that its Jacobian is of full rank in general. In Section 4 weshow that all eigenvalues are nonderogatory and that all bifurcations are turning points.In Section 5 we give more details about the continuation method and in Section 6 wepresent some numerical results that con�rm that the continuation method is competitivewith the QR algorithm for the simultaneous problem.2 Auxiliary resultsLet � = (�1; �2) be an eigenvalue of the two-parameter problem (1) and let unit vectorsxi; yi 2 C ni be such that Wi(�)xi = 0 and y�iWi(�) = 0 for i = 1; 2. We de�ne the matrixB0 := � y�1V11x1 y�1V12x1y�2V21x2 y�2V22x2 � : (3)We say that � is a nonderogatory eigenvalue if dimKerWi(�) = 1 for i = 1; 2, anddimKerB0 � 1.Lemma 2 If � is an algebraically simple eigenvalue of the two-parameter problem (1),then matrix B0 is nonsingular.Proof. The lemma follows from Lemma 3 in [10].Lemma 3 If � = (�1; �2) is a geometrically simple eigenvalue of the two-parameter prob-lem (1), then the following is true:a) dim 2\j=0Ker �(�1 � �1I)j(�2 � �2I)2�j�! = 1 + dimKerB0:b) A nonzero vector a = � a1a2� 2 C 2 such that B0a = 0 exists if and only if thereexists a vector zi 2 C ni such thatWi(�)zi + a1Vi1xi + a2Vi2xi = 0for i = 1; 2.Proof. The lemma follows from Theorem 5 and Theorem 15 in [10].



WEAKLY ELLIPTIC TWO-PARAMETER EIGENVALUE PROBLEM 43 A continuation methodLet A10 2 Rn1�n1 be a diagonal matrix, A11 2 Rn1�n1 a symmetric matrix with zeros onits diagonal and A20 2 Rn2�n2 a symmetric matrix. Let us denoteW1(�; t) := �1V11 + �2V12 � (1� t)A10 � t(1� t)A11 � tV10;W2(�; t) := �2V21 + �2V22 � (1� t)A20 � tV20;where t 2 [0; 1]. Suppose that matrices A10 and A20 are such that all the eigenvalues ofthe two-parameter problem (A10 � �1V11 � �2V12)x1 = 0; (4)(A20 � �1V21 � �2V22)x2 = 0are algebraically simple. We introduce the homotopyH : C n1 � C n2 � C � C � [0; 1] �! C n1 � C n2 � C � C ;H(x1; x2; �1; �2; t) := 0BBB@ W1(�; t)x1W2(�; t)x212(c11x211 + : : :+ c1n1x21n1 � 1)12(c21x221 + : : :+ c2n2x22n2 � 1)
1CCCA ; (5)where cij are randomly chosen real positive numbers.A solution of the equation H(x1; x2; �1; �2; t) = 0 is a solution of the two-parameterproblem Wi(�; t)xi = 0; i = 1; 2; (6)which is equal to the problem (1) at t = 1 and equal to the problem (4) at t = 0. Clearly,the problem (6) is weakly elliptic for every t 2 [0; 1].In the continuation method we start from the known eigenpair of (4) at t = 0 andfollow the solution curve to a solution of (1) at t = 1. This approach is reasonable ifthe solution of the problem (4) is considerably easier to calculate than a solution of theoriginal problem (1). To have N independent solution curves at t = 0, we further requirethat all eigenvalues of the problem (4) are algebraically simple.The following lemma shows that it is possible to choose matrices A10 and A20 whichsatisfy the above demands. From the constructive proof of the lemma a method forobtaining the initial problem (4) and its solution can be easily derived.Lemma 4 There exist a diagonal matrix A10 2 Rn1�n1 and a symmetric matrix A20 2Rn2�n2 such that all eigenvalues of the two-parameter problem (4) are algebraically simple.Proof. Let us denote A10 = diag(e1; e2; : : : ; en1) and V12 = diag(d1; d2; : : : ; dn1). Eigen-pairs of the �rst equation of (4) are points (�1; �2) on the linesej � �1 � �2dj = 0; j = 1; : : : ; n1: (7)



WEAKLY ELLIPTIC TWO-PARAMETER EIGENVALUE PROBLEM 5When we insert �1 from equation (7) into the second equation of (4), we obtain n1generalized eigenvalue problems(A20 � ejV21)x2 = �2(V22 � djV21)x2; j = 1; : : : ; n1: (8)It is easy to see that nonsingularity of �0 implies nonsingularity of V22 � djV21 for j =1; : : : ; n1.The lines (7) intersect in �nitely many points(�11; �21); : : : ; (�1k; �2k): (9)It remains to show that we can choose A20 such that all eigenvalues �2 of the generalizedproblems (8) are algebraically simple and that they all di�er from the �2-coordinates ofintersections (9).Let us show that there exists an open dense subsetM of all n2�n2 symmetric matricessuch that all eigenvalues of (4) are simple for A20 2 M. For each j = 1; : : : ; n1, thereexist an orthogonal matrix Qj and a diagonal matrix Gj = diag(gj1; gj2; : : : ; gjn2) suchthat V22 � djV21 = QjGjQTj :For a �xed j 2 f1; : : : ; n1g we setA20 = ejV21 +QjFjQTj ;where Fj = diag(fj1; fj2; : : : ; fjn2), and rewrite (8) asFjx02 = �2Gjx02; j = 1; : : : ; n1;where x02 = QTj x2. If diagonal elements fjk satisfy the equationfjkgjk 6= fjlgjl for k 6= l;then all eigenvalues of the generalized eigenvalue problems (8) are algebraically simple. Itis easy to see that it is possible to choose fjk such that all eigenvalues �2 of the generalizedproblems (8) di�er from the �2-coordinates of intersections (9).The determinant of the polynomialpj(�2) = det(A20 � ejV21 � �2(V22 � djV21))as a polynomial in �2 can be considered as a polynomial Pj in all elements of the symmetricmatrix A20. This polynomial is not identically zero because there exists A20 such that alleigenvalues of the generalized eigenvalue problem (8) are simple. Hence, the zeros of Pjis a variety of codimension 1 in Rn2 (n2+1)=2 and letM0j be its complement. Since pj(�2) isnot identically equal to any �2-coordinate of intersections (9) there exists an open densesubset M00j of all n2 � n2 symmetric matrices such that if A20 2 M00j then all eigenvalues�2 of the generalized problem (8) di�er from all �2-coordinates of intersections (9).Let M := Sn1j=1 �M0j \M00j �. If A20 2 M then all eigenvalues of (4) are algebraicallysimple.



WEAKLY ELLIPTIC TWO-PARAMETER EIGENVALUE PROBLEM 6Remark. If A20 2 M and the matrix A20 � ejV21 is positive de�nite for all j, thenall eigenvalues are real. Hence, if we randomly choose a symmetric matrix A020 and takeA20 = A020 + kI for large k 2 R, then all eigenvalues of (4) are real and algebraicallysimple.Eigenvalues of a weakly elliptic two-parameter problem have a very important prop-erty. That is, either �1 and �2 are both real or they are both strictly complex. Based onthis property we later use one version of the algorithm for the real and the second one forthe complex solution curve.Lemma 5 Let � = (�1; �2) be an eigenvalue of the weakly elliptic two-parameter problem(1). Then either �1; �2 2 R or �1; �2 62 R.Proof. Take a nonzero vector x1 such that�1V11x1 + �2V12x1 � V10x1 = 0:Then �1x�1V11x1 + �2x�1V12x1 � x�1V10x1 = 0:Since all matrices Vij are symmetric, x�1V1jx1 2 R for j = 0; 1; 2. Furthermore, V11 andV12 are both de�nite, therefore x�1V1jx1 6= 0 for j = 1; 2. It follows that either �1; �2 2 Ror �1; �2 62 R.LetG := f(x1; x2; �1; �2; t) 2 C n1 � C n2 � C � C � [0; 1] j H(x1; x2; �1; �2; t) = 0gdenote a solution set for the homotopy (5). We say that t 2 [0; 1] is a singular point ifthe two-parameter problem (6) has a multiple eigenvalue. It is easy to see that there areonly �nitely many singular points t 2 [0; 1]. On each interval (a; b) � [0; 1] which doesnot contain any singular point the solution set consists of N solution curves.The Jacobian of H is a (n1 + n2 + 3)� (n1 + n2 + 2) matrix equal toH 0 = (Hx1 Hx2 H�1 H�2 Ht ) ;where Hx1 = 0BB@ W1(�; t)0c11x11 � � � c1n1x1n10 1CCA ; Hx2 = 0BB@ 0W2(�; t)0c21x21 � � � c2n2x2n2 1CCA ;
H�1 = 0BB@V11x1V21x200 1CCA ; H�2 = 0BB@V12x1V22x200 1CCA ; Ht = 0BB@ (A10 + (1� 2t)A11 � V10)x1(A20 � V20)x200 1CCA :We numerically follow the eigenpath by a prediction-correction scheme using the arclengthas the parameter. Let p = (x1; x2; �1; �2; t) 2 G. We calculate the tangent vector and



WEAKLY ELLIPTIC TWO-PARAMETER EIGENVALUE PROBLEM 7predict the next point on the solution curve using Euler's method. The unit tangentvector _p = ( _x1; _x2; _�1; _�2; _t) satis�es the equationsHx1 _x1 +Hx2 _x2 +H�1 _�1 +H�2 _�2 +Ht _t = 0 (10)and k _x1k2 + k _x2k2 + j _�1j2 + j _�1j2 + j _tj2 = 1:A simple way to calculate the unit tangent vector is to set _t = 1, solve the linear systemH(x;�)0BB@ _x1_x2_�1_�21CCA = �Ht _t; (11)where H(x;�) = (Hx1 Hx2 H�1 H�2 ), and normalize the tangent vector. This methodworks well as long as matrix H(x;�) is nonsingular. We show that this is true for analgebraically simple eigenvalue.Proposition 1 Let p = (x1; x2; �1; �2; t) 2 G. Matrix H(x;�) is nonsingular if and onlyif � = (�1; �2) is an algebraically simple eigenvalue.Proof. Suppose that (z1; z2; �1; �2) 2 C n1 � C n2 � C � C satis�es the equationH(x;�)0BB@ z1z2�1�21CCA = 0:It follows that W1(�; t)z1 + �1V11x1 + �2V12x1 = 0; (12)W2(�; t)z2 + �1V21x2 + �2V22x2 = 0; (13)c11x11z11 + � � �+ c1n1x1n1z1n1 = 0; (14)c21x21z21 + � � �+ c2n2x2n2z2n2 = 0: (15)On the other hand p 2 G and therefore W1(�; t)x1 = 0; (16)W2(�; t)x2 = 0; (17)c11x211 + � � �+ c1n1x21n1 = 1; (18)c21x221 + � � �+ c2n2x22n2 = 1: (19)For the �rst part we show that if � is an algebraically simple eigenvalue, then H(x;�)is nonsingular. It follows fromWi(�)� =Wi(�), where � = (�1; �2), that xTi Wi(�) = 0 for



WEAKLY ELLIPTIC TWO-PARAMETER EIGENVALUE PROBLEM 8i = 1; 2. We multiply (12) and (13) by xT1 and xT2 , respectively, and obtain a homogeneoussystem � xT1 V11x1 xT1 V12x1xT2 V21x2 xT2 V22x2 ���1�2� = 0: (20)We recognize the matrix in equation (20) as matrix B0 in (3) that is nonsingular byLemma 2, therefore �1 = �2 = 0.What remains of the equations (12) and (13) is W1(�; t)z1 = 0 and W2(�; t)z2 = 0.Since dimKerWi(�; t) = 1 for i = 1; 2; there exist �1; �2 2 C such that z1 = �1x1 andz2 = �2x2. It follows from (14) and (18) that0 = �1(c11x211 + � � �+ c1n1x21n1) = �1:In a similar manner (15) and (19) yield �2 = 0.For the second part we assume that � is a multiple eigenvalue. To show that H(x;�)is singular, we consider two possibilities:a) dimKerWi(�; t) = 1 for i = 1; 2. We take a left eigenvector yi of Wi(�; t) fori = 1; 2. By Lemma 3 there exist a nonzero pair (�1; �2) and vectors z1; z2, suchthat the equations (12) and (13) hold. By adding appropriate multiples of x1 andx2 to z1 and z2, respectively, it is easy to see that z1 and z2 can be chosen in sucha way that all the equations (12){(15) are satis�ed. Then (z1; z2; �1; �2) lies in thekernel of H(x;�).b) We have at least two linearly independent eigenvectors for the eigenvalue �. Withoutloss of generality we may assume that dimKerW1(�; t) > 1. Then there exists anonzero vector z1 2 KerW1(�; t) which satis�es the equation (14).The unit tangent vector is uniquely determined if the Jacobian H 0 is of full rank.We show that for randomly chosen real matrices A10, A11, and A20, H 0 is of full rank inevery point p 2 G, such that t 2 [0; 1). We need the following result which follows fromCorollary 4.4 in [14].Lemma 6 Let A � C m and B � C n. If 0 is a regular value of the polynomial mapP : A � B ! C q , then there exists real algebraic subset B0 � Rn with zero measure suchthat 0 is a regular value of P (�; y) : A! C q for each y 2 B \ Rn � B0.Proposition 2 For all diagonal matrices A10 2 Rn1�n1, symmetric matrices A11 2Rn1�n1 with zero diagonal entries, and symmetric matrices A20 2 Rn2�n2 in a dense openset the Jacobian H 0 is of full rank at every point (x1; x2; �1; �2; t) 2 G such that t 2 [0; 1).Proof. We treat nonzero elements of matrices A10, A11, and A20 as variables of H.First we consider homotopy H as a complex transformationeH : C n1 � C n2 � C � C � [0; 1]� C n1 (n1+1)=2 � C n2 (n2+1)=2 ! C n1 � C n2 � C � C ;



WEAKLY ELLIPTIC TWO-PARAMETER EIGENVALUE PROBLEM 9where we assume that matrices A10; A11; A20 are complex. The Jacobian of eH has theform eH 0 = �H(x;�) Ht HA1 HA2 � ;where HA1 = 0@S100 1A ; HA2 = 0@ 0S20 1A ;Si 2 C ni�ni(ni+1)=2, andS1 = t(1� t)0BBBBB@ 1tx11 x12 � � � x1n1 0 0 � � � 00 x11 0 1tx12 � � � x1n1 ...... . . . . . . 00 x11 0 x12 � � � 1tx1n1
1CCCCCA ;

S2 = (1� t)0BBBBB@ x21 x22 � � � x2n2 0 0 � � � 00 x21 0 x22 � � � x2n2 ...... . . . . . . 00 x21 0 x22 � � � x2n2
1CCCCCA :Since vectors x1; x2 are nonzero, matrices S1; S2 are of full rank and therefore eH 0 is of fullrank for t 2 (0; 1). At t = 0 all eigenvalues are algebraically simple, hence eH 0 is of fullrank by Proposition 11. The proof now follows from the generalized Sard's theorem [13]and from Lemma 6.From now on we assume that the Jacobian H 0 is of full rank at every point p 2 G andt 2 [0; 1). If follows from Proposition 2 that this is the case in general.4 BifurcationsIn a bifurcation point at least two solution curves intersect. It is vital for our method tobe able to detect the bifurcation point and to switch onto a bifurcating branch. It is easyto see that bifurcation points are inevitable. Namely, we start following the eigenpaths att = 0 where all eigenvalues are algebraically simple. Since the number of real eigenvaluesat t = 0 in general di�ers from the number of real eigenvalues at t = 1, there existtransition points where real eigenvalues change into the complex ones or vice versa. Eachtransition point is clearly also a bifurcation point.De�nition 1 Let p 2 G, t 2 [0; 1), and let _p = ( _x1; _x2; _�1; _�2; _t) be its tangent vector.We say that pa) is a singular point if _t = 0;b) is a turning point of order k if _t = 0 and exactly k solution curves intersect in p;



WEAKLY ELLIPTIC TWO-PARAMETER EIGENVALUE PROBLEM 10c) is a bifurcation point if p lies in the intersection of at least two solution curves.Singular points present numerical problems as we can not apply the equation (11) forthe tangent vector. In this section we establish the equality between the set of singularpoints, the set of turning points, and the set of bifurcation points in our situation. Firstof all, the following lemma shows that singular points are identical to points with multipleeigenvalues.Lemma 7 Let p = (x1; x2; �1; �2; t) 2 G, t 2 [0; 1), be a point on the solution curve andlet _p = ( _x1; _x2; _�1; _�2; _t) be the corresponding tangent vector. Then _t = 0 if and only if� = (�1; �2) is a multiple eigenvalue of (6).Proof. By Proposition 1, � = (�1; �2) is a multiple eigenvalue if and only if H(x;�) issingular. The result now follows from the equation (10).We have already veri�ed that each transition point is a bifurcation point. It followsfrom Lemma 7 that each bifurcation point is a singular point. What remains to show isthat each singular point is a transition point. This will follow from the result that alleigenvalues of (6) are nonderogatory for t 2 [0; 1).Lemma 8 Let � = (�1; �2) be an eigenvalue of (6) for t 2 [0; 1). If algebraic multiplicityof � is greater than two, then � is a nonderogatory eigenvalue.Proof. Suppose that there exists a derogatory eigenvalue with algebraic multiplicitygreater than two. We show that in such a case dimKerH 0 � 2, which is a contradictionto Proposition 2. Since dimKerH(x;�) � dimKerH 0, it is enough to �nd two linearlyindependent vectors in KerH(x;�). We have to consider the following four situations.a) dimKerWi(�; t) = 2 for i = 1; 2. By the same arguments as in the proof of Propo-sition 1 it follows that there exist vectors z1 2 KerW1(�; t) and z2 2 KerW2(�; t)such that (z1; 0; 0; 0); (0; z2; 0; 0; 0) 2 KerH(x;�).b) Geometric multiplicity of � is greater or equal to 3 and there exists i 2 f1; 2gsuch that dimKerWi(�; t) � 3. Without loss of generality we may assume thatdimKerW1(�; t) = 3. It follows that there exist linearly independent vectors z1; z2 2KerW1(�; t) such that (zi; 0; 0; 0) 2 KerH(x;�) for i = 1; 2.c) Geometric multiplicity of � is 2. Suppose that dimKerW1(�; t) = 2 and let x2 2W2(�; t). Then there exist two linearly independent vectors x1; ex1 2 KerW1(�; t)and there exist a nonzero pair (a1; a2) 2 C 2 and vectors zi 2 C ni such thatWi(�)zi + a1Vi1xi + a2Vi2xi = 0for i = 1; 2 (see [11, Section 6]). We consider H(x;�) in the point (x1; x2; �1; �2; t). Itis easy to see that '1 := (z1; z2; a1; a2) 2 KerH(x;�). On the other hand, there existsa linear combination z of vectors x1; ex1 such that '2 := (z; 0; 0; 0) 2 KerH(x;�).The vectors '1 and '2 are clearly linearly independent.



WEAKLY ELLIPTIC TWO-PARAMETER EIGENVALUE PROBLEM 11d) Geometric multiplicity of � is 1. By Lemma 3, dimKerB0 = 2 and thereforedimKerH(x;�) = 2.It follows from Lemma 8 that all eigenvalues with algebraic multiplicity at least threeare nonderogatory. We handle the remaining case of a double eigenvalue in the followinglemma.Lemma 9 Solution curve of H that starts at t = 0 does not include a point p0 =(x(0)1 ; x(0)2 ; �(0)1 ; �(0)2 ; t(0)) 2 G, t(0) 2 [0; 1), with the algebraic and the geometric multiplicityof the eigenvalue �(0) = (�(0)1 ; �(0)2 ) both equal to 2.Proof. Since at t = 0 all eigenvalues are algebraically simple, t(0) > 0. Withoutloss of generality we may assume that dimKerW1(�(0); t(0)) = 2. There exists a vectorz1 2 KerW1(�(0); t(0)) such thatc11x(0)11 z11 + � � �+ c1n1x(0)1n1z1n1 = 0and c11z211 + � � �+ c1n1z21n1 = 1:It is easy to see that each point on the curve#(�) := (cos� x(0)1 + sin� z1; x(0)2 ; �(0)1 ; �(0)2 ; t(0)); � 2 R;is a solution of H.Let us consider H as an analytic functionH(x1; x2; �1; �2; t) : C n1 � C n2 � C � C � C �! C n1 � C n2 � C � C :The JacobianH 0(p0) is of full rank and by the Implicit Function Theorem there are uniqueanalytic functions x1(u); x2(u); �1(u); �2(u); t(u); (21)de�ned in a neighbourhood A � C of 0 such thatH(x1(u); x2(u); �1(u); �2(u); t(u)) = 0 (22)for each u 2 A and t(0) = t(0), xi(0) = x(0)i , �i(0) = �(0)i for i = 1; 2. Di�erentiating (22)with respect to u yieldsHx1 dx1du +Hx2 dx2du +H�1 d�1du +H�2 d�2du +Ht dtdu = 0: (23)The matrix H(x;�) = [Hx1 Hx2 H�1 H�2 ] is singular at p0 due to the multiple eigen-value �. Since the Jacobian H 0 = �H(x;�) Ht � is of full rank, at u = 0, Ht 6= 0 and(23) yields dtdu(0) = 0. One of the solution curves is # where t � t(0) and consequently t isconstant for all solution curves which pass p. This is a contradiction to the assumptionthat p lies on the solution curve which starts at t = 0.



WEAKLY ELLIPTIC TWO-PARAMETER EIGENVALUE PROBLEM 12Proposition 3 Let p = (x1; x2; �1; �2; t) be a singular point of H. Then p is a bifurcationpoint.Proof. If follows from Lemma 7, Lemma 8, and Lemma 9 that � = (�1; �2) is anonderogatory eigenvalue. Therefore, � is a geometrically simple eigenvalue and k solutioncurves intersect at p, where k is the algebraic multiplicity of �.The order of a turning point p = (x1; x2; �1; �2; t) equals the algebraic multiplicity of� = (�1; �2). Therefore, it is possible to determine the order of the turning point usingthe algorithm for computing a basis for the root subspace at a nonderogatory eigenvalue,which was treated in [17]. The following proposition by Li and Wang describes thebehaviour of solution curves in a turning point.Proposition 4 [15, Proposition 2.4] Let p be a turning point of order k and let 
j � G,j = 1; : : : ; k, be the k solution curves passing through p. Then the tangent vectors of 
jat p di�er only by complex scalar factors of the form el�i=k for certain 1 � jlj < k.In practice, turning points of orders higher than 2 do occur very rarely. From now on wetherefore assume that all turning points are quadratic. If necessary, a slight modi�cationof our algorithm could treat the general case.The situation in a quadratic turning point is depicted in Figure 1. The left solutioncurve 
 is real and the right solution curve 
0 is complex. They join in a turning pointpT which is a transition point from real to complex space. It follows from Proposition 4that if � is the tangent vector for 
 at pT then i� is the tangent vector for 
0 at the samepoint. This allows us to switch to another branch and continue to follow the solutioncurve.

Figure 1: Change from real to complex space in a turning point.5 The methodFirst of all, we �nd a diagonal matrix A10 and a symmetric matrix A20 such that att = 0 all eigenvalues are algebraically simple and that the initial problem (4) is easilysolved. We can follow the proof of Lemma 4 to construct matrices A10 and A20 and to



WEAKLY ELLIPTIC TWO-PARAMETER EIGENVALUE PROBLEM 13calculate the eigenpairs of the initial problem (4). We take a random matrix for A11 thatis required only in order that the Jacobian H 0 is of full rank. Based on the discussionfrom the previous section we assume that all turning points are quadratic.The method is a generalization of the method by Li, Zeng, and Cong in [12].5.1 Following the solution curveLet p0 := (x(0)1 ; x(0)2 ; �(0)1 ; �(0)2 ; t(0)) 2 G. We set _t = 1, solve the linear system (11),normalize the solution, and obtain the unit tangent vector _p0 := ( _x1; _x2; _�1; _�2; _t): Wehave to choose the correct sign of _t in _p0. In the initial point at t = 0 we always choose_t > 0. For t > 0 we choose a sign such that the real part of the inner product of thetangent vector _p0 and the tangent vector from the previous step is positive. This strategyguarantees that we follow the curve in the same direction.We consider two situations.1. _t > 0. In this case we use the following prediction-correction scheme. First, wecalculate Euler's prediction pointpP := (x(P )1 ; x(P )2 ; �(P )1 ; �(P )2 ; t(P )) = p0 + h _p0;where h is a stepsize (see Subsection 5.3 for details). Next, we calculate new pointp1 := (x(1)1 ; x(1)2 ; �(1)1 ; �(1)2 ; t(1)) on the solution set G using pP as an initial approxi-mation. We search for p1 in the plane which contains pP and is perpendicular tothe tangent vector _p0. A di�erent approach is used whether we follow a real or acomplex curve.If � 2 R2 , we add the equation _p�0(p1 � pP ) = 0 (24)to the equation H(p1) = 0 and solve the obtained system with Newton's methodusing pP as an initial approximation.If � 62 R2 , then we add the real part of the equation (24) to the equation H(p1) = 0.We consider the obtained system as a real system of 2n1 + 2n2 + 5 equations in2n1 + 2n2 + 5 unknowns and use Newton's method as in the previous real case.2. _t < 0. In this case we passed a turning point. We use a special algorithm to detect aturning point pT (see Subsection 5.2 for details). We continue the calculation frompT using i _pT as the tangent vector.We end the algorithm when t is close enough to 1.5.2 Calculation of the turning pointSuppose that after one step of the prediction-correction scheme we obtain a point p1 withthe unit tangent vector _p1 := ( _x(1)1 ; _x(1)2 ; _�(1)1 ; _�(1)2 ; _t(1)) and _t(1) < 0. We passed a turning



WEAKLY ELLIPTIC TWO-PARAMETER EIGENVALUE PROBLEM 14point pT = (x(T )1 ; x(T )2 ; �(T )1 ; �(T )2 ; t(T )) where the tangent vector _pT has the component_t(T ) = 0.If we are following a real curve then for the part of the curve between points p0 andp1 we can use �1 or �2 as a parameter. If we choose �1 then the following algorithmcalculates the turning point pT .1. Calculate �(2)1 = _t(0)�(1)1 � _t(1)�(0)1_t(1) � _t(0) (25)as an approximation for the value of �1 at the turning point pT . Compute thestepsize h = �(2)1 � �(0)1_�(0)1that returns Euler's prediction point pP = p0 + h _p0 such that �(P )1 = �(2)1 .Solve the system H(x(2)1 ; x(2)2 ; �(2)1 ; �(2)2 ; t(2)) = 0, where �(2)1 is �xed, with Newton'smethod using the initial approximation (x(P )1 ; x(P )2 ; �(P )2 ; t(P )).2. If _t(p2) > 0, then replace p0 with p2, otherwise replace p1 with p2.3. If j _t(p2)j is small enough, then set pT = p2, otherwise repeat step 1.A similar strategy is used for a complex curve. In this case we use the imaginary partof �1 as a parameter. The last two steps of the algorithm are the same as in the real case.The modi�ed �rst step is:1. Calculate Im(�(2)1 ) from (25) as an approximation for Im(�(T )1 ) at the turning point.Compute the stepsize h = Im(�(2)1 � �(0)1 )Im( _�(0)1 )that returns Euler's prediction point pP such that that Im(�(P )1 ) = Im(�(2)1 ).Consider the system H(x(2)1 ; x(2)2 ; �(2)1 ; �(2)2 ; t(2)) = 0, where Im(�(2)1 ) is �xed, as a realsystem of 2n1+2n2+4 equations in 2n1+2n2+4 unknowns. Solve it with Newton'smethod using the initial approximation (x(P )1 ; x(P )2 ;Re(�(P )1 ); �(P )2 ; t(P )).5.3 Adjusting the step sizeIn the beginning we choose the initial stepsize h in accordance with the size of the tangentvector _t. In the algorithm we decrease or increase the stepsize corresponding to thebehaviour of the solution curve.� If any of the following situations appear, then we decrease the stepsize to h=2 andreturn to the last well-calculated point:a) Newton's method fails to converge from a given prediction point to a nearbypoint on the solution curve;



WEAKLY ELLIPTIC TWO-PARAMETER EIGENVALUE PROBLEM 15b) search for a bifurcation point fails to converge;c) we calculate t1 < t0;d) the angle between the two consecutive tangent vectors (respectively, eigenvec-tors) is larger than the maximal allowed angle.� If the curve is 
at, then we increase the stepsize to 2h. The criteria for this is asmall angle between the two consecutive tangent vectors and a small angle betweenthe two consecutive eigenvectors.� If the prediction tP = t(0) + h _t is greater than 1, then we decrease h so that tP = 1.5.4 Avoiding the curve switchingIn contrast to a right de�nite two-parameter problem, where the minimal angle betweeneigenvectors exists [18], eigenvectors can be arbitrary close in our case. Because of thisit may happen that in a numerical process we switch from one solution curve to another.Curve switching may appear for many reasons, for instance:� the stepsize is too large;� the criteria for convergence of Newton's method is not strict enough;� the maximal allowed angle between the two consecutive eigenvectors is too large.To avoid curve switching we use more strict criteria for stepsize control and conver-gence of Newton's method and we restrict the allowed angle between the two consecutiveeigenvectors.From our numerical experiments it follows that the phenomenon of curve switching isnot so frequent that it would be advisable to follow all curves with high precision. Insteadof this we follow all curves with moderate precision. In the end we compare all eigenvaluesand if we �nd two close eigenvalues we compare their eigenvectors. If the eigenvectors arealso close to each other then it is very likely that a curve switching did appear when wefollowed one of these two curves. We repeat the computation for both curves using higherprecision and stricter criteria.If the problem (1) has a multiple eigenvalue such that the geometric multiplicity issmaller than the algebraic one, then at least two curves collide at t = 1 independently ofthe precision used. If such an eigenvalue is nonderogatory, then it is possible to calculatea basis for the root subspace using the algorithm in [17]. Ko�sir proved in [10, Theorem19] that if � is a real geometrically simple eigenvalue of a weakly elliptic system (1), then� is a nonderogatory eigenvalue.5.5 Time complexityIf we treat the simultaneous problem (2) by standard numerical methods then the timecomplexity is O(n31n32). Using this approach we are dealing with matrices of order n1n2.On the other hand, matrices in the continuation method are of moderate size O(n1 + n2)



WEAKLY ELLIPTIC TWO-PARAMETER EIGENVALUE PROBLEM 16and one step of Newton's method has time complexity O((n1+n2)3). We have to multiplythis quantity �rst with n1n2 as we are following n1n2 solution curves and second with thenumber of steps that Newton's method is used per curve. If we take n = n1 = n2 anddenote the average number of times that Newton's method is evaluated per curve by �(n),then the time complexity of the continuation method is O(n5�(n)):Numerical experiments in the next section indicate that it is possible that �(n) is oforder o(n) and that the continuation method requires less operations for large n than thesimultaneous problem (2). In order to con�rm or reject this hypothesis further propertiesof the algorithm have to be studied and experiments with larger matrices have to beperformed.The continuation method allows an elegant parallel implementation. Each processorcan follow its own solution curve, therefore n2 processors can decrease the time complexityto O(n3�(n)). Let us also remark that no sophisticated parallel computers are needed forthe parallel computation of the solution curves. We simply divide n2 curves between theavailable serial computers and join their results when they �nish. For comparison, if weuse n2 processors then the time complexity of the parallel algorithm for the simultaneousproblem (2) is O(n4) [7, 20].Another advantage of the continuation method is its low consumption of memory.The simultaneous problem requires O(n4) data for the matrices, while the continuationmethod requires only O(n2). As a result, the size of the main memory does not limit thecontinuation method as much as it does the simultaneous problem.6 Numerical examplesThe method was implemented in Matlab and tested numerically on randomly generatedweakly elliptic two-parameter problems. The results show that the complexity of the con-tinuation method is comparable with the complexity of solving the simultaneous problem(2) with standard methods.We generate a random weakly elliptic problem with matrices of size n using the fol-lowing sequence:rand('state',0);V11=eye(n); p=rand(n,1); V12=diag(p); p=rand(n); V10=p+p';p=rand(n); V21=p+p'; p=rand(n); V22=p+p'; p=rand(n); V20=p+p';c=rand(n,2)/2+0.5;We tested the method for di�erent values of n and compared the number of operationswith the solution of the simultaneous problem (2). The continuation method successfullycalculated all 2025 eigenpairs for the largest matrices on test of order n = 45.In the algorithm we use 10�7 as the minimal allowed stepsize h. We end the algorithmwhen jt� 1j � 10�6. In each step we iterate the Newton's method until the residue�kW1(�; t)x1k2 + kW2(�; t)x2k2� 12is less than 10�7 for t < 1�10�5 and less than 10�10 for t � 1�10�5. To continue, the realpart of the inner product between the last two consecutive eigenvectors has to be greater



WEAKLY ELLIPTIC TWO-PARAMETER EIGENVALUE PROBLEM 17than 0:85, otherwise we decrease the stepsize h. The same applies to the eigenvector partof the last two consecutive tangent vectors. On the other hand, if both inner productshave the real part larger than 0:95, we increase the stepsize.In the end we compare the eigenpairs and recalculate all the curves wherek�� �0k � 10�3(1 + k�k)and the minimum singular value of the matrix( x1 
 x2 x01 
 x02 )is smaller than 10�3.For the matrix A10 we take A10 = diag(1; : : : ; n) and for A20 we take A20 = 0. It iseasy to see that if we take A2 = diag(m;m + 1; : : : ; n +m), where m = nkV21k, then allinitial eigenpairs are algebraically simple and real.Table 1 shows the statistics for di�erent matrix orders. The total number of opera-tions for the continuation method in the second column also includes operations for therecalculated curves. It is clearly seen from the fourth column that the ratio is decreas-ing. The �fth column contains the average number of evaluations of Newton's methodper curve and the sixth column contains the average number of bifurcations per curve.Practically all solution curves contain bifurcation points and there are no easy paths asin the algorithm by Li, Zeng, and Cong (see [12]).Matrix order Number of operations ratio Aver. no. of Aver. no. ofn continuation QR (cont. : QR) steps bifurcations5 50:7 � 106 82:4 � 104 61:5 210 1:410 13:5 � 108 49:3 � 107 27:5 317 1:215 16:0 � 109 51:9 � 107 30:7 556 2:720 57:0 � 109 29:5 � 108 19:3 594 2:225 19:3 � 1010 11:3 � 109 17:0 720 3:030 46:1 � 1010 32:8 � 109 14:1 778 3:335 10:3 � 1011 81:2 � 109 12:7 868 3:240 21:2 � 1011 18:0 � 1010 11:8 975 3:245 36:1 � 1011 36:6 � 1010 9:9 956 2:8Table 1: Statistics for n = 5; 10; : : : ; 45. Flops count for the continuation method, forthe simultaneous problem (2), their ratio, the average number of evaluations of Newton'smethod per curve and the average number of bifurcations per curve.Table 2 shows how repeated computation of some curves contribute the total numberof operations. The percentage of operations for recalculated curves is greater from thepercentage of recalculated curves itself. This is a consequence of higher precision andmore strict criteria used for repeated computation.Since higher precision and more strict criteria is used, repeated computation requiremore operations per curve than the initial computation. The number of recalculatedcurves can be decreased by more strict criteria but this increases the number of operations
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opsn recalculated curves recalculated curves for recalculated curves15 12 5.3 14.420 10 2.5 4.125 2 0.3 0.530 31 3.4 5.035 26 2.1 4.440 40 2.5 2.645 52 2.6 4.7Table 2: Statistics for recalculated curves for n = 15; 20; : : : ; 45.per curve in the initial stage. On the other hand, more relaxed criteria increases thenumber of recalculated curves and decreases the number of operation in the initial stage.In order to minimize the total number of operations one should carefully calibrate thecriteria.References[1] Allgower, E. L., & Georg, K. 1990 Numerical Continuation Methods, Berlin:Springer.[2] Atkinson, F. V. 1968 Multiparameter Spectral Theory, Bull. Amer. Math. Soc.74, 1{27.[3] Atkinson, F. V. 1972 Multiparameter Eigenvalue Problems, New York: AcademicPress.[4] Blum, E. K. & Chang, A. F. 1978 A Numerical Method for the Solution of theDouble Eigenvalue Problem, J. Inst. Math. Appl. 22, 29{41.[5] Bohte, Z. 1982 Numerical Solution of Some Two-Parameter Eigenvalue Problems,Anton Kuhelj Memorial Volume, Slov. Acad. Sci. Art., Ljubljana, 17{28.[6] Browne, P. J. & Sleeman, B. D. 1982 A Numerical Technique for Multiparam-eter Eigenvalue Problems, IMA J. of Num. Anal. 2, 451{457.[7] Dongara, J. J, & Sidani, M. 1992 A Parallel Algorithm for the NonsymmetricEigenvalue Problem in Numerical Analysis 1991 (Dundee 1991), volume 260 of Pit-man Research Notes in Mathematics, ed. Gri�ts D. F. & Watson, G. A., Harlow:Longman Scienti�c and Technical, 85{102.[8] Faierman, M. 1991 Two-parameter Eigenvalue Problems in Ordinary Di�erentialEquations, volume 205 of Pitman Research Notes in Mathematics, Harlow: LongmanScienti�c and Technical.
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