A JACOBI-DAVIDSON TYPE METHOD FOR A RIGHT DEFINITE
TWO-PARAMETER EIGENVALUE PROBLEM*
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Abstract. We present a new numerical iterative method for computing selected eigenpairs of a right definite
two-parameter eigenvalue problem. The method works even without good initial approximations and is able to
tackle large problems that are too expensive for existing methods. The new method is similar to the Jacobi-
Davidson method for the eigenvalue problem. In each step we first compute Ritz pairs of a small projected right
definite two-parameter eigenvalue problem and then expand the search spaces using approximate solutions of
appropriate correction equations. We present two alternatives for the correction equations, introduce a selection
technique that makes it possible to compute more than one eigenpair, and give some numerical results.
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1. Introduction. We are interested in computing one or more eigenpairs of a right definite
two-parameter eigenvalue problem

Ayz = ABrx + uChz,

(1.1)

Aoy = ABay + puCay,
where A;, B;, and C; are given real symmetric n; X n; matrices for s = 1,2 and A\, y € R, z € R™ |
y € R™. A pair (A, p) is called an eigenvalue if it satisfies (1.1) for nonzero vectors z,y. The
tensor product £ ® y is the corresponding eigenvector. The condition for right definiteness is
that the determinant

2I'Bix 2TCyz

(1.2)
y"'Boy y' Cay

is strictly positive for all nonzero vectors z € R" | y € R">. Right definiteness and symmetry
of matrices A;, B;, and C; imply that there exist nins linearly independent eigenvectors for the
problem (1.1) [2].

Multiparameter eigenvalue problems of this kind arise in a variety of applications [1], par-
ticularly in mathematical physics when the method of separation of variables is used to solve
boundary value problems [22].

Two-parameter problems can be expressed as two coupled generalized eigenvalue problems.
On the tensor product space S := R" ® R"? of the dimension N := niny we define matrices

Ag=B; ®Cy — C1 ® By,
(1.3) Ap=A1®Cy — C1 ® As,
Ay =B ® Ay — A1 ® By
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(for details on the tensor product see for example [2]). Since the tensor product of symmetric
matrices is symmetric, A; is a symmetric matrix for ¢ = 0,1,2. Atkinson [2, Theorem 7.8.2]
proves that right definiteness of (1.1) is equivalent to the condition that A is positive definite. He
also shows that matrices A, 'A; and A, 'Ay commute and that the problem (1.1) is equivalent
to the associated problem

Alz = )\A[)Z,
(1.4)
Aoz = nlpz,

for decomposable tensors z € S, z = x ® y. The eigenvectors of (1.1) are Ap-orthogonal, i.e. if
1 ® y; and z9 ® yo are eigenvectors of (1.1) corresponding to different eigenvalues, then

{L'{B1$2 {L'{01$2 .

(1.5) (z1 ® yl)TA0($2 ® y2) = 0.

YT Boys  yl Coyn |

Decomposable tensors z; ® y; for s = 1,..., N form a complete basis for S.

There exist numerical methods for right definite two-parameter eigenvalue problems. First
of all, the associated problem (1.4) can be transformed in such a way that it can be solved by
numerical methods for simultaneous diagonalization of commutative symmetric matrices [14, 21].
This is only feasible for problems of low dimension as the size of the matrices of the associated
problem is N x N. Among other methods we mention those based on Newton’s method [7],
the gradient method [5, 6, 8], and the Minimal Residual Quotient Iteration [4]. A deficiency of
these methods is that they require initial approximations close enough to the solution in order
to avoid misconvergence.

The continuation method [16, 17] overcomes problems with initial approximations but since
the ordering of the eigenvalues is not necessarily preserved in a continuation step we have to
compute all eigenvalues, even if we are interested only in a small portion. In this paper we
introduce a new numerical method which is similar to the Jacobi—-Davidson method for the one-
parameter eigenvalue problem [20]. The method can be used to compute selected eigenpairs and
does not need good initial approximations.

Our method computes the exterior eigenvalue (A, ) of (1.1) which has the maximum value
of Acos o+ psina for a given a. We also present a version that computes the interior eigenpair
closest to a given pair (Mg, ito), i.e. the one with minimum (A — Xg)2 + (1 — po)?.

The outline of the paper is as follows. We generalize the Rayleigh—Ritz approach to right
definite two-parameter eigenvalue problems in §2. In §3 we present a Jacobi-Davidson type
method for right definite two-parameter eigenvalue problems and introduce two alternatives for
the correction equations. We discuss how the method can be used for exterior and interior
eigenvalues in §4. In §5 we present a selection technique that allows to compute more than one
eigenpair. The time complexity is given in §6 and some numerical examples are presented in §7.
Conclusions are summarized in §8.

2. Subspace methods and Ritz pairs. The Jacobi-Davidson method [20] is one of the
subspace methods that may be used for the numerical solution of one-parameter eigenvalue
problems (for an overview of subspace methods see for example [3]). The common principle
of subspace methods is to compute accurate eigenpairs from low dimensional subspaces. This
approach reduces computational time and memory usage and thus enables us to tackle larger
problems that are too expensive for methods that work in the entire space.

A subspace method works as follows. We start with a given search subspace from which
approximations for eigenpairs are computed (ezxtraction). In the extraction we usually have
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to solve the same type of eigenvalue problem as the original one, but of a smaller dimension.
After each step we expand the subspace by a new direction (ezpansion). The idea is that as
the search subspace grows, the eigenpair approximations will converge to an eigenpair of the
original problem. In order to keep computation costs low, we usually do not expand the search
space to the whole space. If the process does not converge in a certain number of iterations then
the method is restarted with a few selected approximations as the basis of a new search space.
In this section we discuss the extraction, in the next section the algorithm and the expansion.

The Rayleigh—Ritz approach defines approximations for the eigenpairs that can be extracted
from the given subspace (see for instance [15]). We generalize the Rayleigh-Ritz approach
for the two-parameter eigenvalue problem as follows. Suppose that the k-dimensional search
subspaces U, of R and Vi, of R™ are represented by matrices U, € R ** and V}, € R*2*k
with orthonormal columns, respectively. The Ritz—Galerkin conditions

(A1 — 0’B1 — 7'C’1)u 1 le,
(A2 — UBQ — TCQ)’U 1 Vk,

where u € U \{0} and v € V\{0}, lead to the smaller projected right definite two-parameter
problem

UgAlUkc = UUgBlUkC + TU]ZOlUkC,

1) Vi AyVid = oV} BoVid 4 7V, CoVid,
where v = Upc # 0, v =Vpd #0, ¢,d € R¥, and 0,7 € R.

We say that an eigenvalue (o,7) of (2.1) is a Ritz value for the two-parameter eigenvalue
problem (1.1) and subspaces Uy, Vi. If (0,7) is an eigenvalue of (2.1) and ¢ ® d is the corre-
sponding eigenvector, then u ® v is a Ritz vector, where u = Uic and v = Vid. Altogether we
obtain k? Ritz pairs that are approximations to the eigenpairs of (1.1). It is easy to check that
if u ® v is a Ritz vector corresponding to the Ritz value (o, 7) then o and 7 are equal to the
tensor Rayleigh quotients [16]

o = py(u,0) = (u®@v)TA(u®v) _ (ul Ayu) (vT Cov) — (uT Cru) (v Agw)
PLELY) = @) TAg(u®v) — (uTBru) (0T Cav) — (uTCru) (v Bav)’

"= polu,v) = (u®@v)TAg(u®@v) _ (u Byu) (v Agv) — (uT Ayu) (v! Baw)
PR = @) TAg(u®v)  (uTBru)(wT Cav) — (1T Cru)(vT Baw)

In order to obtain Ritz values we have to solve small right definite two-parameter eigenvalue
problems. For this purpose one of the available numerical methods that computes all eigenpairs
of a small right definite two-parameter eigenvalue problem can be used. For instance, the
associated problem (1.4) can be solved using methods for simultaneous diagonalization of two
commutative symmetric matrices [14, 21].

3. Jacobi—-Davidson method. The Jacobi-Davidson method [20] is a subspace method
where approximate solutions of certain correction equations are used to expand the search space.
Jacobi-Davidson type methods restrict the search for a new direction to the subspace that is
orthogonal or oblique to the last chosen Ritz vector.

Jacobi-Davidson type methods have been successfully applied to the eigenvalue problem
[20, 13], to the generalized eigenvalue problem [18], and to the singular value problem [12]. In
this paper we show that a Jacobi-Davidson type method can be applied to the right definite
two-parameter problem as well.
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A brief sketch of the Jacobi-Davidson type method for the right definite two-parameter
problem is presented in Algorithm 1. In Step 2b we have to decide which Ritz pair to select. We
give details of this step in §4 where we discuss how to deal with exterior and interior eigenvalues.
In Step 2e we have to find new search directions in order to expand the search subspaces. We
will discuss two possible correction equations for Step 2e later in this section.

Algorithm 1

1. Start. Choose initial nontrivial vectors v and v.
a) Compute u; = u/||ul|, v1 =v/||v|| and set Uy = [u1], V1 = [v1].
b) Set k = 1.
2. Iterate. Until convergence or k > kpax do:
a) Solve the projected right definite two-parameter eigenvalue problem

UgAlUkC = UUEBlUkC + TU]?ClUkC,

3.1
(3.1) Vil AyVied = oViE BoVied 4+ 7ViE CoVid.

b) Select an appropriate Ritz value (o,7) and the corresponding Ritz vector u ® v,
where u = Uic, v = Vid.
¢) Compute the residuals

r = (A1 — 0’B1 — TCl)U,

(3.2)
9 = (A2 - O'B2 - TCQ)’U.

d) Stop if py < € where
(3.3) pe = (lr” + [l 1)/,

e) Compute new search directions s and t.
f) Expand the search subspaces. Set

Uk+1 = RGS(UkH 8)7
Vk+1 = RGS(Vka t)a

where RGS denotes the repeated Gram—Schmidt orthonormalization.

g) Set k=k+1.

h) Restart. If the dimension of Uy and Vj exceeds lmax then replace Uy, Vi with new
orthonormal bases of dimension I;,.

To apply this algorithm we need to specify a tolerance €, a maximum number of steps kpax,
a maximum dimension of the search subspaces l;n.x, and a number lynin < Imax that specifies the
dimension of the search subspaces after a restart.

A larger search space involves a larger projected problem (2.1). The existing methods are
able to solve only low-dimensional two-parameter problems in a reasonable time. Therefore, we
expand search spaces up to the preselected dimension I/, and then restart the algorithm. For
a restart we take the most promising /i, eigenvector approximations as a basis for the initial
search space.

Suppose that we have computed new directions s and ¢ for the search spaces Uy11 and Vg1,
respectively. We expand the search spaces simply by adding new columns to the matrices Uy
and Vj. For reasons of efficiency and stability we want orthonormal columns and therefore we
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orthonormalize s against U, and ¢ against V by a stable form of the Gram-Schmidt orthonor-
malization.
The next theorem expresses that if the residuals (3.2) are small then the Ritz value (o, 7) is
a good approximation to an eigenvalue of (1.1). This justifies the criterion in Step 2d.
THEOREM 3.1. If (0,7) is a Ritz value and 1,79 are the residuals (3.2), then there exists
an eigenvalue (X, i) of the right definite two-parameter problem (1.1) such that

(34) A=)+ (n—1)" <Al [(IIB1IIIIT2|| + B2/l 1)? + (IC 2l + ||02||||7"1||)2]-

Proof. In order to prove (3.4) we consider the associated problem (1.4). First we derive a
relation between the residuals (3.2) and the residuals of the associated problem. We denote

pP1 = Al(u®v) — O'A()(U@’U),

(3.5)
P2 = Ag(u®@v) — TAp(u @ v),

where u, v are the normalized Ritz vectors from Step 2b. From (1.3) and (3.2) it follows that

p1=—Ciu®re+r1 ® Cov,
pe= Biu®re—1r ® Byv

and we have the bounds

Ipull < NCullllr2ll + N Collllr I,

(3.6)
[p2ll < [IB1llllr2ll + (| B2ll[l71]]-

Now we return to the residuals (3.5). As Ay is a symmetric positive definite matrix we can
transform (3.5) into

(3.7) Ay Py = Giw — ow,
Aal/Zpg = Gw — Tw,

where w = A[l]/Q(u ®v) and G; = AO_I/QAZ-A[;lﬂ for + = 1,2. The matrices G; and G2 are
symmetric and commute because the matrices Ay A, and Ay Ay commute. As a result there
exists a common orthonormal basis of eigenvectors wy, ..., wy such that

Grw; = \jw;,
(3.8) 1Wy 1 Wy
Gow; = pjw,

where (A\;, i), @ = 1,..., N, are the eigenvalues of (1.1). In the eigenvector basis we can
decompose w as w = Z;VZI ajw;. From (3.7) and (3.8) we get

N
Ay Ppr =3 (N — o)y,
(3.9) T
Ay Ppy = Z aj(pj — p)w;
7=1
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and

N

—1/2 —1/2
185 Ppal2 4+ 185 2 pal? = 37 a2 (0 = o) + (1 — 7)%).
j=1

Since Z;VZI oz? =1 it follows that

min (O =0)* + (1 = 77) < 186 1] +1185

i=1,....N
(3.10) I -
< 1A I llpaI” + llp2l®).-

Finally, when we insert (3.6) into (3.10) we obtain (3.4). a

In the next theorem we show that if the Ritz vector u ® v is close to an eigenvector z ® y of
problem (1.1), then the residuals r; and 2 from (3.2) are of order O(||u — z||) and O(||v —y|]),
respectively. This shows that the criterion in Step 2d will be fulfilled if the Ritz vector u ® v
approximates an eigenvector of (1.1) well enough.

THEOREM 3.2. Let (0,7) be a Ritz value of (1.1) with the corresponding Ritz vector u ® v,
where u and v are normalized. If (u+s)® (v+t) is an eigenvector of (1.1) with the corresponding
eigenvalue (X, 1) then we can bound the error of (o,7) as

(3.11) VA= 0)2+ (u—1)2 = O(|ls[I* +[|]1%)
and the norm of the residuals ri,79 from (3.2) as

1]l < 1|41 = ABy = uCilllsll + O(lIs )1 + 1#1),

(3.12)
Irall < | A2 = ABy — uCalll[t]] + O([Is]|* + [I]1%).

Proof. We write the residuals (3.2) as

(3.13) r1 = —(A1 = AB1 — pCi)s + (A — o) Biu + (u — 7)Chu,
' rg = —(Az2 = ABy — pCa)t + (A — 0) Bav + (u — 7) Cav.

When we multiply equations (3.13) by u’ and v”, respectively, and take into account that

uI'ry = vTry = 0 then we obtain

(3.14)

wI'Biu vICiu] [A—0 . sT(Ay — ABy — puCh)s
vI'Byv vTCov | |p—71|" tT(Ay — ABy — pCa)t |

The system (3.14) is nonsingular because of right definiteness. From (3.14) it follows that

=211

and we get (3.11). The bound (3.12) is now a result of (3.13) and (3.11). a
In the following two subsections the expansion for our Jacobi-Davidson method is discussed.
We present two alternatives for the correction equations for the right definite two-parameter
eigenvalue problem. Let (o, 7) be a Ritz value that approximates the eigenvalue (A, ) of (1.1)
and let u ® v be its corresponding Ritz vector. Let us assume that u and v are normalized.

u'Biu uw''Ciu -1 sT(Ay — ABy — uCy)s
’UTBQU UTCQ’U tT(AQ — )\BQ — /LCQ)t

‘ = O(lIs* +IIt11*)
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3.1. Correction equations with orthogonal projections. The first alternative for the
correction equations is a generalization of the approach used in [20] for the one-parameter
eigenvalue problem. We are searching for orthogonal improvements of the vectors u and v of
the form

(3.15) Ai(u+s) = ABi(u+s)+ pCi(u+s),
(3.16) Ay(v+1t) = ABa(v +t) + pCa(v + t),

where s | v and ¢ L v.
Let

r = (A1 — UBl — 7'C’1)u,
o = (A2 - UB2 - TCQ)’U

be the residuals of Ritz vector u ® v and Ritz value (o, 7). We can rewrite (3.15) and (3.16) as

(3.17) (A1 —oB; — 7'01)8 = —ry + ()\ — O')Blu + (;1, — T)Clu + ()\ — O')Bls + (,u — 7')018,
(3.18) (A2 — O'BQ — TCQ)t = —7r9 + ()\ — O')BQ’U + (,u - T)CQ’U + ()\ — O')BQt + (,u - T)CQt.

In this subsection, we treat the equations (3.17) and (3.18) separately. From Theorem 3.2 it
follows that [|[(A — o)Biu + (1 — 7)Chul| = O(||s||? + ||t||?). Asymptotically (i.e. when u ® v is
close to an eigenvector of (1.1)), s and ¢ are first order corrections and (A —o)Byu+ (1 — 7)Cru
represents some second order correction. In the same sense, the term (A — o)Bys + (u — 7)Cis
can be interpreted as a third order correction.

If we ignore second and higher order terms in (3.17) then we obtain the equation

(319) (A1 - O'B1 - TCI)S = —T.

Because r; and s are orthogonal to u, we can multiply (3.19) with the orthogonal projection

(I —uu™) and write (I —uu’)s instead of s. Thus we obtain the correction equation for the
vector u
(3.20) (I —uu") (A —oB; —7C)(I —uu’)s = —ry.

In a similar way we obtain from (3.18) the correction equation for the vector v
(3.21) (I — Q)’UT) (A2 — UBQ — 7'02)([ — ’UUT)t = —T9.

From (3.20) and (3.21) it is clear that the orthogonal projections preserve the symmetry
of the matrices. Another advantage of orthogonal projections is that they are stable and easy
to implement. The systems (3.20) and (3.21) for s and ¢ are not of full rank but they are
consistent. We solve them only approximatel with a Krylov subspace method with initial guess
0, for instance by a few steps of MINRES. If we do just one step of MINRES, then s and
t are scalar multiples of r; and ry, respectively, and then, in the sense that we expand the
search spaces by the residuals, we have an Arnoldi type method, similar to the situation for the
standard eigenproblem [20].
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3.2. Correction equation with oblique projections. As in the correction equations
with orthogonal projections we start with the equations (3.17) and (3.18). We neglect the third
order correction terms (A — o)By1s + (u — 7)C1s and (A — 0)Bot + (u — 7)Cst, but rather then
neglecting the second order terms (A — 0)Bju + (p — 7)Ciu and (A — 0)Bov + (u — 7)Cav we
project them to 0 using an oblique projection.

If we define

Al—O'Bl—Tcl 0

M:[ 0 A9 — 0By — 7C9

and

then we can reformulate (3.17) and (3.18) (without neglected third order correction terms) as

(3.22) M[‘;] :—r+(A—a)[§;Z]+(u—7)[g;j].

Let V € R(™+72)%2 he a matrix with columns (for reasons of stability preferably orthonormal)

such that
span(V') = span ([g;z] , [g;:])

and let W € R(n1+n2)x2 e

S
[

u 0
0 v|’
With the oblique projection

P=T-vV(WTv)"'w™

onto span(V)* along span(W), it follows that

_ Biu| Ciu|
(3.23) Pr=r and P[Bgv]_P[Cgv]_o'
Therefore, from multiplying (3.22) by P we obtain
s
(3.24) PM [t] = —r.
Furthermore, since s | u and ¢ L v it follows that
s s
o5 o]-[1

and the result is the correction equation

(3.26) PMP [i] —
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for s L v and t L v.

The correction equation (3.26) is again not of full rank but consistent and it is often sufficient
to solve it only approximately (e.g. by a few steps of GMRES). As before, if we do one step of
GMRES then s and t are scalar multiples of r; and rs, respectively.

The Jacobi-Davidson method for the one-parameter problem can be viewed as an accelerated
inexact Newton scheme [19]. In a similar manner we now show that there is a connection between
the Jacobi-Davidson correction equation (3.26) and Newton’s method for the right definite two-
parameter eigenvalue problem in [16].

Eigenpairs of the two-parameter problem (1.1) are solutions of the equation

Az — ABix — pChiz
Agy — ABoy — nCay

3.27 G(z,y,\, p) = = 0.
(3.27) (z,y, A, 1) L2z — 1)
3"y —1)
If we apply Newton’s method to (3.27) and use w,v,0,7 with [|u|]] = ||v]| = 1 as an initial

approximation, then in order to obtain the improved approximation u + s, v + t, A\, 7 we have to
solve the system

A1 — O'Bl — 7'01 0 —Blu —Clu S —T1

0 AQ — O'BQ — 7'02 —BQU —CQU t . ]
(3.28) ul 0 0 0 A—col| | O
0 vl 0 0 W= 0

LEMMA 3.3. The Jacobi-Davidson correction equation (3.26), where s L u and t L v, is
equivalent to Newton’s equation (3.28). That is, if (s,t) is a solution of (3.26), then there exist
unique A, i such that (s,t,\ — o, — T) is a solution of (3.28), and if (s,t,\ —o,u—T) is a
solution of (3.28) then (s,t) is a solution of (3.26).

Proof. We can rewrite the equation (3.28) as

(i = o [] o G

and s L u, t 1L v, which is exactly the equation (3.22) that appears in the derivation of the
Jacobi-Davidson correction equation (3.26). The proof now follows from the relations (3.23),
(3.25), and the fact that Ker(P) = span(V). a

This shows that the Jacobi-Davidson type method with the correction equation (3.26) is a
Newton scheme, accelerated by the projection of (1.1) onto the subspace of all previous approx-
imations. Therefore, we expect locally at least quadratic convergence of the Jacobi—Davidson
method when the correction equations are solved exactly.

4. Selection of Ritz values. In this section we present different options for the selection
of Ritz values in Step 2b of Algorithm 1.

4.1. Exterior eigenvalues. First we discuss how to obtain the eigenvalue (X, u) of (1.1)
with the maximum value of \. We denote such an eigenvalue by (Amax, fimax).- We show that
if we select the Ritz value (o, 7) with the maximum value of o in each Step 2b of Algorithm 1,
then the Ritz pairs will converge monotonically to an eigenpair of (1.1).

LEMMA 4.1. Let (o,7) be the Ritz value for problem (1.1) and subspaces U,V with the
mazximum value of o. Then

(4.1) 0= max
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Proof. Let the columns of U and V' be orthonormal bases for ¢ and V, respectively. It follows
from (1.1), (1.4) and (2.1) that if (0, 7) is a Ritz pair then o is an eigenvalue of a symmetric
definite pencil

(4.2) UWVTA(URV)—a(UeV)IAy(U V).
From the Minimax Theorem [11, p. 411] it follows that

wl Ayw
7= wrgl,?g(v ’LUTA()’LU.
w#£0
Since pencil (4.2) is related to the two-parameter problem (2.1) we can restrict w to a decom-
posable tensor w = u ® v, where v € Y and v € V. From this (4.1) follows. O
If we select the Ritz value (og, 7%) in Step 2b of Algorithm 1 with the maximum oy, then it
follows from Lemma 4.1 that

o < Ok+1 < >\max-

We can not guarantee that the eigenvalue (X, u) of (1.1) to which (o, 7;) converges is equal
t0 (Amaxs max ), but convergence to a local optimum also may happen in the Jacobi-Davidson
method for the symmetric eigenproblem and in all projection methods. Our numerical examples
indicate that we usually do obtain the eigenvalue with the largest value of A.

We can use the algorithm to obtain the eigenvalue (X, ) of (1.1) with the maximum value
of Acosa + psina for a given parameter « if we apply the orthogonal linear substitution

! !
A=AXcosa— p sina,

p=Nsina+ u' cosa
to the problem (1.1). The associated two-parameter eigenproblem with this substitution is now

A1z = N (cos aBy + sinaCy)x + p/(— sinaB; + cos aCy)x,

4.3
(43) Agy = N (cos aBsy + sinaCh)y + p'(— sin By + cos aCy)y.

The operator determinant Ay remains unchanged and the substituted problem (4.3) is right
definite as well. Using orthogonal linear substitutions we can thus obtain exterior eigenvalues
of (1.1) in chosen directions in the (A, p)-plane.

4.2. Interior eigenvalues. Suppose that we are interested in the eigenvalue (A, u) of (1.1)
closest to a specific target (Ao, po). Let us denote such an eigenvalue as (Aing, fint)-

Similar to the algorithm for exterior eigenvalues we decide to select the Ritz value nearest
to the target in each Step 2b of Algorithm 1. The convergence for interior Ritz values is not
so nice as for the exterior ones. If a Ritz value (o, 7) is close enough t0 (Amaxs fimax) then the
Ritz vector corresponding to (o, 7) is a good approximation to the eigenvector corresponding to
(Amaxs #max)- On the contrary, if (o, 7) is close to (Aint, itint) then the Ritz vector corresponding
to (o, 7) may be a poor approximation to the eigenvector corresponding to (Aint, fhint), just as in
the real symmetric eigenproblem.

Numerical examples in §7 show that although the convergence is very irregular, the method
can still be used to compute the eigenvalue closest to the target. It turns out that for interior
eigenvalues good approximations for new search directions are needed which may be obtained
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with more GMRES steps for the correction equations. The number of GMRES steps is of
large influence. The more steps of GMRES we take, the better updates for the approximate
eigenvectors will be added to the search spaces. If we take too many steps then the method often
converges to an eigenvalue (X, 1) # (Aint, fint)- On the other hand, if we take too few GMRES
steps then we need many outer iterations or we have no convergence at all.

If we are interested in interior eigenvalues of a symmetric eigenproblem Az = Az then one of
the possible tools are harmonic Ritz values. The question remains how to generalize harmonic
Ritz values to a right definite two-parameter eigenvalue problem. We believe that any progress
on this subject might lead to better methods for interior eigenvalues.

Remark. It is easy to see that Step 2b of Algorithm 1 can be modified in a similar manner
if we are interested in the eigenvalue (A, uz) of (1.1) with the maximum value of A2 + p2.

5. Computing more eigenpairs. Suppose that we are interested in p > 1 eigenpairs of
(1.1). In one-parameter problem various deflation techniques can be applied in order to compute
more than one eigenpair. In this section we first show difficulties that are met when we try to
translate standard deflation ideas from one-parameter problems to two-parameter problems. We
then propose a selection method for Ritz vectors that makes it possible to obtain more than one
eigenpair for two-parameter problems.

If (£, 2) is an eigenpair of a symmetric matrix A then all other eigenpairs can be computed
from the projection of A onto the subspace z*. Similarly, if (X, ) is an eigenvalue of (1.1) and
z ® y is the corresponding eigenvector then all other eigenvectors lie in the subspace

(z@y)t20 :={ze€ 8: 2T Ag(z ®y) = 0}

of the dimension ning — 1. By comparing the dimensions it is clear that the subspace (z ®y)J‘A0
can not be written as Y ® V, where Y C R and V C R"2. Therefore, this kind of deflation can
not be applied to Algorithm 1.

Another popular deflation of a symmetric matrix A is to use the matrix A’ = A — £z27.
Matrix A’ has the same eigenvalues as matrix A except for ¢ which is transformed into 0. A
generalization of this approach would be to transform the two-parameter problem (1.1) into a
two-parameter problem with the same eigenvalues as of (1.1) except for the eigenvalue (A, u)
which should be transformed into (0,0). Since in a two-parameter problem there can exist
eigenvalues (A, ) and (X, p') with eigenvectors z ® y and 2/ ® ¢/, respectively, such that (A, u) #
(M, p') and z = 2/, this approach would again work only if we apply the associated problem
(1.4) in the tensor product space S. But, then we have to work with large A; matrices and this
is too expensive.

We propose the following approach. Suppose that we have already found p eigenvalues (\;, 1;)
and eigenvectors x; ® y;, 1 = 1,...,p. Based on the fact that eigenvectors are Ag-orthogonal
(see (1.5)) we adjust Algorithm 1 so that in Step 2b we consider only those Ritz vectors u ® v
which satisfy

(5.1) [(u®v) Ag(a; @ yi)| <nfori=1,....p

for an n > 0. Suppose that we are interested in eigenvalues with the maximum values of A.
Then in Step 2b we first order Ritz pairs (o, 7;),u; ® v; by their o values so that o; > o; for
i < j and then we select the Ritz pair that satisfies (5.1) and has the minimal index. In the case
of interior eigenvalues a different ordering is used.

If none of the Ritz pairs meets (5.1) then we take the Ritz pair with index 1, but in this
case the algorithm is not allowed to stop. This is achieved by a change of the stopping criterion
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in Step 2d where in addition to a small residual norm (3.3) we now also require that the Ritz
vector u ® v satisfies (5.1). This guarantees that the method does not converge to the already
computed eigenpairs.

The bound 7 should not be taken too small in order to avoid that none of the Ritz vectors is
sufficiently Ag-orthogonal to the set of already computed eigenvectors. In numerical experiments
in §7 we use

1
n=~- max |(z; ®y) Aoz ®y;)|

i=1,...,p

and that value successfully prevents the method from converging to the already computed eigen-
pairs.

All other steps of Algorithm 1 remain unchanged. Numerical results in §7 show that this
approach enables us to compute more than one eigenpair.

6. Time complexity. We examine the time complexity of one outer iteration step of Algo-
rithm 1. Let n = ny = no, let k be the dimension of the search spaces, and let m be the number
of GMRES (MINRES) steps for a correction equation. The two steps that largely determine the
time complexity are Step 2a and Step 2e. In Step 2a we first construct the smaller projected
problem (3.1). We need to compute only the last row (and column) of matrices in (3.1). In the
second part of Step 2a we solve (3.1) by solving its associated problem with matrices of size k2
and thus we need O (k%) [9].

First we assume that matrices A;, B;, and C; are sparse. This is true in many applications, for
instance when two-parameter Sturm-Liouville problems [10] are discretized. Because MINRES
and GMRES are methods intended for sparse matrices the Jacobi—Davidson type method can in
principle handle very large sparse problems. For such problems the time complexities of Steps
2a and 2e can be expressed as 6 MV + O(k%) and 6m MV, respectively, where MV stands for a
matrix-vector multiplication with an n X n matrix.

The analysis for dense matrices A;, B;, and C; is as follows. In Step 2a we need O(n?) for
the construction of the smaller problem (3.1) and additional O (k%) for the solution of (3.1). As
in practice only very small values of k are used we can assume that & = O(n!/?) and thus the
time complexity of Step 2a is O(n?).

If we use correction equations (3.20), (3.21) with orthogonal projections and perform m steps
of MINRES then the time complexity of Step 2e is O(mn?) when we perform m matrix-vector
multiplications. We obtain the same time complexity for Step 2e when we use the correction
equation (3.26) with oblique projections and do m steps of GMRES. The only difference is that
we are working with one matrix of size 2n while we are working with two matrices of size n if
we use orthogonal projections.

Based on the above assumptions the time complexity of one outer step of Algorithm 1 for
dense matrices is O(mn?). Also important is the storage requirement. If an algorithm works
with matrices A;, B;, and C; as Algorithm 1 does then it requires O(n?) memory. The methods
that work with the associated system (1.4) need O(n*) memory, which may exceed memory fast,
even for modest values of n.

7. Numerical examples. We present some numerical examples obtained with Matlab 5.3.
If the dimension of the matrices is n = n; = ny = 100 then none of the existing methods that
work in the tensor product space is able to compute all eigenpairs in a reasonable time [16].
Therefore, we construct right definite two-parameter examples where the exact eigenpairs are
known, which enables us to check the obtained results.
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We construct our right definite two-parameter examples in the following way. We take
matrices

(7.1) A =QiFQF, B, =QGQf, ¢ =qQHQl,

where F;, G;, and H; are diagonal matrices and @Q); is a random orthogonal matrix for ¢ = 1, 2.
We select diagonal elements of matrices Fi, Fo,Go, and H; as uniformly distributed random
numbers from the interval (0,1) and diagonal elements of G; and Hj, as uniformly distributed
random numbers from the interval (1,2). The determinant (1.2) is clearly strictly positive for
nonzero z,y and the obtained two-parameter problem is right definite. All matrices are of
dimension n X n.

Let us denote F; = diag(fi1, ..., fin), Gi = diag(gi1,- - -, gin), and H; = diag(hij1, ..., hin). It
is easy to see that eigenvalues of the two-parameter problem (1.1) are solutions of linear systems

f1i = Agii + phag,
f2j = Agaj + phoj

for 4,57 =1,...,n. This enables us to compute all the eigenvalues from the diagonal elements of
F;,G;, H; for i = 1,2. In order to construct a two-parameter problem that has the point (0,0)
in the interior of the convex hull of all the eigenvalues we take the shifted problem

(A1 — )\031 — ,U,()Cl)I = ()\ — )\0)B1$ + (,u - NU)ClI,
(A2 — Ao Bz — 10C2)y = (A — Ao) Bay + (1 — o) Cay,
where the shift (Mg, u0) is the arithmetic mean of all the eigenvalues. Figure 7.1 shows the

distribution of eigenvalues obtained for n = 100.

Fia. 7.1. Distribution of eigenvalues for a right definite two-parameter problem of size n = 100.

15

0.5f

For the following numerical examples we use GMRES instead of MINRES in the correction
equation with orthogonal projections because MINRES is not standard available in Matlab 5.3.

Ezample 1. In the first example we use the Jacobi-Davidson type method for the exterior
eigenvalues. Our goal is to compute the eigenvalue (Amax, fimax) With the maximum value of A.
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We are interested in the number of iterations that the Jacobi—-Davidson method needs for suffi-
ciently accurate approximations and also in the percentage of the convergence to the eigenvalue
(Amaxs #max) for a test set of 250 different initial vectors.

We test both alternatives for the correction equations using various numbers of GMRES
steps. Each combination is tested on the same set of 250 random initial vectors. The algorithm
is restarted after every 10 iterations with the current eigenvector approximation, so Iy = 10
and Iy, = 1. The value € = 1078 is used for the test of convergence and flops count in Matlab
are used for a measure of time complexity.

TABLE 7.1
Statistics of the Jacobi-Davidson type method for the eigenvalue (Amax, max) using different correction equa-
tions and number of GMRES steps for right definite two-parameter problems of size n = 100 and n = 200: average
number of outer iterations, percentage of convergence to (Amax, bmax), and average number of flops over 250 tri-
als with different random initial vectors. Correction equations: JO(m) - orthogonal projections and m steps of
GMRES, JS(m) - oblique projections and m steps of GMRES.

correction n = 100 n = 200
equation iterations | percentage | flops iterations | percentage | flops
JO(1)=JS(1) 105.4 100.0 % | 4.6 - 108 68.9 100.0 % | 3.4-10%
JO(2) 50.0 100.0 % | 2.2-10% 35.6 100.0 % | 2.0-108
JO(4) 26.7 100.0 % | 1.1-108 25.7 100.0 % | 1.6-10%
JO(8) 23.3 99.2 % | 1.1-108 27.7 99.2 % | 2.1-108
JO(16) 25.4 30.0 % | 1.4-108 34.0 48.4 % | 3.6-10°
JO(32) 29.8 38.0 % | 2.2-108 42.8 104 % | 7.2-108
JO(64) 33.1 28.0 % | 4.0 - 108 51.6 9.6 % | 16.0 - 108
JS(2) 96.4 100.0 % | 4.6 - 108 94.4 100.0 % | 6.1-10°
JS(4) 99.9 100.0 % | 5.0 - 108 92.9 100.0 % | 6.6-10%
JS(8) 63.9 100.0 % | 3.3 - 108 62.4 100.0 % | 5.2-10°
JS(16) 45.2 94.0 % | 2.6 - 108 53.5 98.4 % | 6.0-10°
JS(32) 41.9 82.4 % | 3.2-108 55.4 708 % | 9.6-108
JS(64) 39.7 66.0 % | 4.9 - 108 56.0 35.6 % | 17.6 - 10®

Table 7.1 contains results obtained for n = 100 and n = 200. JO(m) and JS(m) denote
that m steps of GMRES are used for the correction equation with orthogonal projections or
with oblique projections, respectively. For each combination we list the average number of
outer iterations for convergence, the percentage of eigenvalues that converged to the eigenvalue
(Amaxs #max), and the average number of flops in Matlab, all obtained on the same set of 250
different initial vectors.

The results in Table 7.1 indicate that the method is likely to converge to an unwanted
eigenvalue if we solve the correction equation too accurately, i.e. if too many GMRES steps are
used to solve the correction equation. A comparison of the flops suggests that the best approach
is to do a few steps of GMRES. We also see that for larger n the number of GMRES steps has
more impact on the time complexity than the number of outer iterations. The reason is that for
larger n the factor k% becomes relatively smaller compared to mn?.

The correction equations with orthogonal projections behave similarly to the one with oblique
projections but require less operations. The experiments suggest to use the correction equations
with orthogonal projections in combination with a small number of GMRES steps in each outer
iteration for (Amax, fimax)-

Ezample 2. In the second example the convergence to the exterior eigenvalue for the two-
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parameter problem of dimension n = 100 and initial vectors u = v = [1 --- 1]T is examined.
We compare the convergence for 2, 10, and 25 GMRES steps per iteration for the correction
equation with orthogonal and the one with oblique projections, respectively. Figure 7.2 shows
the log;o plot of residual norm py (3.3) versus the outer iteration number k. In all six cases the
Ritz values converge to the eigenvalue (Amax, fimax)-

FIG. 7.2. Convergence plot for the exterior eigenvalue (Amax, fimax) forn =100 andu=v =1[1 --- 1]7. The
plots show the log,, of the residual norm py (3.3) versus the outer iteration number k for the Jacobi-Davidson
type method for the eigenvalue (Amax, ftmax) using 2 (solid line), 10 (dotted line), and 25 (dashed line) GMRES
steps to solve the correction equation with orthogonal projections (left plot) and oblique projections (right plot),
respectively.
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It is clear from Figure 7.2 that convergence near the solution is faster if more GMRES
steps are used. Experiments indicate that if only a few steps of GMRES are applied then the
convergence near the solution is about linear, similar to the Jacobi-Davidson method for the
standard eigenvalue problem [20, p. 419].

Ezample 3. In this example we examine the convergence of the Jacobi-Davidson type method
for the interior eigenvalues. We look for the eigenvalue closest to (0,0). We use the same n = 100
two-parameter problem as in Example 1 and again test both correction equations with different
number of GMRES steps on a set of 250 different initial vectors. The algorithm is restarted
after every 10 iterations with the current eigenvector approximation. For the convergence test
we take € = 1076, The reason for a more relaxed criterion is an irregular convergence of the
interior eigenvalues (see the peaks in Figure 7.3).

The results, presented in Table 7.2, show that the method may also be used effectively
for interior eigenvalues. In contrast to Example 1, more GMRES steps are required for one
outer iteration step. If too many steps are applied then the process converges to an unwanted
eigenvalue, similar to Example 1. On the other hand, if we do not take enough GMRES steps
then we need many outer iteration steps and the results may be worse. This is different from
Example 1 where the process converges in reasonable time even if only one GMRES step is
applied per Jacobi-Davidson iteration step. The correction equation with oblique projections is
more effective than the one with orthogonal projections. It is more expensive but the probability
of coming close to the eigenvalue closest to (0,0) is higher.

Ezample 4. We examine the convergence to the eigenvalue closest to (0,0) for the two-
parameter problem of size n = 100 and initial vectors u = v = [1 --- 1]T. Figure 7.3 shows
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TABLE 7.2
Statistics of the Jacobi—Davidson type method for the eigenvalue closest to (0,0) using different correction
equations and different inner iteration processes for a right definite two-parameter problem of size n = 100: average
number of iterations, percentage of convergence to the eigenvalue closest to (0,0), and average number of flops
over 250 trials with different random initial vectors. Correction equations: JO(m) - orthogonal projections and
m steps of GMRES, JS(m) - oblique projections and m steps of GMRES.

‘ correction equation ‘ iterations ‘ percentage ‘ flops ‘
JO(90) 15.2 80.8 % | 2.4-10°
JO(80) 15.9 89.2 % | 2.2-108
JO(70) 18.9 90.0 % | 2.4-10%
JO(60) 23.3 91.2 % | 2.5-10%
JO(50) 32.8 79.6 % | 3.2-108
JO(40) 41.4 81.6 % | 3.5-108
JO(30) 76.5 72.8 % | 5.8-108
JO(20) 219.2 63.2 % | 14.4-108
JS(90) 20.2 92.4 % | 4.7-10%
JS(80) 21.1 96.4 % | 4.3-10%
JS(70) 24.2 95.6 % | 4.4-10%
JS(60) 29.0 94.4 % | 4.7-10%
JS(50) 38.1 93.2 % | 5.4-108
JS(40) 47.0 93.2 % | 5.7-108
JS(30) 82.9 94.0 % | 8.5-108
JS(20) 239.7 84.0 % | 20.5-10%

FIG. 7.3. Convergence plot for the eigenvalue closest to (0,0) forn =100 and u =v ={[1 --- 1]T. The plots
show the log,, of the residual norm pj (3.8) versus the outer iteration number k for the Jacobi-Davidson type
method for the eigenvalue closest to (0,0) using 40 (solid line), 60 (dotted line), and 80 (dashed line) GMRES
steps to solve the correction equation with orthogonal projections (left plot) and oblique projections (right plot),
respectively.
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the log;, plot of residual norms pj (3.3) versus the outer iteration number k. We compare
40, 60, and 80 GMRES steps for the correction equation with orthogonal and with oblique
projections, respectively. In all six cases the Ritz values converge to the eigenvalue closest to
(0,0). We observe that the more GMRES steps are taken, the fewer iteration steps are needed.
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The convergence is not as smooth as in Figure 7.2 for Example 2 but the algorithm is clearly
useful for interior eigenvalues.

Ezample 5. In the last example we test the selection technique from §5 for computing more
eigenpairs for the two-parameter problem of dimension n = 100. With 5 GMRES steps for the
correction equation with orthogonal projections we try to compute 30 successive eigenvalues
with the maximum value of A. Figure 7.4 shows how well the first 15 and all 30 computed
eigenvalues agree with the desired eigenvalues, respectively.

Fia. 7.4. First 15 (left plot) and first 30 (right plot) computed eigenvalues with mazimum value of A for
a two-parameter problem of size n = 100 computed using selection for Ritz vectors. The Jacobi-Davidson type
method used 5 GMRES steps for the correction equation with orthogonal projections.

-0.5 T T T -0.5 T T T
. exact .. - exact
. . O computed . D) O computed
06 - - 1 06 - 1
. © O] O
-0.7¢ ® 1 07 ®
: .""/.\
< @&
H-0.8 Yo L0 1 H-o08r ¥y L0
. os . os
-0.9¢ . - 1 -09f )
© o © 5
_17 % G) ] _17 % G)
- §
-1. . L . -1. . L .
%.7 0.8 0.9 1 1.1 %.7 0.8 0.9 1 1.1
A A

The eigenvalues are not necessarily computed in the same order as their A values. This
explains the situation in Figure 7.4 where some eigenvalues that are in the top 30 by their A
values are not among the 30 computed eigenvalues. In order to obtain the top k eigenvalues
with high probability it is therefore advisable to always compute more than k eigenvalues.

8. Conclusions. We have presented a new Jacobi—Davidson type method for a right defi-
nite two-parameter eigenvalue problem. It has several advantages over the existing methods. It
can compute selected eigenpairs and it does not require good initial approximations. Probably
the most important advantage is that it can tackle very large two-parameter problems, especially
if the matrices A;, B;, and C; are sparse.

We have proposed two correction equations. On one hand orthogonal projections are gen-
erally more stable than oblique projections and in addition, orthogonal projections preserve
symmetry. On the other hand, the correction equation with oblique projections can be viewed
as an inexact Newton scheme which guarantees asymptotically quadratic convergence. Numer-
ical results indicate that the correction equation with oblique projections is more reliable but
more expensive. It is therefore more suitable for the interior eigenvalues while the one with
orthogonal projections may be used for the exterior eigenvalues.

Numerical results indicate that the probability of misconvergence is low when parameters
are optimal. The number of GMRES steps is important. Experiments suggest to take up to 5
GMRES steps for exterior eigenvalues and more GMRES steps for interior eigenvalues. Restarts
also impact the behaviour of the method. In our experiments we restart the method after every
10 iterations with the current eigenvector approximations, but a different setting may further
improve the method.
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Because standard deflation techniques for an one-parameter problem can not be applied to
two-parameter problems, we came up with a new selection technique for Ritz vectors.
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