
A JACOBI{DAVIDSON TYPE METHOD FOR A RIGHT DEFINITETWO-PARAMETER EIGENVALUE PROBLEM�MICHIEL HOCHSTENBACHy, BOR PLESTENJAKz xAbstrat. We present a new numerial iterative method for omputing seleted eigenpairs of a right de�nitetwo-parameter eigenvalue problem. The method works even without good initial approximations and is able totakle large problems that are too expensive for existing methods. The new method is similar to the Jaobi{Davidson method for the eigenvalue problem. In eah step we �rst ompute Ritz pairs of a small projeted rightde�nite two-parameter eigenvalue problem and then expand the searh spaes using approximate solutions ofappropriate orretion equations. We present two alternatives for the orretion equations, introdue a seletiontehnique that makes it possible to ompute more than one eigenpair, and give some numerial results.Key words. Right de�nite two-parameter eigenvalue problem, subspae method, Jaobi{Davidson method,orretion equation, Ritz pair, inexat Newton's method.AMS subjet lassi�ations. 65F15, 15A18, 15A69.1. Introdution. We are interested in omputing one or more eigenpairs of a right de�nitetwo-parameter eigenvalue problem A1x = �B1x+ �C1x;(1.1) A2y = �B2y + �C2y;where Ai; Bi; and Ci are given real symmetri ni�ni matries for i = 1; 2 and �; � 2 R, x 2 Rn1 ,y 2 Rn2 . A pair (�; �) is alled an eigenvalue if it satis�es (1.1) for nonzero vetors x; y. Thetensor produt x 
 y is the orresponding eigenvetor. The ondition for right de�niteness isthat the determinant ����xTB1x xTC1xyTB2y yTC2y ����(1.2)is stritly positive for all nonzero vetors x 2 Rn1 , y 2 Rn2 . Right de�niteness and symmetryof matries Ai; Bi; and Ci imply that there exist n1n2 linearly independent eigenvetors for theproblem (1.1) [2℄.Multiparameter eigenvalue problems of this kind arise in a variety of appliations [1℄, par-tiularly in mathematial physis when the method of separation of variables is used to solveboundary value problems [22℄.Two-parameter problems an be expressed as two oupled generalized eigenvalue problems.On the tensor produt spae S := Rn1 
 Rn2 of the dimension N := n1n2 we de�ne matries�0 = B1 
 C2 � C1 
B2;�1 = A1 
 C2 � C1 
A2;(1.3) �2 = B1 
A2 �A1 
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2 M. HOCHSTENBACH AND B. PLESTENJAK(for details on the tensor produt see for example [2℄). Sine the tensor produt of symmetrimatries is symmetri, �i is a symmetri matrix for i = 0; 1; 2. Atkinson [2, Theorem 7.8.2℄proves that right de�niteness of (1.1) is equivalent to the ondition that �0 is positive de�nite. Healso shows that matries ��10 �1 and ��10 �2 ommute and that the problem (1.1) is equivalentto the assoiated problem �1z = ��0z;(1.4) �2z = ��0z;for deomposable tensors z 2 S, z = x
 y. The eigenvetors of (1.1) are �0-orthogonal, i.e. ifx1 
 y1 and x2 
 y2 are eigenvetors of (1.1) orresponding to di�erent eigenvalues, then(x1 
 y1)T�0(x2 
 y2) = ����xT1B1x2 xT1 C1x2yT1 B2y2 yT1 C2y2 ���� = 0:(1.5)Deomposable tensors xi 
 yi for i = 1; : : : ; N form a omplete basis for S.There exist numerial methods for right de�nite two-parameter eigenvalue problems. Firstof all, the assoiated problem (1.4) an be transformed in suh a way that it an be solved bynumerial methods for simultaneous diagonalization of ommutative symmetri matries [14, 21℄.This is only feasible for problems of low dimension as the size of the matries of the assoiatedproblem is N � N . Among other methods we mention those based on Newton's method [7℄,the gradient method [5, 6, 8℄, and the Minimal Residual Quotient Iteration [4℄. A de�ieny ofthese methods is that they require initial approximations lose enough to the solution in orderto avoid misonvergene.The ontinuation method [16, 17℄ overomes problems with initial approximations but sinethe ordering of the eigenvalues is not neessarily preserved in a ontinuation step we have toompute all eigenvalues, even if we are interested only in a small portion. In this paper weintrodue a new numerial method whih is similar to the Jaobi{Davidson method for the one-parameter eigenvalue problem [20℄. The method an be used to ompute seleted eigenpairs anddoes not need good initial approximations.Our method omputes the exterior eigenvalue (�; �) of (1.1) whih has the maximum valueof � os�+� sin� for a given �. We also present a version that omputes the interior eigenpairlosest to a given pair (�0; �0), i.e. the one with minimum (�� �0)2 + (�� �0)2.The outline of the paper is as follows. We generalize the Rayleigh{Ritz approah to rightde�nite two-parameter eigenvalue problems in x2. In x3 we present a Jaobi{Davidson typemethod for right de�nite two-parameter eigenvalue problems and introdue two alternatives forthe orretion equations. We disuss how the method an be used for exterior and interioreigenvalues in x4. In x5 we present a seletion tehnique that allows to ompute more than oneeigenpair. The time omplexity is given in x6 and some numerial examples are presented in x7.Conlusions are summarized in x8.2. Subspae methods and Ritz pairs. The Jaobi{Davidson method [20℄ is one of thesubspae methods that may be used for the numerial solution of one-parameter eigenvalueproblems (for an overview of subspae methods see for example [3℄). The ommon prinipleof subspae methods is to ompute aurate eigenpairs from low dimensional subspaes. Thisapproah redues omputational time and memory usage and thus enables us to takle largerproblems that are too expensive for methods that work in the entire spae.A subspae method works as follows. We start with a given searh subspae from whihapproximations for eigenpairs are omputed (extration). In the extration we usually have



J{D METHOD FOR A TWO-PARAMETER EIGENVALUE PROBLEM 3to solve the same type of eigenvalue problem as the original one, but of a smaller dimension.After eah step we expand the subspae by a new diretion (expansion). The idea is that asthe searh subspae grows, the eigenpair approximations will onverge to an eigenpair of theoriginal problem. In order to keep omputation osts low, we usually do not expand the searhspae to the whole spae. If the proess does not onverge in a ertain number of iterations thenthe method is restarted with a few seleted approximations as the basis of a new searh spae.In this setion we disuss the extration, in the next setion the algorithm and the expansion.The Rayleigh{Ritz approah de�nes approximations for the eigenpairs that an be extratedfrom the given subspae (see for instane [15℄). We generalize the Rayleigh{Ritz approahfor the two-parameter eigenvalue problem as follows. Suppose that the k-dimensional searhsubspaes Uk of Rn1 and Vk of Rn2 are represented by matries Uk 2 Rn1�k and Vk 2 Rn2�kwith orthonormal olumns, respetively. The Ritz{Galerkin onditions(A1 � �B1 � �C1)u ? Uk;(A2 � �B2 � �C2)v ? Vk;where u 2 Uknf0g and v 2 Vknf0g, lead to the smaller projeted right de�nite two-parameterproblem UTk A1Uk = �UTk B1Uk+ �UTk C1Uk;(2.1) V Tk A2Vkd = �V Tk B2Vkd+ �V Tk C2Vkd;where u = Uk 6= 0, v = Vkd 6= 0, ; d 2 Rk , and �; � 2 R.We say that an eigenvalue (�; �) of (2.1) is a Ritz value for the two-parameter eigenvalueproblem (1.1) and subspaes Uk;Vk. If (�; �) is an eigenvalue of (2.1) and  
 d is the orre-sponding eigenvetor, then u 
 v is a Ritz vetor, where u = Uk and v = Vkd. Altogether weobtain k2 Ritz pairs that are approximations to the eigenpairs of (1.1). It is easy to hek thatif u 
 v is a Ritz vetor orresponding to the Ritz value (�; �) then � and � are equal to thetensor Rayleigh quotients [16℄� = �1(u; v) = (u
 v)T�1(u
 v)(u
 v)T�0(u
 v) = (uTA1u)(vTC2v)� (uTC1u)(vTA2v)(uTB1u)(vTC2v)� (uTC1u)(vTB2v) ;� = �2(u; v) = (u
 v)T�2(u
 v)(u
 v)T�0(u
 v) = (uTB1u)(vTA2v)� (uTA1u)(vTB2v)(uTB1u)(vTC2v)� (uTC1u)(vTB2v) :In order to obtain Ritz values we have to solve small right de�nite two-parameter eigenvalueproblems. For this purpose one of the available numerial methods that omputes all eigenpairsof a small right de�nite two-parameter eigenvalue problem an be used. For instane, theassoiated problem (1.4) an be solved using methods for simultaneous diagonalization of twoommutative symmetri matries [14, 21℄.3. Jaobi{Davidson method. The Jaobi{Davidson method [20℄ is a subspae methodwhere approximate solutions of ertain orretion equations are used to expand the searh spae.Jaobi{Davidson type methods restrit the searh for a new diretion to the subspae that isorthogonal or oblique to the last hosen Ritz vetor.Jaobi{Davidson type methods have been suessfully applied to the eigenvalue problem[20, 13℄, to the generalized eigenvalue problem [18℄, and to the singular value problem [12℄. Inthis paper we show that a Jaobi{Davidson type method an be applied to the right de�nitetwo-parameter problem as well.



4 M. HOCHSTENBACH AND B. PLESTENJAKA brief sketh of the Jaobi{Davidson type method for the right de�nite two-parameterproblem is presented in Algorithm 1. In Step 2b we have to deide whih Ritz pair to selet. Wegive details of this step in x4 where we disuss how to deal with exterior and interior eigenvalues.In Step 2e we have to �nd new searh diretions in order to expand the searh subspaes. Wewill disuss two possible orretion equations for Step 2e later in this setion.Algorithm 11. Start. Choose initial nontrivial vetors u and v.a) Compute u1 = u=kuk, v1 = v=kvk and set U1 = [u1℄, V1 = [v1℄.b) Set k = 1.2. Iterate. Until onvergene or k > kmax do:a) Solve the projeted right de�nite two-parameter eigenvalue problemUTk A1Uk = �UTk B1Uk+ �UTk C1Uk;(3.1) V Tk A2Vkd = �V Tk B2Vkd+ �V Tk C2Vkd:b) Selet an appropriate Ritz value (�; �) and the orresponding Ritz vetor u 
 v,where u = Uk, v = Vkd.) Compute the residuals r1 = (A1 � �B1 � �C1)u;(3.2) r2 = (A2 � �B2 � �C2)v:d) Stop if �k � � where �k = (kr1k2 + kr2k2)1=2:(3.3)e) Compute new searh diretions s and t.f) Expand the searh subspaes. SetUk+1 = RGS(Uk; s);Vk+1 = RGS(Vk; t);where RGS denotes the repeated Gram{Shmidt orthonormalization.g) Set k = k + 1.h) Restart. If the dimension of Uk and Vk exeeds lmax then replae Uk, Vk with neworthonormal bases of dimension lmin.To apply this algorithm we need to speify a tolerane �, a maximum number of steps kmax,a maximum dimension of the searh subspaes lmax, and a number lmin < lmax that spei�es thedimension of the searh subspaes after a restart.A larger searh spae involves a larger projeted problem (2.1). The existing methods areable to solve only low-dimensional two-parameter problems in a reasonable time. Therefore, weexpand searh spaes up to the preseleted dimension lmax and then restart the algorithm. Fora restart we take the most promising lmin eigenvetor approximations as a basis for the initialsearh spae.Suppose that we have omputed new diretions s and t for the searh spaes Uk+1 and Vk+1,respetively. We expand the searh spaes simply by adding new olumns to the matries Ukand Vk. For reasons of eÆieny and stability we want orthonormal olumns and therefore we



J{D METHOD FOR A TWO-PARAMETER EIGENVALUE PROBLEM 5orthonormalize s against Uk and t against Vk by a stable form of the Gram-Shmidt orthonor-malization.The next theorem expresses that if the residuals (3.2) are small then the Ritz value (�; �) isa good approximation to an eigenvalue of (1.1). This justi�es the riterion in Step 2d.Theorem 3.1. If (�; �) is a Ritz value and r1; r2 are the residuals (3.2), then there existsan eigenvalue (�; �) of the right de�nite two-parameter problem (1.1) suh that(�� �)2 + (�� �)2 � k��10 kh(kB1kkr2k+ kB2kkr1k)2 + (kC1kkr2k+ kC2kkr1k)2i:(3.4)Proof. In order to prove (3.4) we onsider the assoiated problem (1.4). First we derive arelation between the residuals (3.2) and the residuals of the assoiated problem. We denotep1 = �1(u
 v)� ��0(u
 v);(3.5) p2 = �2(u
 v)� ��0(u
 v);where u; v are the normalized Ritz vetors from Step 2b. From (1.3) and (3.2) it follows thatp1 = �C1u
 r2 + r1 
 C2v;p2 = B1u
 r2 � r1 
B2vand we have the bounds kp1k � kC1kkr2k+ kC2kkr1k;(3.6) kp2k � kB1kkr2k+ kB2kkr1k:Now we return to the residuals (3.5). As �0 is a symmetri positive de�nite matrix we antransform (3.5) into ��1=20 p1 = G1w � �w;(3.7) ��1=20 p2 = G2w � �w;where w = �1=20 (u 
 v) and Gi = ��1=20 �i��1=20 for i = 1; 2. The matries G1 and G2 aresymmetri and ommute beause the matries ��10 �1 and ��10 �2 ommute. As a result thereexists a ommon orthonormal basis of eigenvetors w1; : : : ; wN suh thatG1wi = �iwi;(3.8) G2wi = �iwi;where (�i; �i), i = 1; : : : ; N , are the eigenvalues of (1.1). In the eigenvetor basis we andeompose w as w =PNj=1 �jwj. From (3.7) and (3.8) we get��1=20 p1 = NXj=1 �j(�j � �)wj ;(3.9) ��1=20 p2 = NXj=1 �j(�j � �)wj



6 M. HOCHSTENBACH AND B. PLESTENJAKand k��1=20 p1k2 + k��1=20 p2k2 = NXj=1 �2j�(�j � �)2 + (�j � �)2�:Sine PNj=1 �2j = 1 it follows thatminj=1;:::;N �(�j � �)2 + (�j � �)2� � k��1=20 p1k2 + k��1=20 p2k2(3.10) � k��10 k(kp1k2 + kp2k2):Finally, when we insert (3.6) into (3.10) we obtain (3.4).In the next theorem we show that if the Ritz vetor u
 v is lose to an eigenvetor x
 y ofproblem (1.1), then the residuals r1 and r2 from (3.2) are of order O(ku� xk) and O(kv � yk),respetively. This shows that the riterion in Step 2d will be ful�lled if the Ritz vetor u 
 vapproximates an eigenvetor of (1.1) well enough.Theorem 3.2. Let (�; �) be a Ritz value of (1.1) with the orresponding Ritz vetor u
 v,where u and v are normalized. If (u+s)
(v+t) is an eigenvetor of (1.1) with the orrespondingeigenvalue (�; �) then we an bound the error of (�; �) asp(�� �)2 + (�� �)2 = O(ksk2 + ktk2)(3.11)and the norm of the residuals r1; r2 from (3.2) askr1k � kA1 � �B1 � �C1kksk+O(ksk2 + ktk2);(3.12) kr2k � kA2 � �B2 � �C2kktk+O(ksk2 + ktk2):Proof. We write the residuals (3.2) asr1 = �(A1 � �B1 � �C1)s+ (�� �)B1u+ (�� �)C1u;(3.13) r2 = �(A2 � �B2 � �C2)t+ (�� �)B2v + (�� �)C2v:When we multiply equations (3.13) by uT and vT , respetively, and take into aount thatuT r1 = vT r2 = 0 then we obtain�uTB1u uTC1uvTB2v vTC2v � ��� ��� � � = � � sT (A1 � �B1 � �C1)stT (A2 � �B2 � �C2)t � :(3.14)The system (3.14) is nonsingular beause of right de�niteness. From (3.14) it follows that��� ��� � � = � uTB1u uTC1uvTB2v vTC2v ��1 � sT (A1 � �B1 � �C1)stT (A2 � �B2 � �C2)t � = O(ksk2 + ktk2)and we get (3.11). The bound (3.12) is now a result of (3.13) and (3.11).In the following two subsetions the expansion for our Jaobi{Davidson method is disussed.We present two alternatives for the orretion equations for the right de�nite two-parametereigenvalue problem. Let (�; �) be a Ritz value that approximates the eigenvalue (�; �) of (1.1)and let u
 v be its orresponding Ritz vetor. Let us assume that u and v are normalized.



J{D METHOD FOR A TWO-PARAMETER EIGENVALUE PROBLEM 73.1. Corretion equations with orthogonal projetions. The �rst alternative for theorretion equations is a generalization of the approah used in [20℄ for the one-parametereigenvalue problem. We are searhing for orthogonal improvements of the vetors u and v ofthe form A1(u+ s) = �B1(u+ s) + �C1(u+ s);(3.15) A2(v + t) = �B2(v + t) + �C2(v + t);(3.16)where s ? u and t ? v.Let r1 = (A1 � �B1 � �C1)u;r2 = (A2 � �B2 � �C2)vbe the residuals of Ritz vetor u
 v and Ritz value (�; �). We an rewrite (3.15) and (3.16) as(A1 � �B1 � �C1)s = �r1 + (�� �)B1u+ (�� �)C1u+ (�� �)B1s+ (�� �)C1s;(3.17) (A2 � �B2 � �C2)t = �r2 + (�� �)B2v + (�� �)C2v + (�� �)B2t+ (�� �)C2t:(3.18)In this subsetion, we treat the equations (3.17) and (3.18) separately. From Theorem 3.2 itfollows that k(� � �)B1u+ (�� �)C1uk = O(ksk2 + ktk2). Asymptotially (i.e. when u 
 v islose to an eigenvetor of (1.1)), s and t are �rst order orretions and (���)B1u+(�� �)C1urepresents some seond order orretion. In the same sense, the term (�� �)B1s+ (�� �)C1san be interpreted as a third order orretion.If we ignore seond and higher order terms in (3.17) then we obtain the equation(A1 � �B1 � �C1)s = �r1:(3.19)Beause r1 and s are orthogonal to u, we an multiply (3.19) with the orthogonal projetion(I � uuT ) and write (I � uuT )s instead of s. Thus we obtain the orretion equation for thevetor u (I � uuT )(A1 � �B1 � �C1)(I � uuT )s = �r1:(3.20)In a similar way we obtain from (3.18) the orretion equation for the vetor v(I � vvT )(A2 � �B2 � �C2)(I � vvT )t = �r2:(3.21)From (3.20) and (3.21) it is lear that the orthogonal projetions preserve the symmetryof the matries. Another advantage of orthogonal projetions is that they are stable and easyto implement. The systems (3.20) and (3.21) for s and t are not of full rank but they areonsistent. We solve them only approximatel with a Krylov subspae method with initial guess0, for instane by a few steps of MINRES. If we do just one step of MINRES, then s andt are salar multiples of r1 and r2, respetively, and then, in the sense that we expand thesearh spaes by the residuals, we have an Arnoldi type method, similar to the situation for thestandard eigenproblem [20℄.



8 M. HOCHSTENBACH AND B. PLESTENJAK3.2. Corretion equation with oblique projetions. As in the orretion equationswith orthogonal projetions we start with the equations (3.17) and (3.18). We neglet the thirdorder orretion terms (� � �)B1s + (�� �)C1s and (� � �)B2t + (� � �)C2t, but rather thennegleting the seond order terms (� � �)B1u + (� � �)C1u and (� � �)B2v + (� � �)C2v weprojet them to 0 using an oblique projetion.If we de�ne M = �A1 � �B1 � �C1 00 A2 � �B2 � �C2 �and r = � r1r2 � ;then we an reformulate (3.17) and (3.18) (without negleted third order orretion terms) asM � st � = �r + (�� �) �B1uB2v �+ (�� �) �C1uC2v � :(3.22)Let V 2 R(n1+n2)�2 be a matrix with olumns (for reasons of stability preferably orthonormal)suh that span(V ) = span��B1uB2v � ; �C1uC2v ��and let W 2 R(n1+n2)�2 be W = �u 00 v � :With the oblique projetion P = I � V (W TV )�1W Tonto span(V )? along span(W ), it follows thatPr = r and P �B1uB2v � = P �C1uC2v � = 0:(3.23)Therefore, from multiplying (3.22) by P we obtainPM � st � = �r:(3.24)Furthermore, sine s ? u and t ? v it follows thatP � st � = � st �(3.25)and the result is the orretion equationPMP � st � = �r;(3.26)



J{D METHOD FOR A TWO-PARAMETER EIGENVALUE PROBLEM 9for s ? u and t ? v.The orretion equation (3.26) is again not of full rank but onsistent and it is often suÆientto solve it only approximately (e.g. by a few steps of GMRES). As before, if we do one step ofGMRES then s and t are salar multiples of r1 and r2, respetively.The Jaobi-Davidson method for the one-parameter problem an be viewed as an aeleratedinexat Newton sheme [19℄. In a similar manner we now show that there is a onnetion betweenthe Jaobi{Davidson orretion equation (3.26) and Newton's method for the right de�nite two-parameter eigenvalue problem in [16℄.Eigenpairs of the two-parameter problem (1.1) are solutions of the equationG(x; y; �; �) := 26664A1x� �B1x� �C1xA2y � �B2y � �C2y12 (xTx� 1)12 (yT y � 1) 37775 = 0:(3.27)If we apply Newton's method to (3.27) and use u; v; �; � with kuk = kvk = 1 as an initialapproximation, then in order to obtain the improved approximation u+ s; v+ t; �; � we have tosolve the system2664A1 � �B1 � �C1 0 �B1u �C1u0 A2 � �B2 � �C2 �B2v �C2vuT 0 0 00 vT 0 0 37752664 st�� ��� � 3775 = 2664�r1�r200 3775 :(3.28)Lemma 3.3. The Jaobi{Davidson orretion equation (3.26), where s ? u and t ? v, isequivalent to Newton's equation (3.28). That is, if (s; t) is a solution of (3.26), then there existunique �; � suh that (s; t; � � �; � � �) is a solution of (3.28), and if (s; t; � � �; � � �) is asolution of (3.28) then (s; t) is a solution of (3.26).Proof. We an rewrite the equation (3.28) asM � st � = �r + (�� �) �B1uB2v �+ (�� �) �C1uC2v �and s ? u, t ? v, whih is exatly the equation (3.22) that appears in the derivation of theJaobi{Davidson orretion equation (3.26). The proof now follows from the relations (3.23),(3.25), and the fat that Ker(P ) = span(V ).This shows that the Jaobi{Davidson type method with the orretion equation (3.26) is aNewton sheme, aelerated by the projetion of (1.1) onto the subspae of all previous approx-imations. Therefore, we expet loally at least quadrati onvergene of the Jaobi{Davidsonmethod when the orretion equations are solved exatly.4. Seletion of Ritz values. In this setion we present di�erent options for the seletionof Ritz values in Step 2b of Algorithm 1.4.1. Exterior eigenvalues. First we disuss how to obtain the eigenvalue (�; �) of (1.1)with the maximum value of �. We denote suh an eigenvalue by (�max; �max). We show thatif we selet the Ritz value (�; �) with the maximum value of � in eah Step 2b of Algorithm 1,then the Ritz pairs will onverge monotonially to an eigenpair of (1.1).Lemma 4.1. Let (�; �) be the Ritz value for problem (1.1) and subspaes U ;V with themaximum value of �. Then � = maxu2U; v2Vu;v 6=0 (u
 v)T�1(u
 v)(u
 v)T�0(u
 v) :(4.1)



10 M. HOCHSTENBACH AND B. PLESTENJAKProof. Let the olumns of U and V be orthonormal bases for U and V, respetively. It followsfrom (1.1), (1.4) and (2.1) that if (�; �) is a Ritz pair then � is an eigenvalue of a symmetride�nite penil (U 
 V )T�1(U 
 V )� �(U 
 V )T�0(U 
 V ):(4.2)From the Minimax Theorem [11, p. 411℄ it follows that� = maxw2U
Vw 6=0 wT�1wwT�0w:Sine penil (4.2) is related to the two-parameter problem (2.1) we an restrit w to a deom-posable tensor w = u
 v, where u 2 U and v 2 V. From this (4.1) follows.If we selet the Ritz value (�k; �k) in Step 2b of Algorithm 1 with the maximum �k, then itfollows from Lemma 4.1 that �k � �k+1 � �max:We an not guarantee that the eigenvalue (�; �) of (1.1) to whih (�k; �k) onverges is equalto (�max; �max), but onvergene to a loal optimum also may happen in the Jaobi{Davidsonmethod for the symmetri eigenproblem and in all projetion methods. Our numerial examplesindiate that we usually do obtain the eigenvalue with the largest value of �.We an use the algorithm to obtain the eigenvalue (�; �) of (1.1) with the maximum valueof � os�+ � sin� for a given parameter � if we apply the orthogonal linear substitution� = �0 os�� �0 sin�;� = �0 sin�+ �0 os�to the problem (1.1). The assoiated two-parameter eigenproblem with this substitution is nowA1x = �0(os�B1 + sin�C1)x+ �0(� sin�B1 + os�C1)x;(4.3) A2y = �0(os�B2 + sin�C2)y + �0(� sin�B2 + os�C2)y:The operator determinant �0 remains unhanged and the substituted problem (4.3) is rightde�nite as well. Using orthogonal linear substitutions we an thus obtain exterior eigenvaluesof (1.1) in hosen diretions in the (�; �)-plane.4.2. Interior eigenvalues. Suppose that we are interested in the eigenvalue (�; �) of (1.1)losest to a spei� target (�0; �0). Let us denote suh an eigenvalue as (�int; �int).Similar to the algorithm for exterior eigenvalues we deide to selet the Ritz value nearestto the target in eah Step 2b of Algorithm 1. The onvergene for interior Ritz values is notso nie as for the exterior ones. If a Ritz value (�; �) is lose enough to (�max; �max) then theRitz vetor orresponding to (�; �) is a good approximation to the eigenvetor orresponding to(�max; �max). On the ontrary, if (�; �) is lose to (�int; �int) then the Ritz vetor orrespondingto (�; �) may be a poor approximation to the eigenvetor orresponding to (�int; �int), just as inthe real symmetri eigenproblem.Numerial examples in x7 show that although the onvergene is very irregular, the methodan still be used to ompute the eigenvalue losest to the target. It turns out that for interioreigenvalues good approximations for new searh diretions are needed whih may be obtained



J{D METHOD FOR A TWO-PARAMETER EIGENVALUE PROBLEM 11with more GMRES steps for the orretion equations. The number of GMRES steps is oflarge inuene. The more steps of GMRES we take, the better updates for the approximateeigenvetors will be added to the searh spaes. If we take too many steps then the method oftenonverges to an eigenvalue (�; �) 6= (�int; �int). On the other hand, if we take too few GMRESsteps then we need many outer iterations or we have no onvergene at all.If we are interested in interior eigenvalues of a symmetri eigenproblem Ax = �x then one ofthe possible tools are harmoni Ritz values. The question remains how to generalize harmoniRitz values to a right de�nite two-parameter eigenvalue problem. We believe that any progresson this subjet might lead to better methods for interior eigenvalues.Remark. It is easy to see that Step 2b of Algorithm 1 an be modi�ed in a similar mannerif we are interested in the eigenvalue (�; �) of (1.1) with the maximum value of �2 + �2.5. Computing more eigenpairs. Suppose that we are interested in p > 1 eigenpairs of(1.1). In one-parameter problem various deation tehniques an be applied in order to omputemore than one eigenpair. In this setion we �rst show diÆulties that are met when we try totranslate standard deation ideas from one-parameter problems to two-parameter problems. Wethen propose a seletion method for Ritz vetors that makes it possible to obtain more than oneeigenpair for two-parameter problems.If (�; z) is an eigenpair of a symmetri matrix A then all other eigenpairs an be omputedfrom the projetion of A onto the subspae z?. Similarly, if (�; �) is an eigenvalue of (1.1) andx
 y is the orresponding eigenvetor then all other eigenvetors lie in the subspae(x
 y)?�0 := fz 2 S : zT�0(x
 y) = 0gof the dimension n1n2�1. By omparing the dimensions it is lear that the subspae (x
y)?�0an not be written as U 
V, where U � Rn1 and V � Rn2 . Therefore, this kind of deation annot be applied to Algorithm 1.Another popular deation of a symmetri matrix A is to use the matrix A0 = A � �zzT .Matrix A0 has the same eigenvalues as matrix A exept for � whih is transformed into 0. Ageneralization of this approah would be to transform the two-parameter problem (1.1) into atwo-parameter problem with the same eigenvalues as of (1.1) exept for the eigenvalue (�; �)whih should be transformed into (0; 0). Sine in a two-parameter problem there an existeigenvalues (�; �) and (�0; �0) with eigenvetors x
y and x0
y0, respetively, suh that (�; �) 6=(�0; �0) and x = x0, this approah would again work only if we apply the assoiated problem(1.4) in the tensor produt spae S. But, then we have to work with large �i matries and thisis too expensive.We propose the following approah. Suppose that we have already found p eigenvalues (�i; �i)and eigenvetors xi 
 yi, i = 1; : : : ; p. Based on the fat that eigenvetors are �0-orthogonal(see (1.5)) we adjust Algorithm 1 so that in Step 2b we onsider only those Ritz vetors u 
 vwhih satisfy j(u
 v)T�0(xi 
 yi)j < � for i = 1; : : : ; p(5.1)for an � > 0. Suppose that we are interested in eigenvalues with the maximum values of �.Then in Step 2b we �rst order Ritz pairs (�i; �i); ui 
 vi by their � values so that �i � �j fori < j and then we selet the Ritz pair that satis�es (5.1) and has the minimal index. In the aseof interior eigenvalues a di�erent ordering is used.If none of the Ritz pairs meets (5.1) then we take the Ritz pair with index 1, but in thisase the algorithm is not allowed to stop. This is ahieved by a hange of the stopping riterion



12 M. HOCHSTENBACH AND B. PLESTENJAKin Step 2d where in addition to a small residual norm (3.3) we now also require that the Ritzvetor u
 v satis�es (5.1). This guarantees that the method does not onverge to the alreadyomputed eigenpairs.The bound � should not be taken too small in order to avoid that none of the Ritz vetors issuÆiently �0-orthogonal to the set of already omputed eigenvetors. In numerial experimentsin x7 we use � = 12 maxi=1;:::;p j(xi 
 yi)T�0(xi 
 yi)jand that value suessfully prevents the method from onverging to the already omputed eigen-pairs.All other steps of Algorithm 1 remain unhanged. Numerial results in x7 show that thisapproah enables us to ompute more than one eigenpair.6. Time omplexity. We examine the time omplexity of one outer iteration step of Algo-rithm 1. Let n = n1 = n2, let k be the dimension of the searh spaes, and let m be the numberof GMRES (MINRES) steps for a orretion equation. The two steps that largely determine thetime omplexity are Step 2a and Step 2e. In Step 2a we �rst onstrut the smaller projetedproblem (3.1). We need to ompute only the last row (and olumn) of matries in (3.1). In theseond part of Step 2a we solve (3.1) by solving its assoiated problem with matries of size k2and thus we need O(k6) [9℄.First we assume that matries Ai; Bi; and Ci are sparse. This is true in many appliations, forinstane when two-parameter Sturm-Liouville problems [10℄ are disretized. Beause MINRESand GMRES are methods intended for sparse matries the Jaobi{Davidson type method an inpriniple handle very large sparse problems. For suh problems the time omplexities of Steps2a and 2e an be expressed as 6 MV+O(k6) and 6m MV, respetively, where MV stands for amatrix-vetor multipliation with an n� n matrix.The analysis for dense matries Ai; Bi, and Ci is as follows. In Step 2a we need O(n2) forthe onstrution of the smaller problem (3.1) and additional O(k6) for the solution of (3.1). Asin pratie only very small values of k are used we an assume that k = O(n1=3) and thus thetime omplexity of Step 2a is O(n2).If we use orretion equations (3.20), (3.21) with orthogonal projetions and performm stepsof MINRES then the time omplexity of Step 2e is O(mn2) when we perform m matrix-vetormultipliations. We obtain the same time omplexity for Step 2e when we use the orretionequation (3.26) with oblique projetions and do m steps of GMRES. The only di�erene is thatwe are working with one matrix of size 2n while we are working with two matries of size n ifwe use orthogonal projetions.Based on the above assumptions the time omplexity of one outer step of Algorithm 1 fordense matries is O(mn2). Also important is the storage requirement. If an algorithm workswith matries Ai; Bi; and Ci as Algorithm 1 does then it requires O(n2) memory. The methodsthat work with the assoiated system (1.4) need O(n4) memory, whih may exeed memory fast,even for modest values of n.7. Numerial examples. We present some numerial examples obtained with Matlab 5.3.If the dimension of the matries is n = n1 = n2 = 100 then none of the existing methods thatwork in the tensor produt spae is able to ompute all eigenpairs in a reasonable time [16℄.Therefore, we onstrut right de�nite two-parameter examples where the exat eigenpairs areknown, whih enables us to hek the obtained results.



J{D METHOD FOR A TWO-PARAMETER EIGENVALUE PROBLEM 13We onstrut our right de�nite two-parameter examples in the following way. We takematries Ai = QiFiQTi ; Bi = QiGiQTi ; Ci = QiHiQTi ;(7.1)where Fi, Gi, and Hi are diagonal matries and Qi is a random orthogonal matrix for i = 1; 2.We selet diagonal elements of matries F1; F2; G2; and H1 as uniformly distributed randomnumbers from the interval (0; 1) and diagonal elements of G1 and H2 as uniformly distributedrandom numbers from the interval (1; 2). The determinant (1.2) is learly stritly positive fornonzero x; y and the obtained two-parameter problem is right de�nite. All matries are ofdimension n� n.Let us denote Fi = diag(fi1; : : : ; fin), Gi = diag(gi1; : : : ; gin), and Hi = diag(hi1; : : : ; hin). Itis easy to see that eigenvalues of the two-parameter problem (1.1) are solutions of linear systemsf1i = �g1i + �h1i;f2j = �g2j + �h2jfor i; j = 1; : : : ; n. This enables us to ompute all the eigenvalues from the diagonal elements ofFi; Gi;Hi for i = 1; 2. In order to onstrut a two-parameter problem that has the point (0; 0)in the interior of the onvex hull of all the eigenvalues we take the shifted problem(A1 � �0B1 � �0C1)x = (�� �0)B1x+ (�� �0)C1x;(A2 � �0B2 � �0C2)y = (�� �0)B2y + (�� �0)C2y;where the shift (�0; �0) is the arithmeti mean of all the eigenvalues. Figure 7.1 shows thedistribution of eigenvalues obtained for n = 100.Fig. 7.1. Distribution of eigenvalues for a right de�nite two-parameter problem of size n = 100.
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For the following numerial examples we use GMRES instead of MINRES in the orretionequation with orthogonal projetions beause MINRES is not standard available in Matlab 5.3.Example 1. In the �rst example we use the Jaobi{Davidson type method for the exterioreigenvalues. Our goal is to ompute the eigenvalue (�max; �max) with the maximum value of �.



14 M. HOCHSTENBACH AND B. PLESTENJAKWe are interested in the number of iterations that the Jaobi{Davidson method needs for suÆ-iently aurate approximations and also in the perentage of the onvergene to the eigenvalue(�max; �max) for a test set of 250 di�erent initial vetors.We test both alternatives for the orretion equations using various numbers of GMRESsteps. Eah ombination is tested on the same set of 250 random initial vetors. The algorithmis restarted after every 10 iterations with the urrent eigenvetor approximation, so lmax = 10and lmin = 1. The value � = 10�8 is used for the test of onvergene and ops ount in Matlabare used for a measure of time omplexity. Table 7.1Statistis of the Jaobi{Davidson type method for the eigenvalue (�max; �max) using di�erent orretion equa-tions and number of GMRES steps for right de�nite two-parameter problems of size n = 100 and n = 200: averagenumber of outer iterations, perentage of onvergene to (�max; �max), and average number of ops over 250 tri-als with di�erent random initial vetors. Corretion equations: JO(m) - orthogonal projetions and m steps ofGMRES, JS(m) - oblique projetions and m steps of GMRES.orretion n = 100 n = 200equation iterations perentage ops iterations perentage opsJO(1)=JS(1) 105.4 100.0 % 4:6 � 108 68.9 100.0 % 3:4 � 108JO(2) 50.0 100.0 % 2:2 � 108 35.6 100.0 % 2:0 � 108JO(4) 26.7 100.0 % 1:1 � 108 25.7 100.0 % 1:6 � 108JO(8) 23.3 99.2 % 1:1 � 108 27.7 99.2 % 2:1 � 108JO(16) 25.4 30.0 % 1:4 � 108 34.0 48.4 % 3:6 � 108JO(32) 29.8 38.0 % 2:2 � 108 42.8 10.4 % 7:2 � 108JO(64) 33.1 28.0 % 4:0 � 108 51.6 9.6 % 16:0 � 108JS(2) 96.4 100.0 % 4:6 � 108 94.4 100.0 % 6:1 � 108JS(4) 99.9 100.0 % 5:0 � 108 92.9 100.0 % 6:6 � 108JS(8) 63.9 100.0 % 3:3 � 108 62.4 100.0 % 5:2 � 108JS(16) 45.2 94.0 % 2:6 � 108 53.5 98.4 % 6:0 � 108JS(32) 41.9 82.4 % 3:2 � 108 55.4 70.8 % 9:6 � 108JS(64) 39.7 66.0 % 4:9 � 108 56.0 35.6 % 17:6 � 108Table 7.1 ontains results obtained for n = 100 and n = 200. JO(m) and JS(m) denotethat m steps of GMRES are used for the orretion equation with orthogonal projetions orwith oblique projetions, respetively. For eah ombination we list the average number ofouter iterations for onvergene, the perentage of eigenvalues that onverged to the eigenvalue(�max; �max), and the average number of ops in Matlab, all obtained on the same set of 250di�erent initial vetors.The results in Table 7.1 indiate that the method is likely to onverge to an unwantedeigenvalue if we solve the orretion equation too aurately, i.e. if too many GMRES steps areused to solve the orretion equation. A omparison of the ops suggests that the best approahis to do a few steps of GMRES. We also see that for larger n the number of GMRES steps hasmore impat on the time omplexity than the number of outer iterations. The reason is that forlarger n the fator k6 beomes relatively smaller ompared to mn2.The orretion equations with orthogonal projetions behave similarly to the one with obliqueprojetions but require less operations. The experiments suggest to use the orretion equationswith orthogonal projetions in ombination with a small number of GMRES steps in eah outeriteration for (�max; �max).Example 2. In the seond example the onvergene to the exterior eigenvalue for the two-



J{D METHOD FOR A TWO-PARAMETER EIGENVALUE PROBLEM 15parameter problem of dimension n = 100 and initial vetors u = v = [1 � � � 1℄T is examined.We ompare the onvergene for 2, 10, and 25 GMRES steps per iteration for the orretionequation with orthogonal and the one with oblique projetions, respetively. Figure 7.2 showsthe log10 plot of residual norm �k (3.3) versus the outer iteration number k. In all six ases theRitz values onverge to the eigenvalue (�max; �max).Fig. 7.2. Convergene plot for the exterior eigenvalue (�max; �max) for n = 100 and u = v = [1 � � � 1℄T . Theplots show the log10 of the residual norm �k (3.3) versus the outer iteration number k for the Jaobi{Davidsontype method for the eigenvalue (�max; �max) using 2 (solid line), 10 (dotted line), and 25 (dashed line) GMRESsteps to solve the orretion equation with orthogonal projetions (left plot) and oblique projetions (right plot),respetively.
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It is lear from Figure 7.2 that onvergene near the solution is faster if more GMRESsteps are used. Experiments indiate that if only a few steps of GMRES are applied then theonvergene near the solution is about linear, similar to the Jaobi{Davidson method for thestandard eigenvalue problem [20, p. 419℄.Example 3. In this example we examine the onvergene of the Jaobi{Davidson type methodfor the interior eigenvalues. We look for the eigenvalue losest to (0; 0). We use the same n = 100two-parameter problem as in Example 1 and again test both orretion equations with di�erentnumber of GMRES steps on a set of 250 di�erent initial vetors. The algorithm is restartedafter every 10 iterations with the urrent eigenvetor approximation. For the onvergene testwe take � = 10�6. The reason for a more relaxed riterion is an irregular onvergene of theinterior eigenvalues (see the peaks in Figure 7.3).The results, presented in Table 7.2, show that the method may also be used e�etivelyfor interior eigenvalues. In ontrast to Example 1, more GMRES steps are required for oneouter iteration step. If too many steps are applied then the proess onverges to an unwantedeigenvalue, similar to Example 1. On the other hand, if we do not take enough GMRES stepsthen we need many outer iteration steps and the results may be worse. This is di�erent fromExample 1 where the proess onverges in reasonable time even if only one GMRES step isapplied per Jaobi{Davidson iteration step. The orretion equation with oblique projetions ismore e�etive than the one with orthogonal projetions. It is more expensive but the probabilityof oming lose to the eigenvalue losest to (0; 0) is higher.Example 4. We examine the onvergene to the eigenvalue losest to (0; 0) for the two-parameter problem of size n = 100 and initial vetors u = v = [1 � � � 1℄T . Figure 7.3 shows



16 M. HOCHSTENBACH AND B. PLESTENJAKTable 7.2Statistis of the Jaobi{Davidson type method for the eigenvalue losest to (0; 0) using di�erent orretionequations and di�erent inner iteration proesses for a right de�nite two-parameter problem of size n = 100: averagenumber of iterations, perentage of onvergene to the eigenvalue losest to (0; 0), and average number of opsover 250 trials with di�erent random initial vetors. Corretion equations: JO(m) - orthogonal projetions andm steps of GMRES, JS(m) - oblique projetions and m steps of GMRES.orretion equation iterations perentage opsJO(90) 15.2 80.8 % 2:4 � 108JO(80) 15.9 89.2 % 2:2 � 108JO(70) 18.9 90.0 % 2:4 � 108JO(60) 23.3 91.2 % 2:5 � 108JO(50) 32.8 79.6 % 3:2 � 108JO(40) 41.4 81.6 % 3:5 � 108JO(30) 76.5 72.8 % 5:8 � 108JO(20) 219.2 63.2 % 14:4 � 108JS(90) 20.2 92.4 % 4:7 � 108JS(80) 21.1 96.4 % 4:3 � 108JS(70) 24.2 95.6 % 4:4 � 108JS(60) 29.0 94.4 % 4:7 � 108JS(50) 38.1 93.2 % 5:4 � 108JS(40) 47.0 93.2 % 5:7 � 108JS(30) 82.9 94.0 % 8:5 � 108JS(20) 239.7 84.0 % 20:5 � 108Fig. 7.3. Convergene plot for the eigenvalue losest to (0; 0) for n = 100 and u = v = [1 � � � 1℄T . The plotsshow the log10 of the residual norm �k (3.3) versus the outer iteration number k for the Jaobi{Davidson typemethod for the eigenvalue losest to (0; 0) using 40 (solid line), 60 (dotted line), and 80 (dashed line) GMRESsteps to solve the orretion equation with orthogonal projetions (left plot) and oblique projetions (right plot),respetively.
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the log10 plot of residual norms �k (3.3) versus the outer iteration number k. We ompare40, 60, and 80 GMRES steps for the orretion equation with orthogonal and with obliqueprojetions, respetively. In all six ases the Ritz values onverge to the eigenvalue losest to(0; 0). We observe that the more GMRES steps are taken, the fewer iteration steps are needed.



J{D METHOD FOR A TWO-PARAMETER EIGENVALUE PROBLEM 17The onvergene is not as smooth as in Figure 7.2 for Example 2 but the algorithm is learlyuseful for interior eigenvalues.Example 5. In the last example we test the seletion tehnique from x5 for omputing moreeigenpairs for the two-parameter problem of dimension n = 100. With 5 GMRES steps for theorretion equation with orthogonal projetions we try to ompute 30 suessive eigenvalueswith the maximum value of �. Figure 7.4 shows how well the �rst 15 and all 30 omputedeigenvalues agree with the desired eigenvalues, respetively.Fig. 7.4. First 15 (left plot) and �rst 30 (right plot) omputed eigenvalues with maximum value of � fora two-parameter problem of size n = 100 omputed using seletion for Ritz vetors. The Jaobi{Davidson typemethod used 5 GMRES steps for the orretion equation with orthogonal projetions.
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The eigenvalues are not neessarily omputed in the same order as their � values. Thisexplains the situation in Figure 7.4 where some eigenvalues that are in the top 30 by their �values are not among the 30 omputed eigenvalues. In order to obtain the top k eigenvalueswith high probability it is therefore advisable to always ompute more than k eigenvalues.8. Conlusions. We have presented a new Jaobi{Davidson type method for a right de�-nite two-parameter eigenvalue problem. It has several advantages over the existing methods. Itan ompute seleted eigenpairs and it does not require good initial approximations. Probablythe most important advantage is that it an takle very large two-parameter problems, espeiallyif the matries Ai; Bi, and Ci are sparse.We have proposed two orretion equations. On one hand orthogonal projetions are gen-erally more stable than oblique projetions and in addition, orthogonal projetions preservesymmetry. On the other hand, the orretion equation with oblique projetions an be viewedas an inexat Newton sheme whih guarantees asymptotially quadrati onvergene. Numer-ial results indiate that the orretion equation with oblique projetions is more reliable butmore expensive. It is therefore more suitable for the interior eigenvalues while the one withorthogonal projetions may be used for the exterior eigenvalues.Numerial results indiate that the probability of misonvergene is low when parametersare optimal. The number of GMRES steps is important. Experiments suggest to take up to 5GMRES steps for exterior eigenvalues and more GMRES steps for interior eigenvalues. Restartsalso impat the behaviour of the method. In our experiments we restart the method after every10 iterations with the urrent eigenvetor approximations, but a di�erent setting may furtherimprove the method.
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