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Abstract

In numerous science and engineering applications a partial differential equation has to be solved on some
fairly regular domain that allows the use of the method of separation of variables. In several orthogonal
coordinate systems separation of variables applied to the Helmholtz, Laplace, or Schrödinger equation
leads to a multiparameter eigenvalue problem (MEP); important cases include Mathieu’s system, Lamé’s
system, and a system of spheroidal wave functions. Although multiparameter approaches are exploited
occasionally to solve such equations numerically, MEPs remain less well known, and the variety of avail-
able numerical methods is not wide. The classical approach of discretizing the equations using standard
finite differences leads to algebraic MEPs with large matrices, which are difficult to solve efficiently.

The aim of this paper is to change this perspective. We show that by combining spectral collocation
methods and new efficient numerical methods for algebraic MEPs it is possible to solve such problems
both very efficiently and accurately. We improve on several previous results available in the literature,
and also present a MATLAB toolbox for solving a wide range of problems.

Keywords: Helmholtz equation, Schrödinger equation, separation of variables, Mathieu’s system,
Lamé’s system, spectral methods, Chebyshev collocation, Laguerre collocation, multiparameter
eigenvalue problem, two-parameter eigenvalue problem, three-parameter eigenvalue problem, Sylvester
equation, Bartels–Stewart method, subspace methods.

1. Introduction

When we apply separation of variables to the Helmholtz equation of an elliptic membrane, we get
Mathieu’s system. This two-parameter eigenvalue problem (2EP) is often used as a motivation for the
introduction of multiparameter eigenvalue problems (MEPs), see, e.g., [41]. Yet, it was not until [16]
that this approach was actually used to compute the eigenfrequencies of an elliptic membrane. In [16] it
is shown that the two-parameter approach has certain advantages with respect to the accuracy as well as
to the required computational time and can be used in practice to numerically evaluate a large number of
eigenfrequencies.

Compared with [16], this paper presents advances in several directions. First, we consider several
other very important problems. In addition to Mathieu’s system, discretization with spectral collocation
in conjunction with numerical methods for the obtained algebraic MEP can be applied to Lamé’s system
as well as other MEPs that arise by separation of variables. To the best of our knowledge, this technique
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has never been applied to these problems until now. In particular, in Example 5 we apply this method to
a three-parameter eigenvalue problem (3EP) and compute eigenmodes of a challenging ellipsoidal wave
equation.

Second, while a Jacobi–Davidson style solver [19, 20] and standard implicitly restarted Arnoldi
[37] were used in [16] to solve the 2EPs, we speed up the computations in this paper even more by
exploiting a new fast Sylvester–Arnoldi algorithm for 2EPs from [29]; this algorithm is briefly described
in Section 6. Third, we compare with, and improve on several available results in the literature in the
numerical examples in Section 7. Finally, we present a MATLAB toolbox for solving MEPs coming
from various equations.

The rest of this paper is organized as follows. Section 2 provides several examples of the technique
of separation of variables leading to MEPs. A generic form of such MEP is treated in Section 3. In
Section 4 we give an overview of the spectral collocation method, which is used to discretize a MEP into
an algebraic MEP. This eigenvalue problem is presented in Section 5. In Section 6 we give an overview
of available numerical methods for algebraic MEPs with an emphasis on the recent Sylvester–Arnoldi
method from [29]. An important part of the paper are the numerical examples in Section 7. In several
examples we demonstrate that spectral collocation combined with the Sylvester–Arnoldi method can
compute several hundreds of the smallest eigenmodes very efficiently and accurately; we hereby improve
various previous results. In the appendix we describe the main functions in a freely available MATLAB
toolbox MultiParEig that contains the implementations of all algorithms and numerical examples from
this paper.

2. Motivating problems

Whenever the separation of variables is used to solve a boundary value problem related to a PDE, a
system of ODEs is obtained in the first instance. Then, the boundary conditions of the problem at hand
dictate boundary conditions for the unknowns of the systems of ODEs involved. Consequently, a MEP
is now well defined.

In this section we give some examples of boundary value problems where separation of variables
leads to MEPs. We do not attempt to describe all possible situations; for a good overview of all possible
coordinate systems and related boundary value problems, see, e.g., [25, 30, 32, 46]. Additional examples
together with numerical solutions can be found in Section 7.

2.1. Mathieu’s system
This is probably the most well-known example of a 2EP. Separation of variables applied to the two-

dimensional Helmholtz equation ∇2u+ω2 u = 0 in elliptic coordinates

x = h cosh(ξ ) cos(η),

y = h sinh(ξ ) sin(η),

where 0 ≤ ξ < ∞ and 0 ≤ η < 2π , leads to u = G(η)F(ξ ), where G and F satisfy the coupled system
of Mathieu’s angular and radial equations (for details, see, e.g., [41])

G′′(η)+(λ −2µ cos(2η))G(η) = 0,
(1)

F ′′(ξ )− (λ −2µ cosh(2ξ ))F(ξ ) = 0.

The parameter µ is related to the eigenfrequency ω by µ = 1
4 h2 ω2, where h =

√
α2−β 2 with α =

hcosh(ξ0) (the major axis) and β = hsinh(ξ0) (the minor axis of the membrane), and λ is a separation
constant. The problem along with the appropriate boundary conditions is treated as a 2EP in [16] and
solved numerically very accurately and efficiently with the Chebyshev collocation. As discussed in the
introduction, we will extend the results in [16] considerably in several ways.
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2.2. Lamé’s system

When separation of variables is applied to the three-dimensional Helmholtz equation ∇2 u+ω2 u = 0
in sphero-conal coordinates

x = r cos(ϕ)(1− k′2 cos2(θ))1/2,

y = r cos(θ)(1− k2 cos2(ϕ))1/2,

z = r sin(θ) sin(φ),

where r ≥ 0, 0 ≤ θ ≤ 2π , 0 ≤ φ ≤ π , 0 ≤ k, k′ ≤ 1, and k2 + k′2 = 1, it gives u = R(r)L(ϕ)N(θ),
where R, L, and N satisfy the system of differential equations

r2 R′′(r)+2r R′(r)+ [ω2r2−ρ (ρ +1)]R(r) = 0,(2)

(1− k2 cos2(ϕ))L′′(ϕ)+ k2 sin(ϕ) cos(ϕ)L′(ϕ)+ [k2
ρ (ρ +1)sin2(ϕ)+δ ]L(ϕ) = 0,(3)

(1− k′2 cos2(θ))N′′(θ)+ k′2 sin(θ) cos(θ)N′(θ)+ [k′2 ρ (ρ +1)sin2(θ)−δ ]N(θ) = 0,(4)

where ρ (ρ +1) and δ are separation constants. System (3)–(4) is a trigonometric form of Lamé’s pair of
differential equations, which forms a 2EP together with boundary conditions. All three equations along
with the boundary conditions form a 3EP; still, the main problem is to solve (3)–(4), as for each solution
of this 2EP we can insert ρ (ρ +1) in (2) and solve it. For details, see, e.g., [9], [24], or [46, Sect. 15].
When we start with the Laplace equation ∇2u = 0, we get the same system as the above without the ω2

term in (2).

2.3. Bessel wave equations

The solution of the three-dimensional Helmholtz equation ∇2 u+ω2 u = 0 in parabolic rotational
coordinates

x = ξ η cos(φ),

y = ξ η sin(φ),

z = 1
2 (η

2−ξ 2),

where 0≤ ξ ,η < ∞ and 0 < φ < 2π , is u = Φ(φ)M(ξ )N(η), where Φ, M, and N satisfy the system of
differential equations

Φ
′′(φ)+ k2

3 Φ(φ) = 0,(5)

ξ
2 M′′(ξ )+ξ M′(ξ )+(k2 ξ

2 +ω
2

ξ
4− k2

3)M(ξ ) = 0,(6)

η
2 N′′(η)+η N′(η)− (k2 η

2−ω
2

η
4 + k2

3)N(η) = 0,(7)

where k2 and k3 are separation parameters. A solution of (5) is Φ(φ) = eipφ , where p =±k3. Whenever
a periodicity condition, i.e., Φ(0) = Φ(2π), Φ′ (0) = Φ′ (2π), is imposed to the solution of (5), the
parameter p becomes an integer. When we fix k3 = p, the remaining two equations (6)–(7) (known as
the Bessel wave equations), subject to the appropriate boundary conditions, give a 2EP. For details see,
e.g., [28] or [46, Sect. 14].
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2.4. Lamé (ellipsoidal) wave equations
The solution of the three-dimensional Helmholtz equation ∇2u+ω2u = 0 in ellipsoidal coordinates

[32, Sect. 29.18(ii)] is u = u1(α)u2(β )u3(γ), where u1,u2, and u3 satisfy the Lamé or ellipsoidal wave
equations, which can be expressed in Jacobian form

u′′1(α)+ [h−ν (ν +1)k2 sn2(α,k)+ k2
ω

2 sn4(α,k)] u1(α) = 0,

u′′2(β )+ [h−ν (ν +1)k2 sn2(β ,k)+ k2
ω

2 sn4(β ,k)] u2(β ) = 0,

u′′3(γ)+ [h−ν (ν +1)k2 sn2(γ,k)+ k2
ω

2 sn4(γ,k)] u3(γ) = 0.

This system along with an appropriate set of boundary conditions gives a 3EP where each of the equations
contains all three parameters. In [27] a numerical method is presented that can compute eigenvalues with
a prescribed multi-index (the number of sign changes for each ui). It is reported (see, e.g., [4, 45]) that
the problem presents unusual computational difficulties and only recently some solutions were computed
numerically in [45]. We show in Example 5 that it can be solved numerically quite efficiently by our
multiparameter approach with spectral collocation.

2.5. System of spheroidal wave functions
The solution of the three-dimensional Helmholtz equation ∇2w + ω2w = 0 in prolate spheroidal

coordinates [32, Sect. 30.13(iv)], [46, Sect. 12]) is w = w1(ξ )w2(η)w3(φ), where w1,w2, and w3 satisfy
the system of differential equations

(1−ξ
2)w′′1(ξ )−2ξ w′1(ξ )+

(
λ + γ

2(1−ξ
2)− µ2

1−ξ 2

)
w1(ξ ) = 0,(8)

(1−η
2)w′′2(η)−2ξ w′2(η)+

(
λ + γ

2(1−η
2)− µ2

1−η2

)
w2(η) = 0,(9)

w′′3(φ)+µ
2 w3(φ) = 0,(10)

where γ2 = k2 c2 ≥ 0. This is a 3EP where two of the equations contain all three parameters and one
equation contains just one. As before, if a periodicity condition w3(0) = w3(2π), w′3(0) = w′3(2π) is
imposed to the solution of (10), then parameter µ becomes an integer.

The system (8)–(9) supplied with boundary conditions, for a fixed µ of order 1000 to 10000, is solved
numerically as a 2EP in [3]. A similar system of spheroidal wave functions appears when separation of
variables is applied to the three-dimensional Helmholtz equation in oblate spheroidal coordinates [32,
Sect. 30.14(iv)], [46, Sect. 13].

3. Multiparameter boundary differential eigenvalue systems

An overview of the theory related to MEPs that are obtained by separation of variables is presented
in [6]; see also [12, 36]. In the generic case separation of variables applied to a separable boundary value
problem leads to a system of k differential equations of the form

p1(x1)y′′1(x1)+q1(x1)y′1(x1)+ r1(x1)y1(x1)=λ1 s11 y1(x1)+ · · ·+λk s1k(x1)y1(x1)
...(11)

pk(xk)y′′k (xk)+qk(xk)y′k(xk)+ rk(xk)yk(xk)=λ1 sk1 yk(xk)+ · · ·+λk skk(xk)yk(xk)

together with the appropriate boundary conditions, where k = 2 or k = 3. We are interested in a k-tuple
(λ1, . . . ,λk) and nontrivial functions y1, . . . ,yk such that equations (11) and the boundary conditions are
satisfied. In such case we say that (λ1, . . . ,λk) is an eigenvalue of (11). We remark that the numerical
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methods from this paper are suitable for all problems of the form (11), regardless if they come from
separation of variables or not.

If xi ∈ [ai,bi], then generic boundary conditions are

αi yi(ai)+βi y′i(ai) = 0,

γi yi(bi)+δi y′i(bi) = 0,

where (αi,βi) 6= (0,0) and (γi,δi) 6= (0,0) for i= 1, . . . ,k. In some cases boundary conditions can depend
on eigenvalue parameters as well.

If the determinant δ (x1, . . . ,xk) := det(si j(xi)) is definite for all xi ∈ [ai,bi], i = 1, . . . ,n, then it is
well-known that the problem (11) is solvable, see, e.g., [6, 41]. In addition, the eigenvalues can be
ordered by the multi-indices (n1, . . . ,nk), which means that the corresponding eigenfunction yi(xi) has
exactly ni zeros on (ai,bi) for i = 1, . . . ,k.

There exist some numerical methods for MEPs of the form (11). For problems that have additional
definiteness properties, a continuation method is proposed in [2]; see also [23]. Once the problem (11)
is discretized into an algebraic MEP, all methods from Section 6 can be applied.

Most of the numerical methods are limited to 2EPs, i.e., k = 2. A generalization of the shooting
method is presented in [7] and a two-dimensional bisection is presented in [22]. A method using the
Prüfer transformation that can compute an eigenvalue with a prescribed multi-index is presented in [1]
for 2EPs and generalized to 3EPs, i.e., k = 3, in [26]. For some numerical methods for 3EPs see, e.g.,
[27] and the references therein.

4. Spectral methods

In this section we briefly introduce the spectral collocation method, which requires smaller matrices
and returns more accurate results when compared with finite differences and finite elements methods.
For more details, see, e.g., [10, 13, 15]. The spectral collocation method is based on approximating the
solution y(x) with a finite linear combination of a chosen set of orthogonal function as

(12) y(x)≈ yN−1(x) =
N

∑
k=1

αk ϕk(x).

The coefficients α1, . . . ,αN are chosen so that y(xi) = yN−1(xi) for i = 1, . . . ,N, where x1, . . . ,xN are
distinct collocation nodes. In this sense, yN−1(x) is an interpolating function for y(x) on the set of
collocation nodes. The large positive integer N is the order of approximation and is also called the cutoff
parameter. To accommodate with physics, N can be viewed as the number of degrees of freedom (of
modes) of a system.

Depending on the interval and other properties of the problem, various combinations of basis func-
tions and collocation nodes exist. If the interval is finite, then a common choice is the set of Chebyshev
polynomials as basis functions and collocation points are the Chebyshev nodes of the second kind. The
method is called Chebyshev collocation (ChC) and the nodes on the interval [−1,1] are defined by

ξ j = cos
(( j−1)π

N−1

)
for j = 1, . . . ,N (see, e.g., [42, Eq. (13)]).

As we have to discretize each of the equations of (11) independently, it is sufficient to consider one
equation. Suppose that we have a differential equation

(13) p(x)y′′(x)+q(x)y′(x)+ r(x)y(x) = λ s(x)y(x)+µ t(x)y(x)
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on the interval [a,b]. The ChC discretization of the above equation is

(14)
( 4
(b−a)2 PD2

N + 2
b−a QDN +R

)
f = λ S f +µ T f ,

where DN and D2
N are first and second order differentiation matrices in the Chebyshev nodes of the

second kind and f = [y(x1), . . . ,y(xN)]
T is the vector of values in the collocation nodes

x j =
b−a

2 ξ j +
a+b

2

for j = 1, . . . ,N, which are translated from [−1,1] to [a,b]. The matrices P, Q, R, S, and T are diagonal
with diagonal elements p(x j), q(x j), r(x j), s(x j), and t(x j), respectively

We use the seminal paper [43] to obtain the entries of the differentiation matrices DN and D2
N ; see also

[11] for Maple code and [40] for MATLAB code. The matrices DN and D2
N are dense, non-symmetric,

and have much higher condition numbers as the corresponding symmetric tridiagonal finite difference
matrices of the same size; see, e.g., [15, Fig. 3.13]. However, since discretization with the ChC requires
much smaller matrices than with finite differences (see, e.g., [16, Ex. 5]), N is usually small enough so
that the ill-conditioning is not an issue.

To impose the boundary conditions, we apply the simple and general strategy from [21]. Another
option is used if boundary conditions depend on eigenvalue parameters. In such case we replace the first
and the last equation of (14) with the equations from the boundary conditions. For instance, suppose that
the boundary condition for (13) in point a is

(α1 +α2 λ +α3 µ)y(a)+(β1 +β2 λ +β3 µ)y′(a) = 0.

We write the above as

(α +α2 λ +α3 µ) [1 0 · · · 0] f +(β1 +β2 λ +β3 µ) b−a
2 DN(1, :) f = 0,

where DN(1, :) is the first row of DN , and replace the first row of (14) with the above equation. We
proceed similarly in point b.

In many cases the boundary conditions are behavioral, which means that they are satisfied implicitly
by choosing basis functions that have the required property or behavior. For instance, suppose that the
differential equation (13) has singularity at the endpoint a such that p(a) = 0 and the boundary condition
is that the solution should be bounded at a. As the Chebyshev polynomials (translated from [−1,1]
to [a,b]) are analytic at the endpoints, their sum satisfies the boundedness condition at x = a and no
additional explicit conditions are needed. Since collocation points in the ChC include the endpoints, the
first equation of (14), which corresponds to the collocation point x = a, imposes the boundary condition
at x = a obtained from (13) by taking the limit x→ a. For more details, see [10, Section 6.3].

In case of the half line [0,∞) we use the Laguerre collocation (LC) (see, e.g., [15]). The basis
functions are products of Laguerre polynomials and the weight function e−

1
2 bx, where b > 0 is the scaling

parameter. The collocation nodes are x1 = 0 < x2/b < · · · < xN/b, where x2, . . . ,xN are the roots of the
Laguerre polynomial LN−1 of degree N− 1. When we use the LC, the boundary condition at infinity,
which has to be limx→∞ y(x) = 0, is automatically satisfied. The LC differentiation is exact for functions
of the form y(x) = e−

1
2 bx p(x), where p(x) is a polynomial of degree ≤ N− 1. The scaling parameter b

has to be carefully chosen according to how fast the solution decays to zero as x→ ∞.

5. Algebraic multiparameter eigenvalue problems

When we discretize the MEP (11) we obtain an algebraic MEP, which has the form

(15)
A10 x1 = λ1 A11 x1 + · · ·+λk A1k x1...
Ak0 xk = λ1 Ak1 xk + · · ·+λk Akk xk,
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where Ai j is an ni× ni complex matrix for i = 1, . . . ,k and j = 0, . . . ,k. A k-tuple (λ1, . . . ,λk) is an
eigenvalue if it satisfies (15) for nonzero vectors x1 ∈ Cn1 , . . . ,xk ∈ Cnk . The corresponding eigenvector
is the tensor product x1⊗·· ·⊗ xk. Introducing the so-called k× k operator determinants

∆0 =

∣∣∣∣∣∣∣
A11 · · · A1k

...
...

Ak1 · · · Akk

∣∣∣∣∣∣∣
⊗

and ∆i =

∣∣∣∣∣∣∣
A11 · · · A1,i−1 A10 A1,i+1 · · · A1k

...
...

...
...

Ak1 · · · Ak,i−1 Ak0 Ak,i+1 · · · Akk

∣∣∣∣∣∣∣
⊗

for i = 1, . . . ,k, where the Kronecker product ⊗ is used instead of multiplication, we obtain matrices
∆0, . . . ,∆k of size n1 · · ·nk×n1 · · ·nk. If ∆0 is nonsingular, then the matrices ∆

−1
0 ∆1, . . . ,∆

−1
0 ∆k commute

and (15) is equivalent (for details, see, e.g., [5]) to a system of generalized eigenvalue problems

(16)
∆1 z = λ1 ∆0 z,

...
∆k z = λk ∆0 z

for decomposable tensors z = x1⊗·· ·⊗ xk. This relation enables one to use standard numerical methods
for the computation of eigenvalues if the ∆-matrices are not too large. However, when we use spectral
methods to discretize (11), then usually even for k = 2 the ∆-matrices are so large that it is not efficient
or even not feasible to compute all the eigenvalues. The available numerical methods are presented in
the next section.

Let us mention that if we discretize a self-adjoint MEP (11) obtained via the separation of variables
using the spectral collocation method from Section 4, then the algebraic MEP is solvable, although it is
not self-adjoint (since matrices DN and D2

N are not symmetric). Namely, the matrices Ai j for i, j = 1, . . . ,k
are all diagonal and if δ (x1, . . . ,xk) := det(si j(xi)) is definite for all xi ∈ [ai,bi], i = 1, . . . ,n, then the
corresponding operator determinant ∆0 is nonsingular.

Example 1. For future reference, we give (15) and the corresponding operator determinants for the case
k = 2. An algebraic 2EP has the form

(17)
A1 x1 = λ B1 x1 +µ C1 x1

A2 x2 = λ B2 x2 +µ C2 x2.

The eigenvalue is a pair (λ ,µ) which satisfies (17) for nonzero vectors x1 and x2. The corresponding
2×2 operator determinants of size n1n2×n1n2 are

(18)
∆0 = B1⊗C2−C1⊗B2,

∆1 = A1⊗C2−C1⊗A2,

∆2 = B1⊗A2−A1⊗B2.

If ∆0 is nonsingular, then ∆
−1
0 ∆1 and ∆

−1
0 ∆2 commute and (17) is equivalent to a coupled pair of gener-

alized eigenvalue problems

(19)
∆1 z = λ ∆0 z,

∆2 z = µ ∆0 z

for decomposable tensors z = x1⊗ x2. This will be used in all our numerical examples.
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6. Numerical methods

If the size n1 · · ·nk of the ∆-matrices in (16) is small enough, say n1 · · ·nk ≤ 1000 on a typical lap-
top, we can efficiently compute all eigenvalues of a MEP (15) from the related system of generalized
eigenvalue problems (16). This numerical algorithm, which is based on the QZ algorithm, is given in
Algorithm 1. It was presented in [19] for k = 2, and can be generalized in a straightforward way to
three or more parameters. The MATLAB toolbox MultiParEig that we describe in the appendix contains
implementations of Algorithm 1 and its generalization for k = 3.

Algorithm 1 An algorithm for the nonsingular two-parameter eigenvalue problem (17).
1. Compute a generalized Schur decomposition QH∆0Z = R and QH∆1Z = S, such that Q and Z are

unitary, R and S are upper triangular, and multiple values of λi := sii/rii are clustered along the
diagonal of R−1S. As a result, R and S are partitioned as

R =


R11 R12 · · · R1p

0 R22 · · · R2p
...

...
. . .

...
0 0 · · · Rpp

 , S =


S11 S12 · · · S1p

0 S22 · · · S2p
...

...
. . .

...
0 0 · · · Spp

 ,
where the size of Rii and Sii is mi and m1 + · · ·+mp = n1n2.

2. Compute diagonal blocks T11, . . . ,Tpp of T = QH∆2Z.
3. Compute the eigenvalues µi1, . . . ,µimi of Tiiw = µRiiw for i = 1, . . . , p.
4. The eigenvalues of (17) are (λ1,µ11), . . . ,(λ1,µ1m1); . . . ;(λp,µp1), . . . ,(λp,µpmp).
5. For each eigenvalue (λ ,µ) compute the eigenvector x1⊗ x2 by inverse iteration on

Ai−λBi−µCi for i = 1,2.

If n1 · · ·nk is too large then it is not efficient or even not feasible to compute all the eigenvalues.
Instead, we can compute a subset of eigenvalues by an iterative method. For k = 2, if we are looking for
eigenvalues (λ ,µ) close to a given target (σ ,τ), then a method of choice is the harmonic version [20] of
the Jacobi–Davidson method [19], which can also be easily generalized to three or more parameters. For
an overview of other numerical methods, see, e.g., [19] and references therein.

In the remainder we will focus on numerical methods for 2EPs. Recently, a set of algorithms was
presented in [29] that are very suitable for 2EPs related to separable boundary value problems. In many
applications, for instance when we consider the Helmholtz equation ∇2u+ω2u = 0, only one of the
eigenvalue parameters λ and µ is related to ω and thus relevant. Without loss of generality we can
assume that this parameter is µ . In a typical situation we are interested in a number m of the lowest
eigenfrequencies ω and the corresponding eigenmodes. Usually, the problem can be reformulated in
such way that we have to find the m eigenvalues (λ ,µ) with the smallest |µ|.

While a problem (11) usually has infinitely many eigenvalues, each discretization (17) has only
finitely many eigenvalues. We may expect that some of them are good approximations to the eigenvalues
of (11) while the remaining ones contain no useful information. For one-parameter problems, a heuristic
suggested in [10, Rule-of-Thumb 8, p. 132] states:

In solving a linear eigenvalue problem by a spectral method using N +1 terms in the trun-
cated spectral series, the lowest 1

2 N eigenvalues are usually accurate to within a few percent
while the larger 1

2 N numerical eigenvalues differ from those of differential equation by such
large amounts as to be useless.
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Much time and energy has been spent along the last decades in the invention of slight modifications
to standard spectral methods in order to solve the ”spurious eigenvalue” difficulty (see, e.q., [18] and
[10, Sections 7.5 and 7.6]). On one hand there are physically spurious eigenvalues that are numerically-
computed ones which are in error because of misapplication of boundary conditions or some other mis-
representation of the physics. The original continuous MEPs that we consider are self-adjoint, physically
well established, and consequently the appearance of such spurious eigenvalues is highly unlikely. On
the other hand we can always expect some numerically spurious eigenvalues that are poor approximation
to exact eigenvalues because the mode is oscillating too rapidly to be resolved by N degrees of freedom.
Such numerically spurious eigenvalue can be computed accurately by using sufficiently large N. This
explains the fairly high accuracy in computing the ”smallest” eigenvalue for a self-adjoint problem with
target oriented algorithms.

As a reliable test it is suggested in [10] to repeat the calculations with different N and compare the
results. It is also noted that the number of good eigenvalues may be smaller if the modes have boundary
layers, critical levels, or other areas of very rapid change, or when the interval is unbounded. We will
not discuss the convergence here, but, as we increase the sizes of the matrices in (17), more and more
eigenvalues of (17) should converge to exact eigenvalues of (11) and the eigenvalues with the smallest
value of |µ| typically converge among first.

The sizes n1 and n2 depend on the number m of the wanted lowest eigenfrequencies and on the
required accuracy. Usually m� n1n2 and if n1n2 is small, we can compute all values µ from the gen-
eralized eigenvalue problem ∆2 z = µ ∆0 z. If n1n2 is too large for Algorithm 1, then we can apply the
implicitly restarted Arnoldi method [37], Krylov–Schur method [38], or any other iterative method based
on Krylov subspaces, to the matrix Γ

−1
2 := ∆

−1
2 ∆0. To do this, we must be able to efficiently multiply by

Γ
−1
2 , i.e., to solve a system

(20) ∆2 w = ∆0 z

for a given vector z. In principle, the complexity of the above step is O(n3
1 n3

2) as the matrices ∆0,∆1,
and ∆2 are of size n1n2× n1n2. But, by formulating (20) as a Sylvester equation, we can solve it in
O(n3

1 +n3
2). The key to the big reduction is the well-known equality

(A⊗B)vec(X) = vec(BXAT ),

which enables us to write (20), i.e., (B1⊗A2−A1⊗B2)w = (B1⊗C2−C1⊗B2)z, as

A2WBT
1 −B2WAT

1 =C2ZBT
1 −B2ZCT

1 =: M,

where z = vec(Z) and w = vec(W ). We get the Sylvester equation

A−1
2 B2W −WBT

1 A−T
1 =−A−1

2 MA−T
1 ,

which can be solved in O(n3
1 + n3

2) by the Bartels–Stewart algorithm [8]. The overall algorithm from
[29], which is included in MATLAB toolbox MultiParEig, is given in Algorithm 2.

Here we give some additional explanation about Algorithm 2, for more details see [29]. The al-
gorithm requires that A1 and A2 are both nonsingular. If this is not the case, then it follows from [29,
Lemma 3.1] that there exists θ such that A1− θB1 and A2− θB2 are both nonsingular. When we find
such θ , which is not difficult as there are only finitely many inappropriate values, we apply the shift
λ = λ̃ +θ and use Algorithm 2 on the shifted problem

(21)
(A1−θB1) x1 = λ̃ B1 x1 +µ C1 x1

(A2−θB2) x2 = λ̃ B2 x2 +µ C2 x2.

9



Algorithm 2 A Sylvester–Arnoldi method for the nonsingular two-parameter eigenvalue problem (17)
with nonsingular ∆2. The algorithm returns eigenvalues of ∆2 z = µ ∆0 z with the smallest absolute value
and the corresponding invariant subspace.

1. Compute Schur decompositions A−1
2 B2 =U1R1UH

1 and BT
1 A−T

1 =U2R2UH
2 .

2. Apply implicitly restarted Arnoldi or Krylov–Schur method on Γ
−1
2 := ∆

−1
2 ∆0, where in each step

the product w = Γ
−1
2 z is computed as:

(a) set matrix Z such that z = vec(Z)
(b) solve Sylvester equation R1W −WR2 =−UH

1 A−1
2 ZA−T

1 U2

(c) w = vec(W )

Once we have an eigenpair (µ,z) of ∆2 z = µ ∆0 z, it is easy to compute the eigenvalue (λ ,µ) and the
vectors x1 and x2 of (17). The eigenvector z = x1⊗x2 is decomposable and if z = vec(Z), then Z has rank
one and Z = x2 xT

1 . Thus, we can extract x1 and x2 from the singular value decomposition of Z. From x1
and x2 the eigenvalue parameter λ can be computed from the tensor Rayleigh quotient [34] efficiently as

λ =
zH∆1 z
zH∆0 z

=
(xH

1 A1 x1)(xH
2 C2 x2)− (xH

1 C1 x1)(xH
2 A2 x2)

(xH
1 B1 x1)(xH

2 C2 x2)− (xH
1 C1 x1)(xH

2 B2 x2)
.

In the case of three or more parameters, we are not aware of a method that reduces the complexity of
solving the linear system with the ∆-matrices in a similar way as in Algorithm 2; this is left for future
research. We can apply any iterative method based on Krylov subspaces on the ∆-matrices, but since we
use full vectors of size n1 · · ·nk, we cannot use as many collocation points as for 2EPs.

7. Numerical examples

In this section we give some numerical examples that show the strengths of the proposed approach
and explain some further details. From the literature we take several boundary value problems that lead
to some 2EPs and one 3EP, and solve them numerically with the methods proposed in the paper using
MATLAB toolbox MultiParEig [35]. In many cases our numerical results are more accurate than the
previously reported in the literature and we also give more eigenmodes. Fast computational times show
that it is possible to numerically solve many separable boundary value problems efficiently as MEPs.

The following numerical examples were obtained on 64-bit Windows version of Matlab R2012b
running on Intel(R) Core(TM) i5-4670 3.40Ghz processor and 16 GB of RAM.

Example 1. In the first example, which is based on [31], we consider Lamé’s system (see Subsec-
tion 2.2), related to the problem of computing the strength of a charge singularity of a flat plate for
corner angle 0 < χ < 2π:

[1− k2 cos2(ϕ)]L′′(ϕ)+ k2 sin(ϕ) cos(ϕ)L′(ϕ)+ [k2
ρ (ρ +1) sin2(ϕ)+δ ]L(ϕ) = 0,(22)

[1− k′2 cos2(θ)]N′′(θ)+ k′2 sin(θ) cos(θ)N′(θ)+ [k′2ρ (ρ +1) sin2(θ)−δ ]N(θ) = 0,(23)

where r ≥ 0, 0 ≤ θ ≤ 2π , 0 ≤ φ ≤ π , 0 ≤ k,k′ ≤ 1, and k2 + k′2 = 1. Since the problem is located
in the half-space z ≥ 0, the range of θ can be reduced to [0,π]. For the solution N(θ) it either holds
N(π − θ) = N(θ) so that N′(π/2) = 0, or N(π − θ) = −N(θ) and hence N(π/2) = 0. Therefore, it
suffices to consider θ ∈ [0, π

2 ]. The relevant boundary conditions for our case are L(0) = L′(π) = 0 and
N′(0) = N′(π/2) = 0 if 0 < χ < π or N(0) = N′(π/2) = 0 if π < χ < 2π . The goal is to compute the
smallest ρ > 0 for k = sin(|π− χ|/2). This problem is solved numerically as a 2EP in [29] using finite
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differences, where quite large matrices (of size 40000× 40000) are needed for accurate results. Using
the ChC discretization more accurate results can be obtained with much smaller matrices.

We set λ = δ , µ = ρ (ρ +1) and discretize (22) and (23) using the ChC. In the discretized problem
(17), A1 and A2 are full, C1 and C2 are diagonal, and −B1 and B2 are identity matrices. Due to the
boundary conditions, matrices A2, C1, and C2 are singular. We fix this by shifting λ so that we can apply
the implicitly restarted Arnoldi version of Algorithm 2. We take the rather arbitrary shift λ = λ̃ − 10
and then numerically solve the shifted problem (21) for θ = −10. Numerical experiments show that
the use of 60 collocation points for each equation is sufficient to compute the ten smallest values ρ to
at least 8 accurate digits. All values, when rounded, agree to the values in [31, Tabs. 1 and 2], which
are given with 4 or 5 digits. The same problem is solved in [7] with the shooting method and in [22]
with the two-dimensional bisection method, they both report the corresponding values µ . In Table 1 we
give values for some corner angles χ for comparison. The remaining values can be computed using the
function demo lame in toolbox MultiParEig. Let us note that the computation of all values ρ and µ (for
31 different values of χ) takes just 0.6 seconds.

Table 1: Solutions of charge-singularity problem (22)–(23), computed by the ChC on 60 points and Algorithm 2 (second and
fourth column), compared with the values obtained in [31] (third column), [7] (fifth column), and [22] (sixth column).

ρ = (−1+
√

1+4µ)/2 µ

χ/π ChC and Alg. 2 Morrison and Lewis [31] ChC and Alg. 2 Bailey [7] Ji [22]
0.04021 0.12003200 0.12003 0.13443968 0.1344183 0.1344238
0.11610 0.16041747 0.16042 0.18615124 − −
0.28858 0.22487941 0.22488 0.27545016 0.2754502 0.2753945
0.950 0.47560917 0.47561 0.70181325 − 0.7025342
1.125 0.64219762 0.6422 0.88771014 0.8877101 0.8876282
1.500 0.81465525 0.8146 1.47831844 − −
1.875 0.98991459 0.98991 1.96984549 − 1.971277
1.950 0.99844224 0.99844 1.99532914 − 1.995327

To explore the convergence, we compute the first 700 eigenvalue parameters µ = ρ(ρ +1) of Lamé’s
system (22)–(23) by the ChC discretization using N = 30,40, . . . ,110 points and Algorithm 2. For the
“exact” values we take the solutions obtained for N = 150. The errors for two corner angles (χ =
0.04021π for the left figure and χ = 1

2 π for the right figure) are visualized in Figure 1 and clearly show
the convergence of the ChC. Each rectangle corresponds to a group of 20 consecutive values µ on the
y-axis and one choice of N from the x-axis. The color of the rectangle depicts the maximum relative
error of the eigenvalues in the group. In both cases, as we enlarge N, more and more eigenvalues are
computed accurately and their number seems to grow at least linearly with N. One can see that more
collocation points are required to compute low eigenfrequencies accurately for a sharper corner angle in
the left figure. Algorithm 2 requires 91 seconds to compute the first 700 eigenmodes for N = 110.

Example 2. We consider a 2EP from [28], which appears when the separation of variables is applied to
the Helmholtz equation in parabolic rotational coordinates for a closed region bounded by two paraboloids
ξ = ξ0 and η = η0 (see Subsection 2.3), which has the volume

V = π

4 ξ 2
0 η2

0 (ξ 2
0 +η2

0 ).

The corresponding 2EP consists of the Bessel wave equations

ξ
2 M′′(ξ )+ξ M′(ξ )+(k2ξ

2 +ω
2
ξ

4− p2)M(ξ ) = 0,(24)

η
2 N′′(η)+η N′(η)− (k2η

2−ω
2
η

4 + p2)N(η) = 0.(25)

11



Figure 1: Convergence of the ChC applied to (3)–(4) for χ = 0.04021π (left) and χ = π/2 (right), as a function of the number
of collocation points (horizontal) and the number of the eigenmode (vertical axis).

and appropriate boundary conditions, where we can consider only nonnegative integer values of p. In
the case p = 0, which is treated separately, we divide (24) and (25) by ξ and η , respectively, to obtain

ξ M′′(ξ )+M′(ξ )+(k2ξ +ω
2
ξ

3)M(ξ ) = 0,(26)

η N′′(η)+N′(η)− (k2η−ω
2
η

3)N(η) = 0.(27)

The solutions of the Helmholtz equation should be bounded in the physical domain. The equations
(24)–(25) for p ≥ 1 and (26)–(27) for p = 0 have regular singularities at ξ = 0 and η = 0. The bound-
edness conditions at these singular points are behavioral and are automatically satisfied in the ChC,
where we take the set of Chebyshev polynomials as basis functions in the expansion (12). Actually, this
expansion provides an analytic approximation. It follows from (24)–(25) and (26)–(27) that bounded
solutions satisfy M(0) = N(0) = 0 for p ≥ 1 and M′(0) = N′(0) = 0 for p = 0, respectively. Equa-
tions with the above boundary conditions appear in the ChC as the equations at the collocation points
ξ = 0 and η = 0. Three possible combinations of outer boundary conditions are considered: Dirichlet
(M(ξ0) = N(η0) = 0), Neumann (M′(ξ0) = N′(η0) = 0), and mixed (M(ξ0) = 0 = N′(η0) = 0).

Similar to the previous example, we set λ = k2, µ = ω2 and discretize the system using the ChC
on 60 points. For each p = 0, . . . ,8 we compute 8 eigenvalues with the smallest ω and then gather the
results. In Table 2 we give the first ten eigenvalues with the smallest ω for the Dirichlet case, while in
Figure 2 we plot the first nine eigenmodes in the xy-plane for the Dirichlet case. More eigenvalues can
be computed using function demo besselwave1 in MultiParEig, which also gives the eigenvalues for the
Neumann and the mixed case.

Based on numerical experiments with higher number of collocation nodes, which show a similar
convergence as in Figure 1, 60 points should be enough for the results in Table 2 to have at least 8
accurate digits. Some of the solutions can be computed analytically. If γ is a positive zero of the Bessel
function of the first kind Jp/2(x), then (λ ,ω) = (0,2γ) is an eigenvalue of (24)–(25). The corresponding
eigenfunctions that satisfy the boundary conditions are M(ξ ) = Jp/2(γξ 2) and N(η) = Jp/2(γη2). These
values agree perfectly with the eigenfrequencies in Table 2 where λ = 0. We also verified the numerical
results by solving numerically each of the equations (24) and (25) as a one-parameter eigenvalue problem
with a fixed value of either k2 or ω by a shooting method in Mathematica. Based on these results we
believe that the values obtained by discretizing the problem with the ChC as a 2EP are more accurate
than the results obtained by the Frobenius power series expansion method in [28].

In Figure 3 we give the energy E of an electron in a quantum dot, computed as

E =
h̄2

ω2

2mH ,

12



Table 2: Extended Table 1 from [28] with solutions for Dirichlet outer boundary conditions and ξ 2
0 = η2

0 = 1, recomputed as
solutions of the 2EP obtained by discretizing Bessel wave equations (24)–(25) by the ChC using 60 points (second column),
compared with the values obtained in [28] by the Frobenius method (third column).

ChC and Algorithm 2 Lew Yan Voon and Willatzen [28]
p λ ω λ ω

0 0.00000000 4.80965112 0 4.809
1 0.00000000 6.28318531 0 6.286
2 0.00000000 7.66341194 0 7.665
0 13.46679582 7.87276640 13.468 7.875
3 0.00000000 8.98681892 0 8.974
1 21.73191565 9.35647141 − −
4 0.00000000 10.27124460 − −
2 29.69012955 10.77286063 − −
0 39.97421371 10.89209896 − −
0 0.00000000 11.04015622 − −

Figure 2: 3-D plots of the first nine eigenmodes from Table 2 for the symmetric region with ξ 2
0 = η2

0 = 1 in the plane z = 0.
The corresponding values of parameters (p,ω) are (from left to right, starting at the top row) (0,4.809), (1,6.283), (2,7.664),
(0,7.873), (3,8.987), (1,9.356), (4,10.271), (2,10.773), and (0,10.892).

where mH = 0.067m0 is the effective mass of an electron in GaAs and h̄ is Planck’s constant, as a
function of ξ 2

0 for a serious of quantum dots having the same volume (see [28] for details). The graph
is much smoother than [28, Fig. 5], which represents the same results. The figure is based on numerical
computation of energy for 100 equidistant values of ξ 2

0 , where we use the ChC discretization on 60 points
to compute the energy for each ξ 2

0 . The computation of the figure takes 2.3 seconds. The minimal energy
245.1379meV is obtained at ξ 2

0 = 19.0534Å and ξ 2
0 = 180.4595Å.
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Figure 3: Ground state energy (in meV) related to ξ 2
0 (in Å) for various quantum dots of the same volume 5.39 · 105 Å3 as in

the symmetric case ξ 2
0 = η2

0 = 70Å.

Example 3. When separation of variables is applied to the three-dimensional Helmholtz equation ∇2u+
ω2 u = 0 in parabolic cylinder coordinates

x = 1
2 (µ

2−ν2),

y = µ ν ,

z = z,

where 0≤ µ < ∞ and −∞ < ν ,z < ∞, then the system of ordinary differential equations

M′′(µ)− (α +β µ
2)M(µ) = 0,(28)

N′′(ν)+(α−β ν
2)N(ν) = 0,(29)

Z′′(z)+(ω2 +β )Z(z) = 0(30)

is obtained, where α and β are separation parameters. Pair (28)–(29) with the corresponding boundary
conditions is a 2EP in the form of the Weber equations. For each solution of (28)–(29) we can insert β

in (30) and solve it to obtain the solution u = M(µ)N(η)Z(z). For details see, e.g., [32, Sect. 12], [44],
or [46, Sect. 10].

In this numerical example, which is based on [44], we compute eigenmodes and eigenfrequencies of
an acoustic enclosure defined by two confocal parabolic cylinders |ν | = ν0 and µ = µ0, and two plane
surfaces z = z1 and z = z2, subject to rigid-wall boundary conditions. When we take z2 = −z1 = L/2,
then solutions of (30) either have the form

Z(z) = cos((ω2−β )1/2 z),

where ω2 = (2p)2 (π/L)2−β for p = 0,1,2, . . .; or

Z(z) = sin((ω2−β )1/2 z),

where ω2 = −β or ω2 = (2p+ 1)2 (π/L)2− β for p = 0,1,2, . . .. All eigenvalues (α,β ) of the 2EP
(28)–(29) have β < 0, therefore, when we want to compute the first eigenmodes, we have to find the
solutions with the largest values of β . The solutions of the Helmholtz equation should be either odd or
even in relation to the Cartesian axes z, hence the boundary conditions at 0 are either M(0) = N(0) = 0 or
M′(0) =N′(0) = 0. It suffices to consider 0< ν < ν0. The physical fluid rigid-wall interaction conditions
imply the following boundary conditions M′(µ0) = N′(ν0) = 0 at µ0 and ν0.
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In Table 3 we give the six eigenvalues (α,β ) with the largest values of β for the odd and for the even
case, more eigenvalues can be computed by function demo weber in MultiParEig. The values in [44],
obtained by the Frobenius method, are (0,−4.4817) for the odd and (±6.037,−13.47) for the even case.
Again, the values obtained by the ChC discretization are more accurate, which was verified numerically
in Mathematica similarly as in the previous example. Some of the solutions are degenerate, i.e., they
appear in pairs (α,β ) and (−α,β ).

Table 3: Eigenvalues (α,β ) of the 2EP (28)–(29) for µ0 = ν0 = 1 with the largest value of β , obtained by discretizing the
equations by the ChC with 60 points, followed by Algorithm 2.

Odd case Even case
α β α β

0.00000000 −4.48175894 0.00000000 0.00000000
±13.75247413 −26.66205565 ±5.91160168 −13.30733575
±41.16966125 −65.31311007 ±25.68754363 −43.94136005

0.00000000 −73.41246828 0.00000000 −48.74855787
±83.18622547 −120.03121747 ±60.34249309 −90.68077098
±21.79442178 −136.62550800 ±11.60150973 −102.65960842

In Figure 4 we plot the first nine nontrivial eigenmodes. As the solutions of degenerate pairs are
symmetric, we give only one eigenmode for each such pair.

Figure 4: 3-D plots of the first nine nontrivial eigenmodes for the acoustic enclosure problem defined by two confocal
parabolic cylinders µ0 = ν0 = 1. The corresponding values of parameters (α,β ) are (from left to right, starting at the
top row) (0,4.4817), (5.9116,−13.3073), (13.7525,−26.6621), (25.6875,−43.9414), (0,−48.7486), (41.1697,−65.3131),
(0,−73.4125), (60.3425,−90.6808), and (11.6015,−102.6596).
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Example 4. In [33], the energy eigenfunctions of hydrogen molecular ion H+
2 in two dimensions in

terms of confocal elliptic coordinates are considered. Separation of variables, applied to the Schrödinger
equation for H+

2 in two dimensions, leads to the system of differential equations

(u2−1)F ′′(u)+uF ′(u)+2RuF(u)+ 1
2 R2 E (u2−1)F(u)−SF(u) = 0,

(1− v2)G′′(v)− vG′(v)+ 1
2 R2 E (1− v2)G(v)+SG(v) = 0,

where R > 0 is a given internuclear separation, E is the electronic energy, S is the separation constant,
1 < u < ∞, and −1 < v < 1. By taking F(u) = (u2−1)k/2 f (u) and G(v) = (1− v2)k/2g(v), where k = 0
or k = 1, we separate out the singularities at u2 = 1 and v2 = 1, and obtain a new system of differential
equations

(u2−1) f ′′(u)+(2k+1)u f ′(u)+
(
k+2Ru+ 1

2 R2 E (u2−1)−S
)

f (u) = 0,(31)

(v2−1)g′′(v)+(2k+1)vg′(v)+
(
k+ 1

2 R2 E (v2−1)−S
)

g(v) = 0.(32)

If for a pair (S,E) there exist bounded nontrivial functions f (u) and g(v) that satisfy (31) and (32), then
(S,E) is an eigenvalue of the corresponding 2EP. We are interested in eigenvalues that have the smallest
values of E and the matching eigenfunctions. We discretize the angular equation (32) by the ChC and
apply the LC (shifted from [0,∞) to [1,∞)) to the radial equation (31). The boundedness of the solution
f (u) to the radial equation (31) provides the boundary condition

(33) lim
u→∞

f (u) = 0,

which is automatically satisfied in the LC discretization, where we take the set of Laguerre polynomials
multiplied by the weight function w(x)= e−

1
2 bx as basis functions in the expansion (12), and the boundary

condition

(2k+1) f ′(1) =−(k+2R−S) f (1).

Similarly, it follows from the boundedness of the solution g(v) to the angular equation (32) that the
solution satisfies the boundary conditions

(2k+1)g′(1)+(k−S)g(1) = 0 and − (2k+1)g′(−1)+(k−S)g(−1) = 0.

We are looking for the eigenvalues (S,E), with the smallest value of E, of the 2EP consisting of differen-
tial equations (31), (32) along with the boundedness conditions at the singular points and the boundary
condition (33).

Numerical experiments show that if the scaling parameter b in the LC is carefully chosen and 60 col-
location points are used for each equation, then the first four energy states for 0.1≤ R≤ 6 are computed
to at least 8 accurate digits. For fast convergence it is best to choose the scaling parameter b so that there
are just few points on the interval where f is already very close to zero. Based on numerical experiments,
we take b = 1 for 0.1≤ R≤ 2 and b = 2 for 2 < R≤ 6. By doing so we can compute the values that are
given in [33, Table I and II] more accurately. In Table 4 and Table 5 we give some of the obtained values
for comparison. The remaining values can be computed using function demo hydrogen in MultiParEig.
We remark that our method computes as well some solutions, that are not given in [33], for instance state
2p+u for R = 0.51 and R = 0.515, and state 2s+g for R = 4.5.

Example 5. In the final numerical example we show that the ChC and multiparameter approach can be
applied to 3EPs as well. As an example we consider the ellipsoidal wave equation from [45], where
few first eigenmodes are computed with a technique from [4]. Although the ellipsoidal wave equation is
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Table 4: Some of the values in [33, Table I], computed as solutions of a 2EP obtained by discretizing (31) by the ChC and (32)
by the LC using 60 collocation points. We give separation constant S and electronic energy Eele for the states 1s+g and 2p+u for
some values of the internuclear separation R.

ChC, LC, and Algorithm 2 Patil [33]
1s+g 2p+u 1s+g 2p+u

R S Eele S Eele S Eele S Eele

0.100 0.018189 −7.292184 1.001124 −0.899094 0.0182 −7.2907 1.0011 −0.89912
0.200 0.064128 −6.465032 1.004661 −0.932840 0.06413 −6.4644 1.0046 −0.93288
0.300 0.128169 −5.790661 1.011210 −0.997805 0.12817 −5.7903 1.0112 −0.99782
0.500 0.290025 −4.821577 1.038783 −1.247118 0.2900 −4.8213 1.0388 −1.2471
0.510 0.298960 −4.783079 1.040867 −1.263403 − − − −
0.515 0.303451 −4.764118 1.041938 −1.271642 − − − −
0.800 0.579956 −3.930420 1.138223 −1.758159 0.5800 −3.9303 1.1382 −1.7581
1.000 0.789826 −3.543667 1.244195 −2.015024 0.7898 −3.5436 1.2442 −2.0150
1.500 1.337146 −2.948555 1.601105 −2.310163 1.3371 −2.9485 1.6011 −2.3101
4.000 3.972288 −2.255505 3.979869 −2.248279 3.9723 −2.2555 3.9799 −2.2483
5.000 4.980298 −2.201467 4.981731 −2.200367 4.9803 −2.2015 4.9817 −2.20037

Table 5: Some of the values in [33, Table II], computed as solutions of a 2EP obtained by discretizing (31) by the ChC and (32)
by the LC using 60 collocation points. We give separation constant S and electronic energy Eele for the states 2s+g and 2p−u for
some values of the internuclear separation R.

ChC, LC, and Algorithm 2 Patil [33]
2s+g 2p−u 2s+g 2p−u

R S Eele S Eele S Eele S Eele

0.100 0.002149 −0.859671 1.003326 −0.886960 0.00215 −0.85965 1.0033 −0.88692
0.200 0.008198 −0.820676 1.013221 −0.881535 0.0082 −0.8207 1.0132 −0.88150
0.300 0.017614 −0.784572 1.029462 −0.873304 0.01765 −0.7846 1.0295 −0.87327
0.500 0.044999 −0.724076 1.079702 −0.851102 0.0450 −0.7241 1.0797 −0.85108
1.000 0.152031 −0.620134 1.292297 −0.782689 0.1521 −0.6201 1.2924 −0.7826
1.500 0.298946 −0.552898 1.598730 −0.715761 0.2989 −0.5529 1.5987 −0.71575
4.500 1.508425 −0.382792 4.375701 −0.471532 − − − −

considered to be a very difficult computational problem, the multiparameter approach based on the ChC
is quite easy to apply and gives accurate results.

We are interested in the smallest eigenfrequencies of a tri-axial ellipsoid with center (0,0,0) and
semi-axes z0 > y0 > x0. In ellipsoidal coordinates (see, e.g., [4], [46, Sect. 16]), the solution of the
Helmholtz equation ∇2u+ω2u = 0 is u = X1(ξ1)X2(ξ2)X3(ξ3), where z0 > ξ1 > a > ξ2 > b > ξ3 > 0
for a = (z2

0− x2
0)

1/2 and b = (z2
0− y2

0)
1/2. After the substitution ti = ξ 2/b2 we obtain a system of second

order differential equations such that all three equations for i = 1,2,3 have the same form

(34) ti (ti−1)(ti− c)X ′′i (ti)+
1
2(3t2

i −2(1+ c) ti + c)X ′i (ti)+(λ +µ ti +η t2
i )Xi(ti) = 0,

where c = a2/b2, ω2 = 4η/b2, and λ ,µ are separation constants. The equation (34) has removable
singularities at ti = 0, ti = 1, and ti = c. It is possible to write the solution of (34) in the general form

(35) Xi(ti) = tρ/2
i (ti−1)σ/2 (ti− c)τ/2 Fi(ti),

where ρ , σ , and τ are either 0 or 1 (see, e.g., [4]). This gives eight possible combinations. By inserting
(35) into (34) we get the final system of differential equations, where all three equations for i = 1,2,3
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have the form

(36) ti (ti−1)(ti− c)F ′′i (ti)+
1
2(A2 t2

i −2A1ti +A0)F ′i (ti)+(λ −λ0 +(µ +µ0) ti +η t2
i )Fi(ti) = 0,

where λ0 = ((ρ + τ)2 +(ρ +σ)2c)/4, µ0 = (ρ +σ + τ)(ρ +σ + τ +1)/4, A0 = (2ρ +1)c, A1 = (1+
ρ)/1+c)+τ +σc, and A2 = 2(ρ +σ +τ)+3. We are looking for the particular solutions characterized
by boundary conditions or finiteness properties [4]. When we insert ti = 0, ti = 1, and ti = c in (36),
we see that the boundedness conditions at singular points lead to the following boundary conditions that
involve eigenvalue parameters:

A0 F ′3(0)+2(λ −λ0)F3(0) = 0,

(A2−2A1 +A0)F ′k(1)+2(λ −λ0 +µ +µ0 +η)Fk(1) = 0 for k = 2,3,

(A2c2−A1c+A0)F ′k(c)+2(λ −λ0 +(µ +µ0)c+ηc2)Fk(c) = 0 for k = 1,2.

The boundedness conditions at singular points ti = 0, ti = 1, and ti = c are behavioral and the above
conditions automatically appear as equations when the ChC is applied. Finally, in order to obtain a 3EP
we impose the Dirichlet condition on the boundary of the ellipsoid, which gives the boundary condition

(37) F1(z2
0/b2) = 0.

Thus we solve the 3EP which consists of the differential equations (36) together with the boundedness
conditions at the singular points and the boundary condition (37).

For each of the eight possible combinations of (ρ,σ ,τ) we applied the ChC on n = 20 nodes on each
of the three equations (36) to obtain an algebraic 3EP, and then computed the five eigenvalues (λ ,µ,η)
with the smallest |γ| using implicitly restarted Arnoldi on ∆3 w = η ∆0 w. As the ∆-matrices are of size
n3× n3 and we are not aware of a method that can compute the product ∆

−1
3 ∆0w efficiently such as the

Sylvester approach for 2EPs, we cannot afford so many collocation nodes as for 2EPs. If a computation
with higher number of nodes is required, then a three-parameter generalization of the Jacobi–Davidson
method could be applied.

From the results for all combinations of (ρ,σ ,τ) we can gather the first 15 eigenmodes in Table 6.
Based on the results obtained with 10, 15, and 25 collocation points, we strongly believe that the 15
smallest eigenfrequencies are computed to at least eight accurate decimals. The results agree with the
first six eigenmodes that are given in [45] with four decimals. We give the plots of the corresponding
wave functions in Figure 5. Smallest eigenfrequencies of an ellipsoid with different semi-axes for a given
choice of (σ ,ρ,τ) can be computed with function ellipsoid eigs in MultiParEig.

8. Conclusions

We have presented a combination of spectral collocation and fast numerical methods for algebraic
2EPs. Teaming up, they can efficiently and accurately solve many 2EPs that arise when separation of
variables is applied to boundary value problems, a similar idea can be applied to 3EPs. In numerical
examples we show that the approach is superior to those reported in the literature; one can efficiently
compute several hundreds of eigenfrequencies and the corresponding eigenmodes. Our numerical results
are stable in the sense that the outcomes remain very close when we enlarge the number of collocation
points N or change the scaling parameter b inside some specified ranges.

MATLAB toolbox MultiParEig with the implementations of the presented numerical methods and
numerical examples provides a simple way to apply the approach on similar 2EPs and 3EPs.

It remains a challenge for the future to derive efficient methods of a Sylvester–Arnoldi type for MEPs
with three or more parameters.
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Table 6: First 15 eigenfrequencies for the Helmholtz equation on tri-axial ellipsoid with semi-axes x0 = 1, y0 = 1.5, and z0 = 2.
For each frequency ω we give the corresponding eigenvalue (λ ,µ,η) of 3EP (36) and the combination of parameters ρ,σ ,τ .

ω λ µ η ρ σ τ

2.34458979 0.84989209 −3.75231782 2.40498182 0 0 0
2.94367435 3.60037607 −7.76944731 3.79103317 1 0 0
3.20795093 1.48438625 −7.85091477 4.50229027 0 1 0
3.57728277 7.22643744 −13.03122756 5.59866649 0 0 0
3.78641651 5.48731495 −13.25884129 6.27241562 1 1 0
3.82663626 1.51189406 −8.87177115 6.40637596 0 0 1
4.13064732 2.05458475 −13.46994828 7.46473320 0 0 0
4.23215871 11.78829702 −19.58689645 7.83613571 1 0 0
4.38693776 5.55331827 −14.80242372 8.41978504 1 0 1
4.38859178 10.42065341 −19.87490930 8.42613530 0 1 0
4.61577934 2.12453633 −14.64930491 9.32112078 0 1 1
4.70777812 7.16950299 −20.33054607 9.69638899 1 0 0
4.89789931 17.34182024 −27.45418645 10.49537020 0 0 0
4.97229441 10.39362762 −21.87997310 10.81662385 0 0 1
5.00681461 16.33511125 −27.73496852 10.96733426 1 1 0
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Figure 5: Plots of ellipsoidal wave functions X3(ξ3) (left column), X2(ξ2) (middle column), and X1(ξ1) (right column) for the
first 15 eigenmodes in Table 6. For all eigenmodes in the top row σ = τ = 0, for all eigenmodes in the middle row σ = 1, and
for all eigenmodes in the bottom row τ = 1. Numbers in the legends are the indices of the eigenmodes.

19



Acknowledgements

We thank Guido Janssen (TU Eindhoven) for useful pointers, Joost Rommes (Mentor Graphics) for
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Appendix A. MATLAB package

The methods and examples presented in this paper are part of the package MultiParEig, which is
freely available on MATLAB Central File Exchange [35]. It requires package DMSUITE [42], which
has to be installed. For a better performance we suggest to install package LAPACK [39] as well.

We give a short overview of functions in the package that are related to the paper, for details see the
built-in help and the attached examples.

• [lambda,mu,X1,X2] = twopareig(A1,B1,C1,A2,B2,C2) solves a 2EP using Algorithm 1. For a
3EP, use [lambda,mu,eta,X1,X2,X3] = threepareig(A1,B1,C1,D1,...,A3,B3,C3,D3), which uses
a generalization of Algorithm 1.
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• [lambda,mu,X1,X2] = twopareigs(A1,B1,C1,A2,B2,C2,k) returns k eigenvalues of a 2EP with
the smallest |µ| using the implicitly restarted Arnoldi variant of Algorithm 2. The Krylov–Schur
variant is implemented in twopareigs ks, which has the same syntax. See also threepareigs, which
computes k eigenvalues of a 3EP with the smallest |η |.

• [z,A,B,C,G,k,r] = bde2mep(a,b,p,q,r,s,t,bc,N) discretizes boundary value equation (13) with the
ChC using N points. Functions p,q,r,s, and t should be either scalar MATLAB functions or
constants. Boundary conditions αy(a)+βy′(a) = 0 and γy(b)+ δy′(b) = 0 are given in matrix
bc=[alpha beta; gamma delta]. The function returns matrices A,B,C of size (N− 2)× (N− 2),
vector of collocation nodes z, give-back matrix G, and sets of kept indices k and removed indices r.
From G, k, and r the solution in all collocation nodes can be reconstructed by function recover bc.
See also bde3mep with a similar syntax for 3EPs.

• [omega,G,F,eta,xi] = ellipse eigs(mode,alpha,beta,m,n) returns the first m even (mode=1) or
odd (mode=2) eigenfrequencies and eigenmodes of an elliptical membrane with major and mi-
nor axis alpha and beta, where Mathieu’s system (1) is discretized by the ChC with n=[n1 n2]
points for the first and the second equation. See ellipsoid eigs for the first m eigenfrequencies and
eigenmodes of an ellipsoid with semi-axes x0 < y0 < z0.

From the following examples one can learn how to solve a given 2EP or 3EP (to run the examples,
MultiParEig should be in the MATLAB path):

• demo besselwave1 solves the Bessel wave equations (24)–(25) and computes the values in Table 2.
See also demo besselwave figs, which plots Figure 2, demo besselwave2, which plots Figure 3
([28, Fig. 5]), and demo besselwave3, which reconstructs [28, Figs. 6a, 6b, and 6c].

• demo ellipsoidwave computes eigenmodes for the ellipsoid wave equation (34) in Table 6. See
also demo ellipsoidwave figs that plots the wave functions in Figure 5.

• demo hydrogen computes states of hydrogen molecular ion in 2D from the 2EP (31)–(32) and
gives the values in Tables 4 and 5.

• demo lame gives the eigenvalues for Lame’s system (22)–(23) in Table 1. See also demo lame conv,
which plots Figure 1.

• demo mathieu solves Mathieu’s system (1), gives the first 300 even eigenfrequencies for an ellip-
tical membrane with axis α = 2 and β = 1, and plots eigenmodes no. 298 and 300 ([16, Figs. 5
and 6]).

• demo weber computes eigenvalues for the Weber equations (28)–(29) in Table 3 and plots the
eigenmodes. See also demo weber figs, which plots Figure 4.
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