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Abstract

We present several transformations that can be used to solve the quadratic two-parameter eigen-
value problem (QMEP), by formulating an associated linear multiparameter eigenvalue problem.
Two of these transformations are generalizations of the well-known linearization of the quadratic
eigenvalue problem and linearize the QMEP as a singular two-parameter eigenvalue problem.
The third one substitutes all nonlinear terms with new variables and adds new equations for their
relations. The QMEP is thus transformed into a nonsingular five-parameter eigenvalue problem.
The advantage of these transformations is that they enable one to solve the QMEP using the ex-
isting numerical methods for the multiparameter eigenvalue problems. We also consider several
special cases of the QMEP, where some of the quadratic terms are missing.
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1. Introduction

The linear multiparameter eigenvalue problem [1] and in particular the two-parameter case,
has been studied for several decades. For an overview of the recent work on numerical solutions
see, e.g., [3, 4, 8, 9] and references therein.

Currently, there is an increasing interest in the quadratic two-parameter eigenvalue problem
(QMEP) [5, 9], which has a general form

Q1(λ, µ) x1 := (A00 + λA10 + µA01 + λ2A20 + λµA11 + µ2A02) x1 = 0,
(1)

Q2(λ, µ) x2 := (B00 + λB10 + µB01 + λ2B20 + λµB11 + µ2B02) x2 = 0.
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where Aij, Bij are given ni × ni complex matrices, xi ∈ Cni is a nonzero vector for i = 1, 2, and
λ, µ ∈ C. We say that (λ, µ) is an eigenvalue of (1) and the tensor product x1 ⊗ x2 is the corre-
sponding eigenvector. We note that the QMEP is a recently recognized new type of eigenvalue
problem. See [10] for a nice overview of standard and generalized eigenvalue problems.

In the generic case the QMEP (1) has 4n1n2 eigenvalues that are the roots of the system of the
bivariate characteristic polynomials det(Qi(λ, µ)) = 0 of order 2ni for i = 1, 2. This follows from
Bézout’s theorem (see, e.g., [2]), which states that two projective curves of orders n and m with no
common component have precisely nm points of intersection counting multiplicities. To simplify
the notation, we will assume from now on that n1 = n2 = n.

It is well known that one can solve the quadratic eigenvalue problem by linearizing it as a gen-
eralized eigenvalue problem with matrices of double dimension (see, e.g., [11]). This approach
was generalized to the QMEP in [9], where (1) is linearized as a singular two-parameter eigen-
value problem

L1(λ, µ)w1 :=
(

A(1) + λB(1) + µC(1)
)

w1 = 0
(2)

L2(λ, µ)w2 :=
(

A(2) + λB(2) + µC(2)
)

w2 = 0,

where

Li(λ, µ)wi =


A(i)︷                     ︸︸                     ︷A00 A10 A01

0 −I 0
0 0 −I

+λ

B(i)︷                 ︸︸                 ︷0 A20 A11
I 0 0
0 0 0

+µ

C(i)︷              ︸︸              ︷0 0 A02
0 0 0
I 0 0




wi︷   ︸︸   ︷ xi
λxi
µxi

 (3)

and the matrices A(i), B(i), and C(i) are of size 3n× 3n for i = 1, 2. The numerical method for sin-
gular two-parameter eigenvalue problems presented in [9] can then be used to solve the problem
(2) and retrieve the eigenpairs of (1).

In this paper we present new relations between the QMEP and the linear multiparameter
eigenvalue problem that lead to new numerical methods for solving the QMEP. For some special
cases of (1), where some of the terms are missing, we provide linearizations that are more efficient
than for the general case. For example, a simplified QMEP, where all of the terms λ2 and µ2 are
missing, appears in the study of linear time-delay systems for the single delay case [5]. In subsec-
tion 5.3 we show that such problem can be studied as a nonsingular three-parameter eigenvalue
problem.

In Section 2 we give a short overview of the linear multiparameter eigenvalue problems. In
Section 3 we give two linearizations of the QMEP as a singular two-parameter eigenvalue problem
while in Section 4 we show that one may also treat the QMEP as a five-parameter eigenvalue
problem. Some special cases of the QMEP are considered in Section 5, and in Section 6 we extend
the methods to polynomial two-parameter eigenvalue problems.

2. The linear multiparameter eigenvalue problem

The homogeneous multiparameter eigenvalue problem (MEP) has the form

Wh
i (η)xi =

k

∑
j=0

ηjVijxi = 0, i = 1, . . . , k, (4)
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where Vij is an ni × ni complex matrix for j = 0, . . . , k. A nonzero (k + 1)-tuple η = (η0, η1, . . . , ηk)
that satisfies (4) for a nonzero xi ∈ Cni is called an eigenvalue while the tensor product x =
x1 ⊗ · · · ⊗ xk is the corresponding eigenvector.

We can study the MEP (4) in the tensor product space Cn1 ⊗ · · · ⊗Cnk , which is isomorphic to
CN , where N = n1 · · · nk, as follows. The linear transformations Vij induce linear transformations
V†

ij on CN . For a decomposable tensor,

V†
ij (x1 ⊗ · · · ⊗ xk) = x1 ⊗ · · · ⊗Vijxi ⊗ · · · ⊗ xk.

V†
ij is then extended to all of CN by linearity. On CN we define operator determinants

∆0 =

∣∣∣∣∣∣∣∣∣∣
V†

11 V†
12 · · · V†

1k
V†

21 V†
22 · · · V†

2k
...

...
...

V†
k1 V†

k2 · · · V†
kk

∣∣∣∣∣∣∣∣∣∣
and

∆i =

∣∣∣∣∣∣∣∣∣∣
V†

11 · · · V†
1,i−1 V†

10 V†
1,i+1 · · · V†

1k
V†

21 · · · V†
2,i−1 V†

20 V†
2,i+1 · · · V†

2k
...

...
...

...
...

V†
k1 · · · V†

k,i−1 V†
k0 V†

k,i+1 · · · V†
kk

∣∣∣∣∣∣∣∣∣∣
for i = 1, . . . , k.

A homogeneous MEP is called nonsingular if there exists a nonsingular linear combination

∆ =
k

∑
i=0

αi∆i

of operator determinants ∆0, . . . , ∆k. A nonsingular homogeneous MEP is equivalent to the joint
generalized eigenvalue problems

∆ix = ηi∆x, i = 0, . . . , k,

for decomposable tensors x = x1 ⊗ · · · ⊗ xk ∈ CN . It turns out that the matrices Γi := ∆−1∆i
commute for i = 0, . . . , k (see [1]).

Theorem 1 ([1, Theorem 8.7.1]). The following two statements for the homogeneous multiparameter
eigenvalue problem (4) are equivalent:

1. The matrix ∆ = ∑k
i=0 αi∆i is nonsingular.

2. If η = (η0, η1, . . . , ηk) is an eigenvalue of (4) then ∑k
i=0 ηiαi , 0.

Let us remark that we usually study the nonhomogeneous multiparameter eigenvalue problem

Wi(λ)xi = Vi0xi +
k

∑
j=1

λjVijxi = 0, i = 1, . . . , k, (5)

3



where λ is a k-tuple λ = (λ1, . . . , λk). Such a problem is called nonsingular when ∆0 is nonsin-
gular. One can see that Wh

i ((1, λ1, . . . , λk)) = Wi(λ) and instead of (5) we can study the homoge-
neous problem (4).

If η is an eigenvalue of (4), such that η0 is nonzero, then λ = (η1/η0, . . . , ηk/η0) is an eigenvalue
of (5). If (5) is nonsingular, then we can take ∆ = ∆0 and it follows from Theorem 1 that all
eigenvalues of (4) are such that η0 , 0.

If ∆0 is singular, then there exists at least one eigenvalue η of (4) having η0 = 0. In this case we
say that (5) has an infinite eigenvalue. The finite eigenvalues of (5) can be numerically computed
from the joint generalized eigenvalue problems

∆ix = λi∆0x, i = 1, . . . , k,

where x = x1 ⊗ · · · ⊗ xk, using the generalized staircase algorithm for the extraction of the com-
mon regular part of singular pencils from [9].

3. Two different linearizations by MEP

The following straightforward generalization of the linearization of a standard univariate ma-
trix polynomial (see, e.g., [7]) is given in [9].

Definition 2. An ln × ln linear matrix pencil L(λ, µ) = A + λB + µC is a linearization of order ln
of an n × n matrix polynomial Q(λ, µ) if there exist matrix polynomials P(λ, µ) and R(λ, µ), whose
determinant is a nonzero constant independent of λ and µ, such that[

Q(λ, µ) 0
0 I(l−1)n

]
= P(λ, µ)L(λ, µ)R(λ, µ).

It follows from [9, Theorem 22] that the two-parameter eigenvalue problem (2) is indeed a lin-
earization of the QMEP (1). As shown in [9], (2) is singular even in the homogeneous setting (4)
and in the general case the QMEP (1) has 4n2 eigenvalues which are (see [9, Theorem 17]) exactly
the finite eigenvalues of (2).

Another linearization of the two-parameter matrix polynomial was presented even earlier by
Khazanov [6]. In his approach we first write Q1(λ, µ)x1 = 0 as a polynomial in λ:

(A00 + µA01 + µ2A02 + λ(A10 + µA11) + λ2A20)x1 = 0. (6)

Then we use the standard first companion form (see, e.g., [11]) and linearize (6) as([
A00 + µA01 + µ2A02 A10 + µA11

0 −I

]
+ λ

[
0 A20
I 0

]) [
x1

λx1

]
= 0. (7)

We rewrite (7) as a quadratic polynomial in µ([
A00 A10 + λA20
λI −I

]
+ µ

[
A01 A11
0 0

]
+ µ2

[
A02 0
0 0

]) [
x1

λx1

]
= 0

and linearize it using the first companion form as


A00 A10 + λA20 A01 A11
λI −I 0 0
0 0 −I 0
0 0 0 −I

+ µ


0 0 A02 0
0 0 0 0
I 0 0 0
0 I 0 0





x1
λx1
µx1

λµx1

 = 0,
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which is equivalent to


A00 A10 A01 A11
0 −I 0 0
0 0 −I 0
0 0 0 −I

+ λ


0 A20 0 0
I 0 0 0
0 0 0 0
0 0 0 0

+ µ


0 0 A02 0
0 0 0 0
I 0 0 0
0 I 0 0





x1
λx1
µx1

λµx1

 = 0. (8)

It is obvious from the construction itself that (8) is really a linearization of Q1(λ, µ). We can repeat
this for the second polynomial Q2(λ, µ) and obtain a linear two-parameter eigenvalue problem.
The matrices in (8) are of size 4n× 4n, which makes the Khazanov linearization less efficient than
the linearization (3), where matrices are of size 3n× 3n. In fact, we now show that the linearization
(3) is a reduction of the linearization (8).

Theorem 3. The Khazanov linearization (8) of the n × n quadratic matrix polynomial Q1(λ, µ) can be
reduced to the linearization (3) proposed in [9].

PROOF. If we multiply the matrices in (8) by the nonsingular matrices with a constant determi-
nant

E(λ, µ) =


I µA11 −λA11 A11
0 I 0 0
0 0 I 0
0 0 0 −I

 and F(λ, µ) =


I 0 0 0
0 I 0 0
0 0 I 0
0 µI 0 I


from the left and the right side, respectively, then we obtain

A00 A10 A01 0
0 −I 0 0
0 0 −I 0
0 0 0 I

+ λ


0 A20 A11 0
I 0 0 0
0 0 0 0
0 0 0 0

+ µ


0 0 A02 0
0 0 0 0
I 0 0 0
0 0 0 0

 .

This clearly shows, in view of the leading 3× 3 block, that the linearization (3) is a reduction of
the linearization proposed by Khazanov. 2

Not surprisingly, the two-parameter eigenvalue problem that we obtain when we linearize Q1
and Q2 by the Khazanov linearization, is singular as well. We omit the details, but using simi-
lar technique as in [9] one can show that all linear combinations of the corresponding operator
determinants ∆0, ∆1, and ∆2 are singular.

Because it produces smaller matrices, the linearization proposed by Muhič and Plestenjak in
[9] is more suitable for the general QMEP than the Khazanov linearization. But, as we will see
later, the approach by Khazanov may be more efficient for some special QMEPs, where some of
the terms are missing.

Finally, we note that in fact both linearizations are not optimal in view of the following obser-
vations. The bivariate polynomial det(Q1(λ, µ)) is of order 2n. In theory (see [12]), for a given
bivariate polynomial p(λ, µ) of order 2n, there should exist a so-called determinantal representa-
tion with matrices A, B, and C of size 2n× 2n, such that det(A + λB + µC) = p(λ, µ). However, it
is not known how to construct the matrices A, B, and C. Even if this could be done, it is unlikely
that A, B, and C could be constructed as 2× 2 block matrices, which would make the construction
useful for the QMEP.
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4. Linearization like method

The approach proposed in the previous section is to linearize the QMEP as a two-parameter
eigenvalue problem, which we can later solve using the operator determinants and the algorithm
for the extraction of the common regular part of singular pencils from [9]. In the final step of this
procedure we have to compute the finite eigenvalues of the coupled singular pencils

(∆1 − λ∆0) z = 0
(9)

(∆2 − µ∆0) z = 0.

The matrices ∆0, ∆1, and ∆2 in (9) are of size 9n2 × 9n2 if we use linearization (3) or 16n2 × 16n2

if we use the Khazanov linearization (8). In both cases the common regular part that contains all
the finite eigenvalues of (1) has dimension 4n2.

A new approach that we present in this section, is not a linearization in the sense of Defini-
tion 2. Yet, it involves multiparameter eigenvalue problems and in the end we obtain the eigen-
values of (1) from a pair of generalized eigenvalue problems of the kind (9). The advantage is
that the matrices are of size 8n2 × 8n2, which is smaller, and, even more important, the obtained
pencils are not singular.

We start with the QMEP (1) and introduce new variables α = λ2, β = λµ, and γ = µ2. Then
we can write (1) as a linear five-parameter eigenvalue problem

(A00 + λA10 + µA01 + αA20 + βA11 + γA02)x1 = 0
(B00 + λB10 + µB01 + αB20 + βB11 + γB02)x2 = 0([

0 0
0 1

]
+ λ

[
0 −1
−1 0

]
+ α

[
1 0
0 0

])
y1 = 0 (10)([

0 0
0 1

]
+ λ

[
0 0
−1 0

]
+ µ

[
0 −1
0 0

]
+ β

[
1 0
0 0

])
y2 = 0([

0 0
0 1

]
+ µ

[
0 −1
−1 0

]
+ γ

[
1 0
0 0

])
y3 = 0.

It is easy to see that each eigenpair of the QMEP (1) gives an eigenpair of (10). Namely, if
((λ, µ), x1 ⊗ x2) is an eigenpair of (1) then(

(λ, µ, λ2, λµ, µ2), x1 ⊗ x2 ⊗
[

1
λ

]
⊗
[

1
λ

]
⊗
[

1
µ

])
is an eigenpair of (10).

The next lemma shows that, in contrast to the singular two-parameter eigenvalue problems of
the linearizations from Section 3, the five-parameter problem (10) is nonsingular.

Lemma 4. In the general case, the homogeneous version of the obtained five-parameter eigenvalue problem
(10) is nonsingular. In particular, the related operator determinants ∆3, ∆4, and ∆5 are all nonsingular.

PROOF. The homogeneous version of (10), where we write λ = λ̃/η̃, µ = µ̃/η̃, α = α̃/η̃, β = β̃/η̃,
γ = γ̃/η̃, and multiply all equations by η̃, results in the following system (it suffices to look at the
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determinants only):

det(η̃A00 + λ̃A10 + µ̃A01 + α̃A20 + β̃A11 + γ̃A02) = 0
det(η̃B00 + λ̃B10 + µ̃B01 + α̃B20 + β̃B11 + γ̃B02) = 0

α̃η̃ − λ̃2 = 0 (11)
β̃η̃ − λ̃µ̃ = 0
γ̃η̃ − µ̃2 = 0.

Suppose that (η̃, λ̃, µ̃, α̃, β̃, γ̃) is an eigenvalue of (11) such that α̃ = 0. Then the equations (11)
transform into

det(η̃A00 + λ̃A10 + µ̃A01 + β̃A11 + γ̃A02) = 0
det(η̃B00 + λ̃B10 + µ̃B01 + β̃B11 + γ̃B02) = 0

−λ̃2 = 0 (12)
β̃η̃ − λ̃µ̃ = 0
γ̃η̃ − µ̃2 = 0.

From the third equation we get λ̃ = 0, by substituting this in the fourth equation we get η̃ β̃ = 0.
We consider two options:

a) η̃ = 0. In this case it follows from the last row of (12) that µ̃ = 0. What remains from the
first two rows of (12) is the system

det(β̃A11 + γ̃A02) = 0
det(β̃B11 + γ̃B02) = 0,

which has no solutions in the generic case.

b) η̃ , 0. Then β̃ = 0 and it follows from from the last row of (12) that γ̃ = µ̃2/η̃. From the first
two rows of (12) we obtain the system

det
(

A00 +
µ̃

η̃
A01 +

µ̃2

η̃2 A02

)
= 0

det
(

B00 +
µ̃

η̃
B01 +

µ̃2

η̃2 B02

)
= 0,

which again has no solutions in the generic case.

Therefore, in the generic case the problem (10) does not have an eigenvalue with α̃ = 0. It follows
from Theorem 1 that ∆3 is nonsingular. Similarly we can obtain that ∆4 and ∆5 are nonsingular. 2

In the generic case we can assume that the QMEP (1) does not have an eigenvalue (λ, µ) such that
λ = 0. If we take ∆ = ∆3 then the appropriate system of coupled matrix pencils is

(∆0 − η̃∆)z = 0, (∆1 − λ̃∆)z = 0, (∆2 − µ̃∆)z = 0,

(∆3 − α̃∆)z = 0, (∆4 − β̃∆)z = 0, (∆5 − γ̃∆)z = 0,

where z = x1 ⊗ x2 ⊗ y1 ⊗ y2 ⊗ y3. Clearly, α̃ ≡ 1. As we are only interested in the solution of the
QMEP (1), it is enough to consider just two of the above matrix pencils.

7



Theorem 5. In the generic case, the pair of matrix pencils

(∆1 − λ̃∆3) z = 0
(∆2 − µ̃∆3) z = 0,

associated to the five-parameter eigenvalue problem (10), has 8n2 eigenvalues (λ̃, µ̃), of which

a) 4n2 eigenvalues are such that λ̃ , 0. Each such eigenvalue corresponds to a finite eigenvalue (λ, µ)
of the QMEP (1), where

λ = 1/λ̃, µ = µ̃λ2; (13)

b) the remaining 4n2 eigenvalues are such that λ̃ = 0. These spurious eigenvalues are a result of the
transformation and are not related to the eigenvalues of (1).

PROOF. a) We know from the construction that to each eigenvalue (λ, µ) of (2) there corresponds
the eigenvalue (λ, µ, λ2, λµ, µ2) of (10) and the eigenvalue (1/λ2, 1/λ, µ/λ2, 1, µ/λ, µ2/λ2) in the
homogeneous setting (11). In the generic case (1) has 4n2 eigenvalues that can be extracted from
(2) using the equations (13).

b) Suppose that (0, λ̃, µ̃, 1, β̃, γ̃) is an eigenvalue of (11). It follows from the last three rows of
(11) that

λ̃2 = 0
λ̃µ̃ = 0 (14)
µ̃2 = 0,

therefore λ̃ = µ̃ = 0. From the first two equations of (11) we get a two-parameter eigenvalue
problem

det(A20 + β̃A11 + γ̃A02) = 0
det(B20 + β̃B11 + γ̃B02) = 0,

which has n2 eigenvalues (β̃, γ̃) in the generic case. Together with (14) we can now count that (10)
has 4n2 eigenvalues with λ̃ = 0. 2

The transformation of the QMEP to a five-parameter eigenvalue problem has an advantage that
in the end we work with nonsingular pencils and therefore we can apply more efficient numerical
methods. A disadvantage is that the 5× 5 operator determinants ∆i are not as sparse and thus
more expensive to compute than for the two-parameter eigenvalue problems from Section 3.

5. Special cases of the quadratic two-parameter eigenvalue problem

In this section we study special cases of the QMEP, where some of the quadratic terms λ2, λµ,
µ2 are missing. There are two reasons to do so. First, applications may lead to these special types
instead of the general form (1); an example are linear time-delay systems for the single delay case
[5]. Second, we can use the special structure to develop special tailored methods that are more
efficient and simpler in nature than the approaches for the general QMEP (1).
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5.1. Both equations missing the λµ term
If both λµ terms in (1) are missing (i.e., A11 = B11 = 0), then the QMEP has the form

(A00 + λA10 + µA01 + λ2A20 + µ2A02) x1 = 0
(15)

(B00 + λB10 + µB01 + λ2B20 + µ2B02) x2 = 0.

Lemma 6. In the generic case, the QMEP (15) has 4n2 finite solutions.

PROOF. The bivariate polynomials det(A00 + λA10 + µA01 + λ2A20 + µ2A02) and det(B00 + λB10 +
µB01 + λ2B20 + µ2B02) are of order 2n. By Bézout’s theorem, in the generic case such polynomial
system has 4n2 solutions.

To see that in the general case all 4n2 solutions are finite, we study the homogeneous version
of (15). We set λ = λ̃/η̃, µ = µ̃/η̃, and multiply both equations by η̃. If the homogeneous system
has a projective solution (η̃, λ̃, µ̃) such that η̃ = 0, then (λ̃, µ̃) is a nonzero solution of

det(λ̃2 A20 + µ̃2A02) = 0
det(λ̃2B20 + µ̃2B02) = 0.

Since the above system does not have a nonzero solution in the general case, it follows that η̃ , 0
and all eigenvalues of (15) are finite. 2

Denoting α = λ2 and γ = µ2, we propose the following transformation to a linear four-parameter
eigenvalue problem:

(A00 + λA10 + µA01 + αA20 + γA02) x1 = 0

(B00 + λB10 + µB01 + αB20 + γB02) x2 = 0
(16)([

0 0
0 1

]
+ λ

[
0 −1
−1 0

]
+ α

[
1 0
0 0

])
y1 = 0([

0 0
0 1

]
+ µ

[
0 −1
−1 0

]
+ γ

[
1 0
0 0

])
y3 = 0.

Note that (16) is the five-parameter eigenvalue problem (10) without the parameter β and without
the fourth equation, which is unnecessary due to the missing λµ terms.

Theorem 7. In the generic case, the four-parameter eigenvalue problem (16) is nonsingular and there is
one-to-one relationship between the eigenpairs of (15) and (16): ((λ, µ), x1⊗ x2) is an eigenpair of (15) if
and only if(

(λ, µ, λ2, µ2),
(

x1 ⊗ x2 ⊗
[

1
λ

]
⊗
[

1
µ

]))
(up to scaling of the eigenvector) is an eigenpair of (16).

PROOF. It is easy to see that an eigenpair of (15) gives an eigenpair of (16). This gives 4n2 finite
eigenvalues of (16). As we know that the four-parameter eigenvalue problem (16) has exactly 4n2

eigenvalues, they must all be finite and related to the eigenvalues of (15). Since all eigenvalues of
(16) are finite, the corresponding operator determinant ∆0 is nonsingular. 2
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Although not being a true linearization in the sense of Definition 2, we call (16) a minimal-order
linearization, because of the following properties:

• the eigenvalues of (15) correspond exactly to those of (16);

• the operator determinant ∆0 is nonsingular in general.

In addition, (16) is a symmetric linearization: if all of Aij, Bij, i, j ∈ {0, 1, 2} are symmetric (or
Hermitian), then all matrices in the linearization are also symmetric (or Hermitian). This implies
that the operator determinants are also symmetric (or Hermitian).

5.2. Both equations missing the µ2 (or λ2) terms
If both µ2 terms in (1) are missing (i.e., A02 = B02 = 0), then the QMEP has the form

(A00 + λA10 + µA01 + λ2A20 + λµA11) x1 = 0
(17)

(B00 + λB10 + µB01 + λ2B20 + λµB11) x2 = 0.

Lemma 8. In the generic case, the QMEP (17) has 3n2 finite solutions.

PROOF. The homogeneous system of the characteristic polynomials of (17) is given by

det(η̃2 A00 + λ̃η̃A10 + µ̃η̃A01 + µ̃2A20 + λ̃µ̃A11) = 0

det(η̃2B00 + λ̃η̃B10 + µ̃η̃B01 + µ̃2B20 + λ̃µ̃B11) = 0.

We get infinite solutions of (17) if we put η̃ = 0. Then we are looking for nonzero (λ̃, µ̃) such that

µ̃n det(µ̃A20 + λ̃A11) = 0
(18)

µ̃n det(µ̃B20 + λ̃B11) = 0.

In the generic case the polynomials det(µ̃A20 + λ̃A11) and det(µ̃B20 + λ̃B11) do not have a nonzero
solution. Therefore, the only option for (18) is µ̃ = 0 and λ̃ , 0. So, in the projective coordinates,
(η̃, λ̃, µ̃) = (0, 1, 0) is a solution of multiplicity n2, and there are n2 infinite and 3n2 finite eigenval-
ues of the QMEP (17). 2

If we apply the approach by Khazanov from Section 3 (see (6) and (7)), and linearize polynomials
in (17) as quadratic polynomials in λ using the standard first companion form, we obtain the
following linearization of (17):([

A00 A10
0 −I

]
+ λ

[
0 A20
I 0

]
+ µ

[
A01 A11
0 0

]) [
x1

λx1

]
= 0

(19)([
B00 B10
0 −I

]
+ λ

[
0 B20
I 0

]
+ µ

[
B01 B11
0 0

]) [
x2

λx2

]
= 0.

Clearly, if ((λ, µ), x1 ⊗ x2) is an eigenpair of (17) then
(

(λ, µ),
[

x1
λx1

]
⊗
[

x2
λx2

])
is an eigenpair of

(19).
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Proposition 9. In the generic case, the two-parameter eigenvalue problem (19) is nonsingular in the ho-
mogeneous setting. In particular, the related operator determinant ∆2 is nonsingular.

PROOF. Suppose that the homogeneous version of (19) has an eigenvalue (η̃, λ̃, µ̃) such that µ̃ = 0.
Then (η̃, λ̃) is a nonzero solution of

det
(

η̃

[
A00 A10
0 −I

]
+ λ̃

[
0 A20
I 0

])
= 0

(20)

det
(

η̃

[
B00 B10
0 −I

]
+ λ̃

[
0 B20
I 0

])
= 0.

But, since (20) has no nonzero solutions in the general case, it follows that µ̃ , 0 and ∆2 is nonsin-
gular by Theorem 1. 2

Theorem 10. In the generic case, the pair of generalized eigenvalue problems

(∆0 − η̃∆2) z = 0
(∆1 − λ̃∆2) z = 0,

associated to the two-parameter eigenvalue problem (19), has 4n2 eigenvalues (η̃, λ̃), where

a) 3n2 eigenvalues are such that η̃ , 0. Each such eigenvalue corresponds to a finite eigenvalue (λ, µ)
of the QMEP (17), where

λ = λ̃/η̃, µ = 1/η̃.

b) The remaining n2 eigenvalues are such that η̃ = 0.

PROOF. a) We know that each of the 3n2 eigenvalues (λ, µ) of (17) is an eigenvalue of (19) and
thus corresponds to the eigenvalue (1/µ, λ/µ, 1) of the homogeneous version of (19).

b) Let (0, λ̃, 1) be an eigenvalue of the homogeneous version of (19). Then

det
(

λ̃

[
0 A20
I 0

]
+
[

A01 A11
0 0

])
= 0

det
(

λ̃

[
0 B20
I 0

]
+
[

B01 B11
0 0

])
= 0,

which has n2 solutions in the generic case. 2

The transformation to (19) does introduce n2 spurious eigenvalues, but we believe that a trans-
formation to a multiparameter eigenvalue problem of a smaller size is not possible, i.e., the ∆i
matrices corresponding to (19) are of the smallest possible size.

Let us mention that we could also write (17) as a four-parameter eigenvalue problem by ap-
plying (10) without the fourth equation. This would again lead to matrices ∆i of the size 4n2× 4n2.
An advantage of this transformation is that is preserves symmetry, while, on the other hand, (19)
has fewer parameters.
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5.3. Both equations missing both the λ2 and µ2 terms
If both λ2 and µ2 terms in (1) are missing (i.e., A20 = A02 = B20 = B02 = 0), then the QMEP

has the form

(A00 + λA10 + µA01 + λµA11) x1 = 0
(21)

(B00 + λB10 + µB01 + λµB11) x2 = 0.

Lemma 11. In the generic case, the QMEP (21) has 2n2 finite solutions.

PROOF. The homogeneous system of the characteristic polynomials of (17) is given by

det(η̃2 A00 + λ̃η̃A10 + µ̃η̃A01 + λ̃µ̃A11) = 0

det(η̃2B00 + λ̃η̃B10 + µ̃η̃B01 + λ̃µ̃B11) = 0.

To count the infinite solutions, we insert η̃ = 0 and look for nonzero (λ̃, µ̃) such that

det(λ̃µ̃A11) = det(λ̃µ̃B11) = 0.

This system has roots (1, 0) and (0, 1), each of multiplicity n2. Together we have 2n2 infinite
eigenvalues in the generic case, while the remaining 2n2 eigenvalues are finite. 2

The above case appears in the study of linear time-delay systems for the single delay case [5],
where it is solved by a transformation to a coupled pair of quadratic eigenvalue problems (QEP).

Theorem 12 ([5, Theorem 3]). If ((λ, µ), x1 ⊗ x2) is an eigenpair of (21) then

a) λ is an eigenvalue with corresponding eigenvector x1 ⊗ x2 of the QEP[
λ2(A11 ⊗ B10 − A10 ⊗ B11) + λ(A11 ⊗ B00 − A00 ⊗ B11

−A10 ⊗ B01 + A01 ⊗ B10) + A01 ⊗ B00 − A00 ⊗ B01)
]
z = 0.

b) µ is an eigenvalue with corresponding eigenvector x1 ⊗ x2 of the QEP[
µ2(A11 ⊗ B01 − A01 ⊗ B11) + µ(A11 ⊗ B00 − A00 ⊗ B11

+A10 ⊗ B01 − A01 ⊗ B10) + A10 ⊗ B00 − A00 ⊗ B10)
]
z = 0.

We propose an alternative solution using a linearization like method. We can write (21) as a
three-parameter eigenvalue problem

(A00 + λA10 + µA01 + βA11) x1 = 0

(B00 + λB10 + µB01 + βB11) x2 = 0 (22)([
0 0
0 1

]
+ λ

[
0 0
−1 0

]
+ µ

[
0 1
0 0

]
+ β

[
−1 0

0 0

])
y = 0,

which is in fact the five-parameter eigenvalue problem (10) without the third and the fifth equa-
tion.

12



Theorem 13. In the generic case, the three-parameter eigenvalue problem (22) is nonsingular and there is
one-to-one relationship between the eigenpairs of (21) and (22): ((λ, µ), x1⊗ x2) is an eigenpair of (21) if
and only if(

(λ, µ, λµ),
(

x1 ⊗ x2 ⊗
[

1
λ

]))
(up to scaling of the eigenvector) is an eigenpair of (22).

PROOF. The proof is similar to that of Theorem 7. 2

It follows from Theorem 13 that (22) is a minimal-order linearization of (21), which holds also
for the pair of QEP from Theorem 12. The matrices are not identical, but, if we linearize the QEP
from Theorem 12, then in both cases one has to solve a generalized eigenvalue problem of size
2n2 × 2n2 and the methods have the same complexity.

5.4. Each equation contains exactly one of the λ2 and µ2 terms
Without going into details we study two additional special cases where both equations miss

the λµ term and have exactly one of the remaining λ2 and µ2 terms. The first QMEP has the form

(A00 + λA10 + µA01 + λ2A20) x1 = 0
(23)

(B00 + λB10 + µB01 + λ2B20) x2 = 0.

Using a similar approach as in the previous special cases one may show that in the generic case the
QMEP (23) has 2n2 finite eigenvalues. We can write (23) as a three-parameter eigenvalue problem

(A00 + λA10 + µA01 + γA20) x1 = 0

(B00 + λB10 + µB01 + γB20) x2 = 0 (24)([
0 0
0 1

]
+ λ

[
0 −1
−1 0

]
+ α

[
1 0
0 0

])
y = 0.

which is in fact the five-parameter eigenvalue problem (10) without the fourth and the fifth equa-
tion. In the generic case, the three-parameter eigenvalue problem (24) is nonsingular and there
is one-to-one relationship between the eigenpairs of (24) and (23); in fact, (24) is a symmetry pre-
serving minimal-order linearization in the same sense as before.

The second QMEP has the form

(A00 + λA10 + µA01 + λ2A20) x1 = 0
(25)

(B00 + λB10 + µB01 + µ2B02) x2 = 0.

In the generic case the QMEP (25) has 4n2 finite eigenvalues, which is same as for the general
QMEP (1). One option is to write (25) as a four-parameter eigenvalue problem, that we obtain if
we take (10) without the third equation.
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Another option is to linearize (25) as a two-parameter eigenvalue problem with matrices of
size 2n× 2n using the Khazanov linearization. We obtain([

A00 A10
0 −I

]
+ λ

[
0 A20
I 0

]
+ µ

[
A01 0
0 0

]) [
x1

λx1

]
= 0

(26)([
B00 B01
0 −I

]
+ λ

[
B10 0
0 0

]
+ µ

[
0 B02
I 0

]) [
x2

µx2

]
= 0.

In the generic case, the two-parameter eigenvalue problem (26) is nonsingular and there is one-
to-one relationship between the eigenpairs of (26) and (25), which makes (26) a minimal-order
linearization.

5.5. Symmetric quadratic two-parameter eigenvalue problems
We now focus on the general QMEP (1), where all matrices are symmetric (or Hermitian).

We would like to linearize the QMEP so that the symmetry is preserved. For this situation we
propose the following symmetric linearization (it is sufficient to write it down for the first of the
two polynomials only)A00 0 0

0 −A20 − 1
2 A11

0 − 1
2 A11 −A02

+ λ

 A10 A20
1
2 A11

A20 0 0
1
2 A11 0 0

+ µ

 A01
1
2 A11 A02

1
2 A11 0 0
A02 0 0

 x1
λx1
µx1

 = 0. (27)

We will now show that if an additional condition holds then this really is a linearization.

Proposition 14. The linear matrix pencil (27) is a linearization of the bivariate quadratic matrix polyno-
mial Q1(λ, µ) from (1) if the 2n× 2n matrix[

A20
1
2 A11

1
2 A11 A02

]
(28)

is nonsingular.

PROOF. Let
[
zT

1 zT
2 zT

3
]
, 0 and (λ, µ) be such thatA00 0 0

0 −A20 − 1
2 A11

0 − 1
2 A11 −A02

+ λ

 A10 A20
1
2 A11

A20 0 0
1
2 A11 0 0

+ µ

 A01
1
2 A11 A02

1
2 A11 0 0
A02 0 0

z1
z2
z3

 = 0. (29)

The last two rows of (29) can be rewritten as[
A20

1
2 A11

1
2 A11 A02

] [
z2 − λz1
z3 − µz1

]
= 0.

Since the matrix (28) is nonsingular, it follows that z2 = λz1 and z3 = µz1, which yields z1 , 0.
From the first row of (29) we then obtain Q1(λ, µ)z1 = 0. 2
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6. Bivariate matrix polynomials of higher order

The linearizations and transformations for the QMEP may be generalized to the polynomial
two-parameter problems of higher order

P1(λ, µ)x1 =
k

∑
i=0

k−i

∑
j=0

λiµj Aijx1 = 0

(30)

P2(λ, µ)x2 =
k

∑
i=0

k−i

∑
j=0

λiµjBijx2 = 0,

where Aij and Bij are n× n matrices. It follows from Bézout’s theorem that in the generic case the
problem (30) has k2n2 eigenvalues.

A generalization of the linearization (3) was given in [9], where (30) is linearized as a two-
parameter eigenvalue problem with matrices of size 1

2 k(k + 1)n× 1
2 k(k + 1)n. The obtained two-

parameter eigenvalue problem is singular and has 1
4 k2(k + 1)2n2 eigenvalues, where the eigenval-

ues of (30) correspond to the finite ones. We now turn our attention to the other techniques.
The Khazanov linearization can also be generalized for polynomials of higher order; the pro-

cedure is similar to the quadratic case. First we linearize P1(λ, µ) as a polynomial of λ, then we
rearrange the obtained linearization as a polynomial of µ, and finally we linearize this as a polyno-
mial of µ. We obtain a singular two-parameter eigenvalue problem with matrices of size k2n× k2n
that has k4n2 eigenvalues, where, as before, the eigenvalues of (30) correspond to the finite ones.

In a similar way as in Section 4 we can transform (30) to a ((k + 1)(k + 2)/2− 1)-parameter
eigenvalue problem, where each term λiµj is substituted as a new parameter. Such multiparame-
ter eigenvalue problem has n22((k+1)(k+2)/2−3) eigenvalues.

For example, if we compare the dimensions of the final ∆i matrices for the case of a generic
cubic polynomial (k = 3), we obtain the following orders:

a) linearization from [9]: 36n2 × 36n2,

b) the Khazanov linearization: 81n2 × 81n2,

c) transformation to a 9-parameter eigenvalue problem: 128n2 × 128n2.

Clearly, if k is greater than 2, then linearization a) is the most efficient. However, when some of
the terms are missing, some other method may be more efficient, as the next example shows.

Example 15. Suppose that we have a special system of cubic matrix polynomials of the form

P1(λ, µ)x1 := (A00 + λA10 + µA01 + λ3A30 + µ3A03)x1 = 0,
(31)

P2(λ, µ)x2 := (B00 + λB10 + µB01 + λ3B30 + µ3B03)x2 = 0.

In the generic case, the problem (31) has 9n2 eigenvalues. If we introduce new variables α = λ3 and β = µ3
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then we can write (31) as a four-parameter eigenvalue problem

(A00 + λA10 + µA01 + αA30 + βA03)x1 = 0
(B00 + λB10 + µB01 + αB30 + βB03)x2 = 0

(32)0 0 1
0 1 0
0 0 0

+ λ

 0 −1 0
−1 0 0

0 0 −1

+ α

0 0 0
0 0 0
1 0 0

 y1 = 0

0 0 1
0 1 0
0 0 0

+ µ

 0 −1 0
−1 0 0

0 0 −1

+ β

0 0 0
0 0 0
1 0 0

 y2 = 0.

If ((λ, µ), x1 ⊗ x2) is an eigenpair of (31) then(λ, µ, λ3, µ3), x1 ⊗ x2 ⊗

 1
λ
λ2

⊗
 1

µ
µ2


is an eigenpair of (32). The four-parameter eigenvalue problem (32), which has 9n2 eigenvalues, is thus
nonsingular. As there are no spurious eigenvalues, (32) is a minimal-order linearization to solve (31).

7. Conclusions

We presented several transformations that can be applied to solve the QMEP via the multi-
parameter eigenvalue problems. This enables one to apply the numerical methods that exist for
multiparameter problems and solve the QMEP numerically. The approaches can also be extended
to polynomial two-parameter eigenvalue problems of higher order.
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