
A JACOBI{DAVIDSON TYPE METHOD FOR A RIGHT DEFINITETWO-PARAMETER EIGENVALUE PROBLEM�MICHIEL HOCHSTENBACHy, BOR PLESTENJAKz xAbstra
t. We present a new numeri
al iterative method for 
omputing sele
ted eigenpairs of a right de�nitetwo-parameter eigenvalue problem. The method works even without good initial approximations and is able tota
kle large problems that are too expensive for existing methods. The new method is similar to the Ja
obi{Davidson method for the eigenvalue problem. In ea
h step we �rst 
ompute Ritz pairs of a small proje
ted rightde�nite two-parameter eigenvalue problem and then expand the sear
h spa
es using approximate solutions ofappropriate 
orre
tion equations. We present two alternatives for the 
orre
tion equations, introdu
e a sele
tionte
hnique that makes it possible to 
ompute more than one eigenpair, and give some numeri
al results.Key words. Right de�nite two-parameter eigenvalue problem, subspa
e method, Ja
obi{Davidson method,
orre
tion equation, Ritz pair, inexa
t Newton's method.AMS subje
t 
lassi�
ations. 65F15, 15A18, 15A69.1. Introdu
tion. We are interested in 
omputing one or more eigenpairs of a right de�nitetwo-parameter eigenvalue problem A1x = �B1x+ �C1x;(1.1) A2y = �B2y + �C2y;where Ai; Bi; and Ci are given real symmetri
 ni�ni matri
es for i = 1; 2 and �; � 2 R, x 2 Rn1 ,y 2 Rn2 . A pair (�; �) is 
alled an eigenvalue if it satis�es (1.1) for nonzero ve
tors x; y. Thetensor produ
t x 
 y is the 
orresponding eigenve
tor. The 
ondition for right de�niteness isthat the determinant ����xTB1x xTC1xyTB2y yTC2y ����(1.2)is stri
tly positive for all nonzero ve
tors x 2 Rn1 , y 2 Rn2 . Right de�niteness and symmetryof matri
es Ai; Bi; and Ci imply that there exist n1n2 linearly independent eigenve
tors for theproblem (1.1) [2℄.Multiparameter eigenvalue problems of this kind arise in a variety of appli
ations [1℄, par-ti
ularly in mathemati
al physi
s when the method of separation of variables is used to solveboundary value problems [22℄.Two-parameter problems 
an be expressed as two 
oupled generalized eigenvalue problems.On the tensor produ
t spa
e S := Rn1 
 Rn2 of the dimension N := n1n2 we de�ne matri
es�0 = B1 
 C2 � C1 
B2;�1 = A1 
 C2 � C1 
A2;(1.3) �2 = B1 
A2 �A1 
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2 M. HOCHSTENBACH AND B. PLESTENJAK(for details on the tensor produ
t see for example [2℄). Sin
e the tensor produ
t of symmetri
matri
es is symmetri
, �i is a symmetri
 matrix for i = 0; 1; 2. Atkinson [2, Theorem 7.8.2℄proves that right de�niteness of (1.1) is equivalent to the 
ondition that �0 is positive de�nite. Healso shows that matri
es ��10 �1 and ��10 �2 
ommute and that the problem (1.1) is equivalentto the asso
iated problem �1z = ��0z;(1.4) �2z = ��0z;for de
omposable tensors z 2 S, z = x
 y. The eigenve
tors of (1.1) are �0-orthogonal, i.e. ifx1 
 y1 and x2 
 y2 are eigenve
tors of (1.1) 
orresponding to di�erent eigenvalues, then(x1 
 y1)T�0(x2 
 y2) = ����xT1B1x2 xT1 C1x2yT1 B2y2 yT1 C2y2 ���� = 0:(1.5)De
omposable tensors xi 
 yi for i = 1; : : : ; N form a 
omplete basis for S.There exist numeri
al methods for right de�nite two-parameter eigenvalue problems. Firstof all, the asso
iated problem (1.4) 
an be transformed in su
h a way that it 
an be solved bynumeri
al methods for simultaneous diagonalization of 
ommutative symmetri
 matri
es [14, 21℄.This is only feasible for problems of low dimension as the size of the matri
es of the asso
iatedproblem is N � N . Among other methods we mention those based on Newton's method [7℄,the gradient method [5, 6, 8℄, and the Minimal Residual Quotient Iteration [4℄. A de�
ien
y ofthese methods is that they require initial approximations 
lose enough to the solution in orderto avoid mis
onvergen
e.The 
ontinuation method [16, 17℄ over
omes problems with initial approximations but sin
ethe ordering of the eigenvalues is not ne
essarily preserved in a 
ontinuation step we have to
ompute all eigenvalues, even if we are interested only in a small portion. In this paper weintrodu
e a new numeri
al method whi
h is similar to the Ja
obi{Davidson method for the one-parameter eigenvalue problem [20℄. The method 
an be used to 
ompute sele
ted eigenpairs anddoes not need good initial approximations.Our method 
omputes the exterior eigenvalue (�; �) of (1.1) whi
h has the maximum valueof � 
os�+� sin� for a given �. We also present a version that 
omputes the interior eigenpair
losest to a given pair (�0; �0), i.e. the one with minimum (�� �0)2 + (�� �0)2.The outline of the paper is as follows. We generalize the Rayleigh{Ritz approa
h to rightde�nite two-parameter eigenvalue problems in x2. In x3 we present a Ja
obi{Davidson typemethod for right de�nite two-parameter eigenvalue problems and introdu
e two alternatives forthe 
orre
tion equations. We dis
uss how the method 
an be used for exterior and interioreigenvalues in x4. In x5 we present a sele
tion te
hnique that allows to 
ompute more than oneeigenpair. The time 
omplexity is given in x6 and some numeri
al examples are presented in x7.Con
lusions are summarized in x8.2. Subspa
e methods and Ritz pairs. The Ja
obi{Davidson method [20℄ is one of thesubspa
e methods that may be used for the numeri
al solution of one-parameter eigenvalueproblems (for an overview of subspa
e methods see for example [3℄). The 
ommon prin
ipleof subspa
e methods is to 
ompute a

urate eigenpairs from low dimensional subspa
es. Thisapproa
h redu
es 
omputational time and memory usage and thus enables us to ta
kle largerproblems that are too expensive for methods that work in the entire spa
e.A subspa
e method works as follows. We start with a given sear
h subspa
e from whi
happroximations for eigenpairs are 
omputed (extra
tion). In the extra
tion we usually have



J{D METHOD FOR A TWO-PARAMETER EIGENVALUE PROBLEM 3to solve the same type of eigenvalue problem as the original one, but of a smaller dimension.After ea
h step we expand the subspa
e by a new dire
tion (expansion). The idea is that asthe sear
h subspa
e grows, the eigenpair approximations will 
onverge to an eigenpair of theoriginal problem. In order to keep 
omputation 
osts low, we usually do not expand the sear
hspa
e to the whole spa
e. If the pro
ess does not 
onverge in a 
ertain number of iterations thenthe method is restarted with a few sele
ted approximations as the basis of a new sear
h spa
e.In this se
tion we dis
uss the extra
tion, in the next se
tion the algorithm and the expansion.The Rayleigh{Ritz approa
h de�nes approximations for the eigenpairs that 
an be extra
tedfrom the given subspa
e (see for instan
e [15℄). We generalize the Rayleigh{Ritz approa
hfor the two-parameter eigenvalue problem as follows. Suppose that the k-dimensional sear
hsubspa
es Uk of Rn1 and Vk of Rn2 are represented by matri
es Uk 2 Rn1�k and Vk 2 Rn2�kwith orthonormal 
olumns, respe
tively. The Ritz{Galerkin 
onditions(A1 � �B1 � �C1)u ? Uk;(A2 � �B2 � �C2)v ? Vk;where u 2 Uknf0g and v 2 Vknf0g, lead to the smaller proje
ted right de�nite two-parameterproblem UTk A1Uk
 = �UTk B1Uk
+ �UTk C1Uk
;(2.1) V Tk A2Vkd = �V Tk B2Vkd+ �V Tk C2Vkd;where u = Uk
 6= 0, v = Vkd 6= 0, 
; d 2 Rk , and �; � 2 R.We say that an eigenvalue (�; �) of (2.1) is a Ritz value for the two-parameter eigenvalueproblem (1.1) and subspa
es Uk;Vk. If (�; �) is an eigenvalue of (2.1) and 
 
 d is the 
orre-sponding eigenve
tor, then u 
 v is a Ritz ve
tor, where u = Uk
 and v = Vkd. Altogether weobtain k2 Ritz pairs that are approximations to the eigenpairs of (1.1). It is easy to 
he
k thatif u 
 v is a Ritz ve
tor 
orresponding to the Ritz value (�; �) then � and � are equal to thetensor Rayleigh quotients [16℄� = �1(u; v) = (u
 v)T�1(u
 v)(u
 v)T�0(u
 v) = (uTA1u)(vTC2v)� (uTC1u)(vTA2v)(uTB1u)(vTC2v)� (uTC1u)(vTB2v) ;� = �2(u; v) = (u
 v)T�2(u
 v)(u
 v)T�0(u
 v) = (uTB1u)(vTA2v)� (uTA1u)(vTB2v)(uTB1u)(vTC2v)� (uTC1u)(vTB2v) :In order to obtain Ritz values we have to solve small right de�nite two-parameter eigenvalueproblems. For this purpose one of the available numeri
al methods that 
omputes all eigenpairsof a small right de�nite two-parameter eigenvalue problem 
an be used. For instan
e, theasso
iated problem (1.4) 
an be solved using methods for simultaneous diagonalization of two
ommutative symmetri
 matri
es [14, 21℄.3. Ja
obi{Davidson method. The Ja
obi{Davidson method [20℄ is a subspa
e methodwhere approximate solutions of 
ertain 
orre
tion equations are used to expand the sear
h spa
e.Ja
obi{Davidson type methods restri
t the sear
h for a new dire
tion to the subspa
e that isorthogonal or oblique to the last 
hosen Ritz ve
tor.Ja
obi{Davidson type methods have been su

essfully applied to the eigenvalue problem[20, 13℄, to the generalized eigenvalue problem [18℄, and to the singular value problem [12℄. Inthis paper we show that a Ja
obi{Davidson type method 
an be applied to the right de�nitetwo-parameter problem as well.



4 M. HOCHSTENBACH AND B. PLESTENJAKA brief sket
h of the Ja
obi{Davidson type method for the right de�nite two-parameterproblem is presented in Algorithm 1. In Step 2b we have to de
ide whi
h Ritz pair to sele
t. Wegive details of this step in x4 where we dis
uss how to deal with exterior and interior eigenvalues.In Step 2e we have to �nd new sear
h dire
tions in order to expand the sear
h subspa
es. Wewill dis
uss two possible 
orre
tion equations for Step 2e later in this se
tion.Algorithm 11. Start. Choose initial nontrivial ve
tors u and v.a) Compute u1 = u=kuk, v1 = v=kvk and set U1 = [u1℄, V1 = [v1℄.b) Set k = 1.2. Iterate. Until 
onvergen
e or k > kmax do:a) Solve the proje
ted right de�nite two-parameter eigenvalue problemUTk A1Uk
 = �UTk B1Uk
+ �UTk C1Uk
;(3.1) V Tk A2Vkd = �V Tk B2Vkd+ �V Tk C2Vkd:b) Sele
t an appropriate Ritz value (�; �) and the 
orresponding Ritz ve
tor u 
 v,where u = Uk
, v = Vkd.
) Compute the residuals r1 = (A1 � �B1 � �C1)u;(3.2) r2 = (A2 � �B2 � �C2)v:d) Stop if �k � � where �k = (kr1k2 + kr2k2)1=2:(3.3)e) Compute new sear
h dire
tions s and t.f) Expand the sear
h subspa
es. SetUk+1 = RGS(Uk; s);Vk+1 = RGS(Vk; t);where RGS denotes the repeated Gram{S
hmidt orthonormalization.g) Set k = k + 1.h) Restart. If the dimension of Uk and Vk ex
eeds lmax then repla
e Uk, Vk with neworthonormal bases of dimension lmin.To apply this algorithm we need to spe
ify a toleran
e �, a maximum number of steps kmax,a maximum dimension of the sear
h subspa
es lmax, and a number lmin < lmax that spe
i�es thedimension of the sear
h subspa
es after a restart.A larger sear
h spa
e involves a larger proje
ted problem (2.1). The existing methods areable to solve only low-dimensional two-parameter problems in a reasonable time. Therefore, weexpand sear
h spa
es up to the presele
ted dimension lmax and then restart the algorithm. Fora restart we take the most promising lmin eigenve
tor approximations as a basis for the initialsear
h spa
e.Suppose that we have 
omputed new dire
tions s and t for the sear
h spa
es Uk+1 and Vk+1,respe
tively. We expand the sear
h spa
es simply by adding new 
olumns to the matri
es Ukand Vk. For reasons of eÆ
ien
y and stability we want orthonormal 
olumns and therefore we



J{D METHOD FOR A TWO-PARAMETER EIGENVALUE PROBLEM 5orthonormalize s against Uk and t against Vk by a stable form of the Gram-S
hmidt orthonor-malization.The next theorem expresses that if the residuals (3.2) are small then the Ritz value (�; �) isa good approximation to an eigenvalue of (1.1). This justi�es the 
riterion in Step 2d.Theorem 3.1. If (�; �) is a Ritz value and r1; r2 are the residuals (3.2), then there existsan eigenvalue (�; �) of the right de�nite two-parameter problem (1.1) su
h that(�� �)2 + (�� �)2 � k��10 kh(kB1kkr2k+ kB2kkr1k)2 + (kC1kkr2k+ kC2kkr1k)2i:(3.4)Proof. In order to prove (3.4) we 
onsider the asso
iated problem (1.4). First we derive arelation between the residuals (3.2) and the residuals of the asso
iated problem. We denotep1 = �1(u
 v)� ��0(u
 v);(3.5) p2 = �2(u
 v)� ��0(u
 v);where u; v are the normalized Ritz ve
tors from Step 2b. From (1.3) and (3.2) it follows thatp1 = �C1u
 r2 + r1 
 C2v;p2 = B1u
 r2 � r1 
B2vand we have the bounds kp1k � kC1kkr2k+ kC2kkr1k;(3.6) kp2k � kB1kkr2k+ kB2kkr1k:Now we return to the residuals (3.5). As �0 is a symmetri
 positive de�nite matrix we 
antransform (3.5) into ��1=20 p1 = G1w � �w;(3.7) ��1=20 p2 = G2w � �w;where w = �1=20 (u 
 v) and Gi = ��1=20 �i��1=20 for i = 1; 2. The matri
es G1 and G2 aresymmetri
 and 
ommute be
ause the matri
es ��10 �1 and ��10 �2 
ommute. As a result thereexists a 
ommon orthonormal basis of eigenve
tors w1; : : : ; wN su
h thatG1wi = �iwi;(3.8) G2wi = �iwi;where (�i; �i), i = 1; : : : ; N , are the eigenvalues of (1.1). In the eigenve
tor basis we 
ande
ompose w as w =PNj=1 �jwj. From (3.7) and (3.8) we get��1=20 p1 = NXj=1 �j(�j � �)wj ;(3.9) ��1=20 p2 = NXj=1 �j(�j � �)wj



6 M. HOCHSTENBACH AND B. PLESTENJAKand k��1=20 p1k2 + k��1=20 p2k2 = NXj=1 �2j�(�j � �)2 + (�j � �)2�:Sin
e PNj=1 �2j = 1 it follows thatminj=1;:::;N �(�j � �)2 + (�j � �)2� � k��1=20 p1k2 + k��1=20 p2k2(3.10) � k��10 k(kp1k2 + kp2k2):Finally, when we insert (3.6) into (3.10) we obtain (3.4).In the next theorem we show that if the Ritz ve
tor u
 v is 
lose to an eigenve
tor x
 y ofproblem (1.1), then the residuals r1 and r2 from (3.2) are of order O(ku� xk) and O(kv � yk),respe
tively. This shows that the 
riterion in Step 2d will be ful�lled if the Ritz ve
tor u 
 vapproximates an eigenve
tor of (1.1) well enough.Theorem 3.2. Let (�; �) be a Ritz value of (1.1) with the 
orresponding Ritz ve
tor u
 v,where u and v are normalized. If (u+s)
(v+t) is an eigenve
tor of (1.1) with the 
orrespondingeigenvalue (�; �) then we 
an bound the error of (�; �) asp(�� �)2 + (�� �)2 = O(ksk2 + ktk2)(3.11)and the norm of the residuals r1; r2 from (3.2) askr1k � kA1 � �B1 � �C1kksk+O(ksk2 + ktk2);(3.12) kr2k � kA2 � �B2 � �C2kktk+O(ksk2 + ktk2):Proof. We write the residuals (3.2) asr1 = �(A1 � �B1 � �C1)s+ (�� �)B1u+ (�� �)C1u;(3.13) r2 = �(A2 � �B2 � �C2)t+ (�� �)B2v + (�� �)C2v:When we multiply equations (3.13) by uT and vT , respe
tively, and take into a

ount thatuT r1 = vT r2 = 0 then we obtain�uTB1u uTC1uvTB2v vTC2v � ��� ��� � � = � � sT (A1 � �B1 � �C1)stT (A2 � �B2 � �C2)t � :(3.14)The system (3.14) is nonsingular be
ause of right de�niteness. From (3.14) it follows that



��� ��� � �



 = 




� uTB1u uTC1uvTB2v vTC2v ��1 � sT (A1 � �B1 � �C1)stT (A2 � �B2 � �C2)t �




 = O(ksk2 + ktk2)and we get (3.11). The bound (3.12) is now a result of (3.13) and (3.11).In the following two subse
tions the expansion for our Ja
obi{Davidson method is dis
ussed.We present two alternatives for the 
orre
tion equations for the right de�nite two-parametereigenvalue problem. Let (�; �) be a Ritz value that approximates the eigenvalue (�; �) of (1.1)and let u
 v be its 
orresponding Ritz ve
tor. Let us assume that u and v are normalized.



J{D METHOD FOR A TWO-PARAMETER EIGENVALUE PROBLEM 73.1. Corre
tion equations with orthogonal proje
tions. The �rst alternative for the
orre
tion equations is a generalization of the approa
h used in [20℄ for the one-parametereigenvalue problem. We are sear
hing for orthogonal improvements of the ve
tors u and v ofthe form A1(u+ s) = �B1(u+ s) + �C1(u+ s);(3.15) A2(v + t) = �B2(v + t) + �C2(v + t);(3.16)where s ? u and t ? v.Let r1 = (A1 � �B1 � �C1)u;r2 = (A2 � �B2 � �C2)vbe the residuals of Ritz ve
tor u
 v and Ritz value (�; �). We 
an rewrite (3.15) and (3.16) as(A1 � �B1 � �C1)s = �r1 + (�� �)B1u+ (�� �)C1u+ (�� �)B1s+ (�� �)C1s;(3.17) (A2 � �B2 � �C2)t = �r2 + (�� �)B2v + (�� �)C2v + (�� �)B2t+ (�� �)C2t:(3.18)In this subse
tion, we treat the equations (3.17) and (3.18) separately. From Theorem 3.2 itfollows that k(� � �)B1u+ (�� �)C1uk = O(ksk2 + ktk2). Asymptoti
ally (i.e. when u 
 v is
lose to an eigenve
tor of (1.1)), s and t are �rst order 
orre
tions and (���)B1u+(�� �)C1urepresents some se
ond order 
orre
tion. In the same sense, the term (�� �)B1s+ (�� �)C1s
an be interpreted as a third order 
orre
tion.If we ignore se
ond and higher order terms in (3.17) then we obtain the equation(A1 � �B1 � �C1)s = �r1:(3.19)Be
ause r1 and s are orthogonal to u, we 
an multiply (3.19) with the orthogonal proje
tion(I � uuT ) and write (I � uuT )s instead of s. Thus we obtain the 
orre
tion equation for theve
tor u (I � uuT )(A1 � �B1 � �C1)(I � uuT )s = �r1:(3.20)In a similar way we obtain from (3.18) the 
orre
tion equation for the ve
tor v(I � vvT )(A2 � �B2 � �C2)(I � vvT )t = �r2:(3.21)From (3.20) and (3.21) it is 
lear that the orthogonal proje
tions preserve the symmetryof the matri
es. Another advantage of orthogonal proje
tions is that they are stable and easyto implement. The systems (3.20) and (3.21) for s and t are not of full rank but they are
onsistent. We solve them only approximatel with a Krylov subspa
e method with initial guess0, for instan
e by a few steps of MINRES. If we do just one step of MINRES, then s andt are s
alar multiples of r1 and r2, respe
tively, and then, in the sense that we expand thesear
h spa
es by the residuals, we have an Arnoldi type method, similar to the situation for thestandard eigenproblem [20℄.



8 M. HOCHSTENBACH AND B. PLESTENJAK3.2. Corre
tion equation with oblique proje
tions. As in the 
orre
tion equationswith orthogonal proje
tions we start with the equations (3.17) and (3.18). We negle
t the thirdorder 
orre
tion terms (� � �)B1s + (�� �)C1s and (� � �)B2t + (� � �)C2t, but rather thennegle
ting the se
ond order terms (� � �)B1u + (� � �)C1u and (� � �)B2v + (� � �)C2v weproje
t them to 0 using an oblique proje
tion.If we de�ne M = �A1 � �B1 � �C1 00 A2 � �B2 � �C2 �and r = � r1r2 � ;then we 
an reformulate (3.17) and (3.18) (without negle
ted third order 
orre
tion terms) asM � st � = �r + (�� �) �B1uB2v �+ (�� �) �C1uC2v � :(3.22)Let V 2 R(n1+n2)�2 be a matrix with 
olumns (for reasons of stability preferably orthonormal)su
h that span(V ) = span��B1uB2v � ; �C1uC2v ��and let W 2 R(n1+n2)�2 be W = �u 00 v � :With the oblique proje
tion P = I � V (W TV )�1W Tonto span(V )? along span(W ), it follows thatPr = r and P �B1uB2v � = P �C1uC2v � = 0:(3.23)Therefore, from multiplying (3.22) by P we obtainPM � st � = �r:(3.24)Furthermore, sin
e s ? u and t ? v it follows thatP � st � = � st �(3.25)and the result is the 
orre
tion equationPMP � st � = �r;(3.26)



J{D METHOD FOR A TWO-PARAMETER EIGENVALUE PROBLEM 9for s ? u and t ? v.The 
orre
tion equation (3.26) is again not of full rank but 
onsistent and it is often suÆ
ientto solve it only approximately (e.g. by a few steps of GMRES). As before, if we do one step ofGMRES then s and t are s
alar multiples of r1 and r2, respe
tively.The Ja
obi-Davidson method for the one-parameter problem 
an be viewed as an a

eleratedinexa
t Newton s
heme [19℄. In a similar manner we now show that there is a 
onne
tion betweenthe Ja
obi{Davidson 
orre
tion equation (3.26) and Newton's method for the right de�nite two-parameter eigenvalue problem in [16℄.Eigenpairs of the two-parameter problem (1.1) are solutions of the equationG(x; y; �; �) := 26664A1x� �B1x� �C1xA2y � �B2y � �C2y12 (xTx� 1)12 (yT y � 1) 37775 = 0:(3.27)If we apply Newton's method to (3.27) and use u; v; �; � with kuk = kvk = 1 as an initialapproximation, then in order to obtain the improved approximation u+ s; v+ t; �; � we have tosolve the system2664A1 � �B1 � �C1 0 �B1u �C1u0 A2 � �B2 � �C2 �B2v �C2vuT 0 0 00 vT 0 0 37752664 st�� ��� � 3775 = 2664�r1�r200 3775 :(3.28)Lemma 3.3. The Ja
obi{Davidson 
orre
tion equation (3.26), where s ? u and t ? v, isequivalent to Newton's equation (3.28). That is, if (s; t) is a solution of (3.26), then there existunique �; � su
h that (s; t; � � �; � � �) is a solution of (3.28), and if (s; t; � � �; � � �) is asolution of (3.28) then (s; t) is a solution of (3.26).Proof. We 
an rewrite the equation (3.28) asM � st � = �r + (�� �) �B1uB2v �+ (�� �) �C1uC2v �and s ? u, t ? v, whi
h is exa
tly the equation (3.22) that appears in the derivation of theJa
obi{Davidson 
orre
tion equation (3.26). The proof now follows from the relations (3.23),(3.25), and the fa
t that Ker(P ) = span(V ).This shows that the Ja
obi{Davidson type method with the 
orre
tion equation (3.26) is aNewton s
heme, a

elerated by the proje
tion of (1.1) onto the subspa
e of all previous approx-imations. Therefore, we expe
t lo
ally at least quadrati
 
onvergen
e of the Ja
obi{Davidsonmethod when the 
orre
tion equations are solved exa
tly.4. Sele
tion of Ritz values. In this se
tion we present di�erent options for the sele
tionof Ritz values in Step 2b of Algorithm 1.4.1. Exterior eigenvalues. First we dis
uss how to obtain the eigenvalue (�; �) of (1.1)with the maximum value of �. We denote su
h an eigenvalue by (�max; �max). We show thatif we sele
t the Ritz value (�; �) with the maximum value of � in ea
h Step 2b of Algorithm 1,then the Ritz pairs will 
onverge monotoni
ally to an eigenpair of (1.1).Lemma 4.1. Let (�; �) be the Ritz value for problem (1.1) and subspa
es U ;V with themaximum value of �. Then � = maxu2U; v2Vu;v 6=0 (u
 v)T�1(u
 v)(u
 v)T�0(u
 v) :(4.1)



10 M. HOCHSTENBACH AND B. PLESTENJAKProof. Let the 
olumns of U and V be orthonormal bases for U and V, respe
tively. It followsfrom (1.1), (1.4) and (2.1) that if (�; �) is a Ritz pair then � is an eigenvalue of a symmetri
de�nite pen
il (U 
 V )T�1(U 
 V )� �(U 
 V )T�0(U 
 V ):(4.2)From the Minimax Theorem [11, p. 411℄ it follows that� = maxw2U
Vw 6=0 wT�1wwT�0w:Sin
e pen
il (4.2) is related to the two-parameter problem (2.1) we 
an restri
t w to a de
om-posable tensor w = u
 v, where u 2 U and v 2 V. From this (4.1) follows.If we sele
t the Ritz value (�k; �k) in Step 2b of Algorithm 1 with the maximum �k, then itfollows from Lemma 4.1 that �k � �k+1 � �max:We 
an not guarantee that the eigenvalue (�; �) of (1.1) to whi
h (�k; �k) 
onverges is equalto (�max; �max), but 
onvergen
e to a lo
al optimum also may happen in the Ja
obi{Davidsonmethod for the symmetri
 eigenproblem and in all proje
tion methods. Our numeri
al examplesindi
ate that we usually do obtain the eigenvalue with the largest value of �.We 
an use the algorithm to obtain the eigenvalue (�; �) of (1.1) with the maximum valueof � 
os�+ � sin� for a given parameter � if we apply the orthogonal linear substitution� = �0 
os�� �0 sin�;� = �0 sin�+ �0 
os�to the problem (1.1). The asso
iated two-parameter eigenproblem with this substitution is nowA1x = �0(
os�B1 + sin�C1)x+ �0(� sin�B1 + 
os�C1)x;(4.3) A2y = �0(
os�B2 + sin�C2)y + �0(� sin�B2 + 
os�C2)y:The operator determinant �0 remains un
hanged and the substituted problem (4.3) is rightde�nite as well. Using orthogonal linear substitutions we 
an thus obtain exterior eigenvaluesof (1.1) in 
hosen dire
tions in the (�; �)-plane.4.2. Interior eigenvalues. Suppose that we are interested in the eigenvalue (�; �) of (1.1)
losest to a spe
i�
 target (�0; �0). Let us denote su
h an eigenvalue as (�int; �int).Similar to the algorithm for exterior eigenvalues we de
ide to sele
t the Ritz value nearestto the target in ea
h Step 2b of Algorithm 1. The 
onvergen
e for interior Ritz values is notso ni
e as for the exterior ones. If a Ritz value (�; �) is 
lose enough to (�max; �max) then theRitz ve
tor 
orresponding to (�; �) is a good approximation to the eigenve
tor 
orresponding to(�max; �max). On the 
ontrary, if (�; �) is 
lose to (�int; �int) then the Ritz ve
tor 
orrespondingto (�; �) may be a poor approximation to the eigenve
tor 
orresponding to (�int; �int), just as inthe real symmetri
 eigenproblem.Numeri
al examples in x7 show that although the 
onvergen
e is very irregular, the method
an still be used to 
ompute the eigenvalue 
losest to the target. It turns out that for interioreigenvalues good approximations for new sear
h dire
tions are needed whi
h may be obtained



J{D METHOD FOR A TWO-PARAMETER EIGENVALUE PROBLEM 11with more GMRES steps for the 
orre
tion equations. The number of GMRES steps is oflarge in
uen
e. The more steps of GMRES we take, the better updates for the approximateeigenve
tors will be added to the sear
h spa
es. If we take too many steps then the method often
onverges to an eigenvalue (�; �) 6= (�int; �int). On the other hand, if we take too few GMRESsteps then we need many outer iterations or we have no 
onvergen
e at all.If we are interested in interior eigenvalues of a symmetri
 eigenproblem Ax = �x then one ofthe possible tools are harmoni
 Ritz values. The question remains how to generalize harmoni
Ritz values to a right de�nite two-parameter eigenvalue problem. We believe that any progresson this subje
t might lead to better methods for interior eigenvalues.Remark. It is easy to see that Step 2b of Algorithm 1 
an be modi�ed in a similar mannerif we are interested in the eigenvalue (�; �) of (1.1) with the maximum value of �2 + �2.5. Computing more eigenpairs. Suppose that we are interested in p > 1 eigenpairs of(1.1). In one-parameter problem various de
ation te
hniques 
an be applied in order to 
omputemore than one eigenpair. In this se
tion we �rst show diÆ
ulties that are met when we try totranslate standard de
ation ideas from one-parameter problems to two-parameter problems. Wethen propose a sele
tion method for Ritz ve
tors that makes it possible to obtain more than oneeigenpair for two-parameter problems.If (�; z) is an eigenpair of a symmetri
 matrix A then all other eigenpairs 
an be 
omputedfrom the proje
tion of A onto the subspa
e z?. Similarly, if (�; �) is an eigenvalue of (1.1) andx
 y is the 
orresponding eigenve
tor then all other eigenve
tors lie in the subspa
e(x
 y)?�0 := fz 2 S : zT�0(x
 y) = 0gof the dimension n1n2�1. By 
omparing the dimensions it is 
lear that the subspa
e (x
y)?�0
an not be written as U 
V, where U � Rn1 and V � Rn2 . Therefore, this kind of de
ation 
annot be applied to Algorithm 1.Another popular de
ation of a symmetri
 matrix A is to use the matrix A0 = A � �zzT .Matrix A0 has the same eigenvalues as matrix A ex
ept for � whi
h is transformed into 0. Ageneralization of this approa
h would be to transform the two-parameter problem (1.1) into atwo-parameter problem with the same eigenvalues as of (1.1) ex
ept for the eigenvalue (�; �)whi
h should be transformed into (0; 0). Sin
e in a two-parameter problem there 
an existeigenvalues (�; �) and (�0; �0) with eigenve
tors x
y and x0
y0, respe
tively, su
h that (�; �) 6=(�0; �0) and x = x0, this approa
h would again work only if we apply the asso
iated problem(1.4) in the tensor produ
t spa
e S. But, then we have to work with large �i matri
es and thisis too expensive.We propose the following approa
h. Suppose that we have already found p eigenvalues (�i; �i)and eigenve
tors xi 
 yi, i = 1; : : : ; p. Based on the fa
t that eigenve
tors are �0-orthogonal(see (1.5)) we adjust Algorithm 1 so that in Step 2b we 
onsider only those Ritz ve
tors u 
 vwhi
h satisfy j(u
 v)T�0(xi 
 yi)j < � for i = 1; : : : ; p(5.1)for an � > 0. Suppose that we are interested in eigenvalues with the maximum values of �.Then in Step 2b we �rst order Ritz pairs (�i; �i); ui 
 vi by their � values so that �i � �j fori < j and then we sele
t the Ritz pair that satis�es (5.1) and has the minimal index. In the 
aseof interior eigenvalues a di�erent ordering is used.If none of the Ritz pairs meets (5.1) then we take the Ritz pair with index 1, but in this
ase the algorithm is not allowed to stop. This is a
hieved by a 
hange of the stopping 
riterion



12 M. HOCHSTENBACH AND B. PLESTENJAKin Step 2d where in addition to a small residual norm (3.3) we now also require that the Ritzve
tor u
 v satis�es (5.1). This guarantees that the method does not 
onverge to the already
omputed eigenpairs.The bound � should not be taken too small in order to avoid that none of the Ritz ve
tors issuÆ
iently �0-orthogonal to the set of already 
omputed eigenve
tors. In numeri
al experimentsin x7 we use � = 12 maxi=1;:::;p j(xi 
 yi)T�0(xi 
 yi)jand that value su

essfully prevents the method from 
onverging to the already 
omputed eigen-pairs.All other steps of Algorithm 1 remain un
hanged. Numeri
al results in x7 show that thisapproa
h enables us to 
ompute more than one eigenpair.6. Time 
omplexity. We examine the time 
omplexity of one outer iteration step of Algo-rithm 1. Let n = n1 = n2, let k be the dimension of the sear
h spa
es, and let m be the numberof GMRES (MINRES) steps for a 
orre
tion equation. The two steps that largely determine thetime 
omplexity are Step 2a and Step 2e. In Step 2a we �rst 
onstru
t the smaller proje
tedproblem (3.1). We need to 
ompute only the last row (and 
olumn) of matri
es in (3.1). In these
ond part of Step 2a we solve (3.1) by solving its asso
iated problem with matri
es of size k2and thus we need O(k6) [9℄.First we assume that matri
es Ai; Bi; and Ci are sparse. This is true in many appli
ations, forinstan
e when two-parameter Sturm-Liouville problems [10℄ are dis
retized. Be
ause MINRESand GMRES are methods intended for sparse matri
es the Ja
obi{Davidson type method 
an inprin
iple handle very large sparse problems. For su
h problems the time 
omplexities of Steps2a and 2e 
an be expressed as 6 MV+O(k6) and 6m MV, respe
tively, where MV stands for amatrix-ve
tor multipli
ation with an n� n matrix.The analysis for dense matri
es Ai; Bi, and Ci is as follows. In Step 2a we need O(n2) forthe 
onstru
tion of the smaller problem (3.1) and additional O(k6) for the solution of (3.1). Asin pra
ti
e only very small values of k are used we 
an assume that k = O(n1=3) and thus thetime 
omplexity of Step 2a is O(n2).If we use 
orre
tion equations (3.20), (3.21) with orthogonal proje
tions and performm stepsof MINRES then the time 
omplexity of Step 2e is O(mn2) when we perform m matrix-ve
tormultipli
ations. We obtain the same time 
omplexity for Step 2e when we use the 
orre
tionequation (3.26) with oblique proje
tions and do m steps of GMRES. The only di�eren
e is thatwe are working with one matrix of size 2n while we are working with two matri
es of size n ifwe use orthogonal proje
tions.Based on the above assumptions the time 
omplexity of one outer step of Algorithm 1 fordense matri
es is O(mn2). Also important is the storage requirement. If an algorithm workswith matri
es Ai; Bi; and Ci as Algorithm 1 does then it requires O(n2) memory. The methodsthat work with the asso
iated system (1.4) need O(n4) memory, whi
h may ex
eed memory fast,even for modest values of n.7. Numeri
al examples. We present some numeri
al examples obtained with Matlab 5.3.If the dimension of the matri
es is n = n1 = n2 = 100 then none of the existing methods thatwork in the tensor produ
t spa
e is able to 
ompute all eigenpairs in a reasonable time [16℄.Therefore, we 
onstru
t right de�nite two-parameter examples where the exa
t eigenpairs areknown, whi
h enables us to 
he
k the obtained results.



J{D METHOD FOR A TWO-PARAMETER EIGENVALUE PROBLEM 13We 
onstru
t our right de�nite two-parameter examples in the following way. We takematri
es Ai = QiFiQTi ; Bi = QiGiQTi ; Ci = QiHiQTi ;(7.1)where Fi, Gi, and Hi are diagonal matri
es and Qi is a random orthogonal matrix for i = 1; 2.We sele
t diagonal elements of matri
es F1; F2; G2; and H1 as uniformly distributed randomnumbers from the interval (0; 1) and diagonal elements of G1 and H2 as uniformly distributedrandom numbers from the interval (1; 2). The determinant (1.2) is 
learly stri
tly positive fornonzero x; y and the obtained two-parameter problem is right de�nite. All matri
es are ofdimension n� n.Let us denote Fi = diag(fi1; : : : ; fin), Gi = diag(gi1; : : : ; gin), and Hi = diag(hi1; : : : ; hin). Itis easy to see that eigenvalues of the two-parameter problem (1.1) are solutions of linear systemsf1i = �g1i + �h1i;f2j = �g2j + �h2jfor i; j = 1; : : : ; n. This enables us to 
ompute all the eigenvalues from the diagonal elements ofFi; Gi;Hi for i = 1; 2. In order to 
onstru
t a two-parameter problem that has the point (0; 0)in the interior of the 
onvex hull of all the eigenvalues we take the shifted problem(A1 � �0B1 � �0C1)x = (�� �0)B1x+ (�� �0)C1x;(A2 � �0B2 � �0C2)y = (�� �0)B2y + (�� �0)C2y;where the shift (�0; �0) is the arithmeti
 mean of all the eigenvalues. Figure 7.1 shows thedistribution of eigenvalues obtained for n = 100.Fig. 7.1. Distribution of eigenvalues for a right de�nite two-parameter problem of size n = 100.
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For the following numeri
al examples we use GMRES instead of MINRES in the 
orre
tionequation with orthogonal proje
tions be
ause MINRES is not standard available in Matlab 5.3.Example 1. In the �rst example we use the Ja
obi{Davidson type method for the exterioreigenvalues. Our goal is to 
ompute the eigenvalue (�max; �max) with the maximum value of �.



14 M. HOCHSTENBACH AND B. PLESTENJAKWe are interested in the number of iterations that the Ja
obi{Davidson method needs for suÆ-
iently a

urate approximations and also in the per
entage of the 
onvergen
e to the eigenvalue(�max; �max) for a test set of 250 di�erent initial ve
tors.We test both alternatives for the 
orre
tion equations using various numbers of GMRESsteps. Ea
h 
ombination is tested on the same set of 250 random initial ve
tors. The algorithmis restarted after every 10 iterations with the 
urrent eigenve
tor approximation, so lmax = 10and lmin = 1. The value � = 10�8 is used for the test of 
onvergen
e and 
ops 
ount in Matlabare used for a measure of time 
omplexity. Table 7.1Statisti
s of the Ja
obi{Davidson type method for the eigenvalue (�max; �max) using di�erent 
orre
tion equa-tions and number of GMRES steps for right de�nite two-parameter problems of size n = 100 and n = 200: averagenumber of outer iterations, per
entage of 
onvergen
e to (�max; �max), and average number of 
ops over 250 tri-als with di�erent random initial ve
tors. Corre
tion equations: JO(m) - orthogonal proje
tions and m steps ofGMRES, JS(m) - oblique proje
tions and m steps of GMRES.
orre
tion n = 100 n = 200equation iterations per
entage 
ops iterations per
entage 
opsJO(1)=JS(1) 105.4 100.0 % 4:6 � 108 68.9 100.0 % 3:4 � 108JO(2) 50.0 100.0 % 2:2 � 108 35.6 100.0 % 2:0 � 108JO(4) 26.7 100.0 % 1:1 � 108 25.7 100.0 % 1:6 � 108JO(8) 23.3 99.2 % 1:1 � 108 27.7 99.2 % 2:1 � 108JO(16) 25.4 30.0 % 1:4 � 108 34.0 48.4 % 3:6 � 108JO(32) 29.8 38.0 % 2:2 � 108 42.8 10.4 % 7:2 � 108JO(64) 33.1 28.0 % 4:0 � 108 51.6 9.6 % 16:0 � 108JS(2) 96.4 100.0 % 4:6 � 108 94.4 100.0 % 6:1 � 108JS(4) 99.9 100.0 % 5:0 � 108 92.9 100.0 % 6:6 � 108JS(8) 63.9 100.0 % 3:3 � 108 62.4 100.0 % 5:2 � 108JS(16) 45.2 94.0 % 2:6 � 108 53.5 98.4 % 6:0 � 108JS(32) 41.9 82.4 % 3:2 � 108 55.4 70.8 % 9:6 � 108JS(64) 39.7 66.0 % 4:9 � 108 56.0 35.6 % 17:6 � 108Table 7.1 
ontains results obtained for n = 100 and n = 200. JO(m) and JS(m) denotethat m steps of GMRES are used for the 
orre
tion equation with orthogonal proje
tions orwith oblique proje
tions, respe
tively. For ea
h 
ombination we list the average number ofouter iterations for 
onvergen
e, the per
entage of eigenvalues that 
onverged to the eigenvalue(�max; �max), and the average number of 
ops in Matlab, all obtained on the same set of 250di�erent initial ve
tors.The results in Table 7.1 indi
ate that the method is likely to 
onverge to an unwantedeigenvalue if we solve the 
orre
tion equation too a

urately, i.e. if too many GMRES steps areused to solve the 
orre
tion equation. A 
omparison of the 
ops suggests that the best approa
his to do a few steps of GMRES. We also see that for larger n the number of GMRES steps hasmore impa
t on the time 
omplexity than the number of outer iterations. The reason is that forlarger n the fa
tor k6 be
omes relatively smaller 
ompared to mn2.The 
orre
tion equations with orthogonal proje
tions behave similarly to the one with obliqueproje
tions but require less operations. The experiments suggest to use the 
orre
tion equationswith orthogonal proje
tions in 
ombination with a small number of GMRES steps in ea
h outeriteration for (�max; �max).Example 2. In the se
ond example the 
onvergen
e to the exterior eigenvalue for the two-



J{D METHOD FOR A TWO-PARAMETER EIGENVALUE PROBLEM 15parameter problem of dimension n = 100 and initial ve
tors u = v = [1 � � � 1℄T is examined.We 
ompare the 
onvergen
e for 2, 10, and 25 GMRES steps per iteration for the 
orre
tionequation with orthogonal and the one with oblique proje
tions, respe
tively. Figure 7.2 showsthe log10 plot of residual norm �k (3.3) versus the outer iteration number k. In all six 
ases theRitz values 
onverge to the eigenvalue (�max; �max).Fig. 7.2. Convergen
e plot for the exterior eigenvalue (�max; �max) for n = 100 and u = v = [1 � � � 1℄T . Theplots show the log10 of the residual norm �k (3.3) versus the outer iteration number k for the Ja
obi{Davidsontype method for the eigenvalue (�max; �max) using 2 (solid line), 10 (dotted line), and 25 (dashed line) GMRESsteps to solve the 
orre
tion equation with orthogonal proje
tions (left plot) and oblique proje
tions (right plot),respe
tively.

5 10 15 20 25 30 35 40
−10

−8

−6

−4

−2

0

number of outer iterations

lo
g1

0 
of

 r
es

id
ua

l n
or

m

JO(2) 
JO(10)
JO(25)

10 20 30 40 50 60 70
−10

−8

−6

−4

−2

0

number of outer iterations

lo
g1

0 
of

 r
es

id
ua

l n
or

m

JS(2) 
JS(10)
JS(25)

It is 
lear from Figure 7.2 that 
onvergen
e near the solution is faster if more GMRESsteps are used. Experiments indi
ate that if only a few steps of GMRES are applied then the
onvergen
e near the solution is about linear, similar to the Ja
obi{Davidson method for thestandard eigenvalue problem [20, p. 419℄.Example 3. In this example we examine the 
onvergen
e of the Ja
obi{Davidson type methodfor the interior eigenvalues. We look for the eigenvalue 
losest to (0; 0). We use the same n = 100two-parameter problem as in Example 1 and again test both 
orre
tion equations with di�erentnumber of GMRES steps on a set of 250 di�erent initial ve
tors. The algorithm is restartedafter every 10 iterations with the 
urrent eigenve
tor approximation. For the 
onvergen
e testwe take � = 10�6. The reason for a more relaxed 
riterion is an irregular 
onvergen
e of theinterior eigenvalues (see the peaks in Figure 7.3).The results, presented in Table 7.2, show that the method may also be used e�e
tivelyfor interior eigenvalues. In 
ontrast to Example 1, more GMRES steps are required for oneouter iteration step. If too many steps are applied then the pro
ess 
onverges to an unwantedeigenvalue, similar to Example 1. On the other hand, if we do not take enough GMRES stepsthen we need many outer iteration steps and the results may be worse. This is di�erent fromExample 1 where the pro
ess 
onverges in reasonable time even if only one GMRES step isapplied per Ja
obi{Davidson iteration step. The 
orre
tion equation with oblique proje
tions ismore e�e
tive than the one with orthogonal proje
tions. It is more expensive but the probabilityof 
oming 
lose to the eigenvalue 
losest to (0; 0) is higher.Example 4. We examine the 
onvergen
e to the eigenvalue 
losest to (0; 0) for the two-parameter problem of size n = 100 and initial ve
tors u = v = [1 � � � 1℄T . Figure 7.3 shows



16 M. HOCHSTENBACH AND B. PLESTENJAKTable 7.2Statisti
s of the Ja
obi{Davidson type method for the eigenvalue 
losest to (0; 0) using di�erent 
orre
tionequations and di�erent inner iteration pro
esses for a right de�nite two-parameter problem of size n = 100: averagenumber of iterations, per
entage of 
onvergen
e to the eigenvalue 
losest to (0; 0), and average number of 
opsover 250 trials with di�erent random initial ve
tors. Corre
tion equations: JO(m) - orthogonal proje
tions andm steps of GMRES, JS(m) - oblique proje
tions and m steps of GMRES.
orre
tion equation iterations per
entage 
opsJO(90) 15.2 80.8 % 2:4 � 108JO(80) 15.9 89.2 % 2:2 � 108JO(70) 18.9 90.0 % 2:4 � 108JO(60) 23.3 91.2 % 2:5 � 108JO(50) 32.8 79.6 % 3:2 � 108JO(40) 41.4 81.6 % 3:5 � 108JO(30) 76.5 72.8 % 5:8 � 108JO(20) 219.2 63.2 % 14:4 � 108JS(90) 20.2 92.4 % 4:7 � 108JS(80) 21.1 96.4 % 4:3 � 108JS(70) 24.2 95.6 % 4:4 � 108JS(60) 29.0 94.4 % 4:7 � 108JS(50) 38.1 93.2 % 5:4 � 108JS(40) 47.0 93.2 % 5:7 � 108JS(30) 82.9 94.0 % 8:5 � 108JS(20) 239.7 84.0 % 20:5 � 108Fig. 7.3. Convergen
e plot for the eigenvalue 
losest to (0; 0) for n = 100 and u = v = [1 � � � 1℄T . The plotsshow the log10 of the residual norm �k (3.3) versus the outer iteration number k for the Ja
obi{Davidson typemethod for the eigenvalue 
losest to (0; 0) using 40 (solid line), 60 (dotted line), and 80 (dashed line) GMRESsteps to solve the 
orre
tion equation with orthogonal proje
tions (left plot) and oblique proje
tions (right plot),respe
tively.
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the log10 plot of residual norms �k (3.3) versus the outer iteration number k. We 
ompare40, 60, and 80 GMRES steps for the 
orre
tion equation with orthogonal and with obliqueproje
tions, respe
tively. In all six 
ases the Ritz values 
onverge to the eigenvalue 
losest to(0; 0). We observe that the more GMRES steps are taken, the fewer iteration steps are needed.



J{D METHOD FOR A TWO-PARAMETER EIGENVALUE PROBLEM 17The 
onvergen
e is not as smooth as in Figure 7.2 for Example 2 but the algorithm is 
learlyuseful for interior eigenvalues.Example 5. In the last example we test the sele
tion te
hnique from x5 for 
omputing moreeigenpairs for the two-parameter problem of dimension n = 100. With 5 GMRES steps for the
orre
tion equation with orthogonal proje
tions we try to 
ompute 30 su

essive eigenvalueswith the maximum value of �. Figure 7.4 shows how well the �rst 15 and all 30 
omputedeigenvalues agree with the desired eigenvalues, respe
tively.Fig. 7.4. First 15 (left plot) and �rst 30 (right plot) 
omputed eigenvalues with maximum value of � fora two-parameter problem of size n = 100 
omputed using sele
tion for Ritz ve
tors. The Ja
obi{Davidson typemethod used 5 GMRES steps for the 
orre
tion equation with orthogonal proje
tions.
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The eigenvalues are not ne
essarily 
omputed in the same order as their � values. Thisexplains the situation in Figure 7.4 where some eigenvalues that are in the top 30 by their �values are not among the 30 
omputed eigenvalues. In order to obtain the top k eigenvalueswith high probability it is therefore advisable to always 
ompute more than k eigenvalues.8. Con
lusions. We have presented a new Ja
obi{Davidson type method for a right de�-nite two-parameter eigenvalue problem. It has several advantages over the existing methods. It
an 
ompute sele
ted eigenpairs and it does not require good initial approximations. Probablythe most important advantage is that it 
an ta
kle very large two-parameter problems, espe
iallyif the matri
es Ai; Bi, and Ci are sparse.We have proposed two 
orre
tion equations. On one hand orthogonal proje
tions are gen-erally more stable than oblique proje
tions and in addition, orthogonal proje
tions preservesymmetry. On the other hand, the 
orre
tion equation with oblique proje
tions 
an be viewedas an inexa
t Newton s
heme whi
h guarantees asymptoti
ally quadrati
 
onvergen
e. Numer-i
al results indi
ate that the 
orre
tion equation with oblique proje
tions is more reliable butmore expensive. It is therefore more suitable for the interior eigenvalues while the one withorthogonal proje
tions may be used for the exterior eigenvalues.Numeri
al results indi
ate that the probability of mis
onvergen
e is low when parametersare optimal. The number of GMRES steps is important. Experiments suggest to take up to 5GMRES steps for exterior eigenvalues and more GMRES steps for interior eigenvalues. Restartsalso impa
t the behaviour of the method. In our experiments we restart the method after every10 iterations with the 
urrent eigenve
tor approximations, but a di�erent setting may furtherimprove the method.
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ause standard de
ation te
hniques for an one-parameter problem 
an not be applied totwo-parameter problems, we 
ame up with a new sele
tion te
hnique for Ritz ve
tors.A
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