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subject to boundary conditionsb0y(0) = d0 �py0� (0) (2)and b1y(1) = d1 �py0� (1); (3)where p, p0, q, and r are continuous functions on [0; 1], p and r are posi-tive, and (bs; ds) 2 IR2nf0g, s = 0; 1. Then there are countably many realeigenvalues �0 < �1 < �2 < : : : < �n < : : :, accumulating at in�nity, eachwith (up to a scalar multiple) unique eigenfunction yn. The eigenfunctionsfyng1i=0 are complete. One of the central topics in the Sturm-Liouville the-ory is the oscillation theory. Namely, the eigenfunction yn possesses exactlyn roots on (0; 1), i.e. yn has the oscillation count equal to n (see [10, Ch. 8]for all of these). When the boundary conditions (2) and/or (3) are replacedby eigenparameter dependent boundary conditions(a0�+ b0) y(0) = (c0�+ d0) �py0� (0); (4)and (a1�+ b1) y(1) = (c1�+ d1) �py0� (1); (5)where a0d0 � b0c0 < 0 and a1d1 � b1c1 > 0 (6)there still are countably many eigenvalues �0 < �1 < �2 < : : : < �n < : : :,accumulating at in�nity, each with (up to a scalar multiple) unique eigen-function yn. The eigenfunctions fyng1i=0 are complete and all the oscillationcounts appear. However, there is a repeated oscillation count if either bound-ary conditions (2) and (5) or boundary conditions (3) and (4) are assumed,and there are two double oscillations counts or a triple oscillation count if (4)and (5) are assumed (see [8] for details). We remark that these results mayfail if the sign conditions (6) are omitted. Then nonreal and nonsemisimpleeigenvalues may occur [6, 7].In a multiparameter generalization we consider a system of ordinarydi�erential equations��pjy0j�0 + qjyj =  nXk=1�krjk! yj; j = 1; 2; � � � ; n; (7)where pj , p0j, qj , and rjk are real and continuous functions on [0; 1] and pjare positive on [0; 1], subject to boundary conditions(aj0�j + bj0) yj(0) = (cj0�j + dj0)�pjy0j� (0) (8)2



and (aj1�j + bj1) yj(1) = (cj1�j + dj1)�pjy0j� (1): (9)We assume the so-called Minkowski de�niteness conditions on the functionsrjk; j; k = 1; 2; : : :, n, together with certain sign conditions on numbers!js = ajsdjs � bjscjs, s = 0; 1. These conditions yield in the correspondingabstract setup a right de�nite case [3]. Then all the eigenvalues are realand the corresponding eigenfunctions are complete (see [1, 15, 16]). Wegeneralize the oscillation theory to the general n-parameter case. We alsodiscuss the behaviour of the eigenvalue hypersurfaces. These results forn = 2 and aj0 = cj0 = 0, j = 1; 2; are given in [2].2 PreliminariesBy a transformation of the independent variable, we can assume withoutloss of generality that pj, j = 1; 2; : : : ; n; are identically equal to 1 (see [8,Appendix]). Then di�erential equations (7) become�y00j + qjyj =  nXk=1�krjk! yj; j = 1; 2; � � � ; n; (10)and the boundary conditions (8) and (9) become(aj0�j + bj0) yj(0) = (cj0�j + dj0) y0j(0) (11)and (aj1�j + bj1) yj(1) = (cj1�j + dj1) y0j(1); (12)respectively.Let us introduce some notation. For s = 0; 1 and j = 1; 2; : : : ; n, wewrite !js = ajsdjs � bjscjs:If a function y is in L2[0; 1] then we denote by �rjk(y) the integral R 10 rjk jyj2 ;and if y = (y1; y2; : : : ; yn) is an n-tuple of functions in L2[0; 1] then wedenote by �0(y) the determinant det[�rjk(yj)]nj;k=1. We write B1 for the unitball of L2[0; 1].In what follows we use the following assumptions:(C) qj and rjk, j; k = 1; 2; : : : ; n, are real and continuous functions on [0; 1],3



(I) (a) aj0 = cj0 = 0, (bj0; dj0) 6= (0; 0), j = 1; 2; : : : ; n,or(b) !j0 < 0 for j = 1; 2; : : : ; n,(II) !j1 > 0 for j = 1; 2; : : : ; n;(III) �rjk(y) � 0 for j; k = 1; 2; : : : ; n, j 6= k, and for all y 2 L2[0; 1], y 6= 0,(IV) Pnk=1 �rjk(y) > 0 for j = 1; 2; : : : ; n and for all y 2 L2[0; 1], y 6= 0.By scaling the constants ajs; bjs; cjs and djs we can replace the inequali-ties in assumptions (Ib) and (II) by !j0 = �1 and !j1 = 1, respectively. Weassume that these simpli�cations are done.Following [5] we call the assumptions (III) and (IV) the Minkowski con-ditions. Since we assume (C), i.e., rjk are continuous functions, it followsthat the Minkowski condition (IV) is uniform, i.e. there exists a constant
 > 0 such that for all y 2 B1 and j = 1; 2; : : : ; n;(IV') Pnk=1 �rjk(y) > 
.After an invertible transformation of parameters is performed, the uniformMinkowski conditions follow from uniform right de�niteness and uniformellipticity conditions [5, p. 19 and p. 23]. The latter conditions are morefamiliar in the literature on multiparameter spectral theory. A system ofequations (10) (or more generally a system of equations (7) ) is called uni-formly right de�nite if there exists a constant 
 > 0 such that �0(y) > 
for all y = (y1; y2; : : : ; yn) 2 Bn1 , and it is called uniformly elliptic if thereexist (�1; �2; : : : ; �n) 2 IRn and 
0 > 0 such that Pnk=1 �k�0jk(y) > 
0for all y = (y1; y2; : : : ; yn) 2 Bn1 and all j. Here �0jk(y) is the cofactorof �0(y) corresponding to �rjk(yj). Note that if we assumed uniform rightde�niteness and uniform ellipticity it would not be possible, in general, toobtain the Minkowski conditions by an invertible linear transformation ofparameters without losing the form of boundary conditions (11) and (12)and assumptions (Ib) and (II). After such a transformation of parameters,more general boundary conditions are obtained from (11) and (12); namely,each �j is replaced by a linear combination of all the eigenparameters �k,k = 1; 2; : : : ; n. (Multiparameter Sturm-Liouville problems with these gen-eral boundary conditions are studied in [3]). However, before eigenvalue andoscillation theory for such multiparameter problems can be discussed, somefurther analysis of one-parameter Sturm-Liouville di�erential equations witheigenparameter dependent boundary condition would be required. Here we4



follow the path of [2] and assume the stronger conditions and apply theavailable one-parameter analysis of Binding, Browne, and Seddighi [8].At the end of this section we introduce a notion of Minkowski matrixand give a bound for its minimal singular value.A real matrix A = [ajk]nj;k=1 is called a Minkowski matrix if the followingconditions hold:1. ajj > 0 for j = 1; 2; : : : ; n,2. ajk � 0 for j; k = 1; 2; : : : ; n, j 6= k,3. Pnk=1 ajk � 
 > 0 for j = 1; 2; : : : ; n.Constant 
 above is called a bound of the Minkowski matrix A.Lemma 2.1 If A is a Minkowski matrix with a bound 
 and �n(A) is itsminimal singular value then �n(A) � 
pn:Proof. The minimal singular value satis�es a relation �n(A) = minkxk2=1 kAxk2(see e.g. [12, p. 428]). We choose a vector x = [xj]nj=1 with a norm kxk2 = 1.Suppose that k is such that jxkj � jxj j for j = 1; 2; : : : ; n. Then we have������ nXj=1 akjxj������ � jakkxkj������� nXj=1;j 6=k akjxj������ � akkjxkj+ nXj=1;j 6=k akjjxjj � 0@ nXj=1 akj1A jxkj � 
jxkj:Because we assume that kxk2 = 1 it follows that jxkj � 1pn . The aboveinequality implies that kAxk2 � 
pn . 23 Eigenvalues in the case that boundary condi-tions at one end depend on eigenparameterWe �rst consider in detail the problem (10), (11) and (12) under assump-tions (C), (Ia) and (II)-(IV) and study the properties of the correspondingeigenvalue hypersurfaces. This is a generalization of two-parameter resultsproved in [2]. The proofs here are similar and depend on results in [8]. Acrucial new step is an application of Hadamard's Inverse Function Theorem[13, Thm. A]. 5



Let us now �x j and consider Sturm-Liouville problem (10), (11) and (12)under assumptions (Ia) and (II)-(IV). We write ���j for the set of parameters�l, l 6= j.Lemma 3.1 There exists an in�nite sequence �j = �(m)j (���j) ;m = 0; 1; 2; : : : ;of real eigenvalue hypersurfaces. Each of the functions �(m)j (���j) dependscontinuously on all �l 2 ���j and for each value ���j 2 IRn�1 the sequence ofeigenvalues n�(m)j (���j)o1m=0 is strictly increasing.Proof. We �x j = 1 for simplicity. We view the boundary value problem�y001 + q1 � nXk=2�kr1k! y1 = �jr11y1together with (11) and (12) as a parameterized one parameter Sturm-Liouvilleboundary value problem with eigenparameter dependent boundary condi-tion. The existence of �(m)1 (���1) with required properties follows by [8, Thms3.1 and 3.2]. 2Lemma 3.2 To each eigenvalue �(m)j (���j) there exists a real eigenfunctiony(m)j = y(m)j �x; ���(m)j � with 


y(m)j 


 = 1 for all ���j and such that for each x 2[0; 1] and each compact set Kj � IRn�1 the eigenfunction y(m)j and its deriva-tive with respect to x depend continuously on ���j 2 Kj. Furthermore, thereexists a sequence of natural numbers N (m)j = N (m)j (���j), m = 0; 1; 2; : : : ;such that y(m)j has m zeros on the interval (0; 1) for m � N (m)j and m � 1zeros on (0; 1) for m > N (m)j .Proof. The proof is similar to the proof of [2, Lemma 2.2]. For simplicitywe �x j = 1 and suppress it. Lety =  yddxy ! and A(x; ���) =  0 1q � � ����(m)� r1 �Pnl=2 �lrl 0 ! :Then y is a solution of y0 = A(x; ���)y:Observe that A is a continuous function of x and ���. Then for ��� lying in acompact subset K the operator norm kA(x; ���)k on L2[0; 1]�L2[0; 1] has an6



upper bound which may depend on x. Then the function f��� : IR3 ! IR3de�ned by f���(x; �) = A(x; ���)�, for x 2 [0; 1] and � 2 IR2 is Lipschitz. Thecontinuity of y(m)(x; ���) and ddxy(m)(x; ���) then follows by [14, Thm. 3.2]using the same arguments as in the proof of [2, Lemma 2.2]. The existenceof �(m)1 (���) with required properties follows by [8, Thm. 3.1]. 2Theorem 3.3 Partial derivative of �(m)j (���j) with respect to �l 2 ���j existsand is equal to@�(m)j@�l = �0@�rjj(y(m)j ) + y(m)j (1)2(cj1�j + dj1)21A�1 � �rjl(y(m)j ); (13)where y(m)j (1) = y(m)j (1; ���j). Moreover, the derivative @�(m)j@�l (���j) is continu-ous, positive, and bounded on the entire IRn�1.Proof. For simplicity we assume j = 1 and l = 2 and we write ���0 for the setof remaining parameters �r, r = 3; 4; : : : ; n. Furthermore, we �x ���0 2 IRn�2and a nonnegative integer m, and we suppress m.Assume that y1 = y1(x; �2; ���0) is the eigenfunction corresponding to�1 ��2; ���0� and that z1 = z1(x; �2 + �; ���0) is the eigenfunction correspondingto �1 ��2 + �; ���0� for some � > 0. So we have�y001 + q1y1 =  �1(�2; ���0)r11 + �2r12 + nXt=2 �tr1t! y1 (14)and �z001 + q1z1 =  �1(�2 + �; ���0)r11 + (�2 + �)r12 + nXt=2 �tr1t! z1: (15)Multiplying the �rst equation by z1 and the second by y1, subtracting andintegrating, we obtain�y01z1 � y1z01���10 = ��1(�2 + �; ���0)� �1(�2; ���0)� Z 10 r11y1z1 + � Z 10 r12y1z1:(16)Dividing by � and using the continuity established in Lemmas 3.1 and 3.2,we have � y1(1)2!11(c11�1 + d11)2! @�1@�2 = �r11(y1)@�1@�2 + �r12(y1):7



Then @�1@�2 = � �r11(y1) + y1(1)2(c11�1 + d11)2!�1 �r12(y1): (17)Since y1 and �rjk are continuous it follows that @�1@�2 is continuous. Note thatky1k = 1 by Lemma 3.2. Then the Minkowski condition (III) and identity(17) imply that @�1@�2 > 0 for all ��2; ���0� 2 IRn�1. By the continuity of r12 itfollows thatM12 = maxfr12(x); 0 � x � 1g is �nite. The uniformMinkowskiconditions imply that r11(y1) > n
. Using these and identity (17) it followsthat @�1@�2 (���0) < M12n
 for all ���0 2 IRn�1.A straightforward calculation shows that (12) with j = 1 implies that�f11(y1) = y1(1)c11�1 + d11 :For other derivatives, one carries out the same calculation with the rolesof 1 and 2 replaced by j and l, respectively. 2For each n-tuple m = (m1;m2; : : : ;mn) of nonnegative integers we con-sider the set of eigenvalue hypersurfaces �j = �(mj )j (���j), j = 1; 2; : : : ; n.We �x m and, for simplicity of notation, we suppress it. Consider nextthe function F : IRn ! IRn given by F (���) = (�j � �j(���j))nj=1. Assumethat yj = yj (x; ���j) is the eigenfunction corresponding to �j(���j) and writefj1(yj) = � yj(1)cj1�j+dj1 . By Theorem 3.3 it follows that function F is a C1-function. Its Jacobian matrix is equal toJ(F ) = 0BBBB@ 1 �@�1@�2 � � � � @�1@�n�@�2@�1 1 � � � � @�2@�n... ... . . . ...�@�n@�1 �@�n@�2 � � � 1 1CCCCA :Lemma 3.4 The determinant of the Jacobian matrix J(F ) is positive forall ��� 2 IRn.Proof. Recall that the uniform Minkowski condition (IV') holds. Then�rjk(yj) � 0 for j 6= k and Pnk=1 �rjk(yj) � 
 > 0. Let sj be the sum of theentries of the j-th row of the Jacobian matrix J(F ). Take j = 1 and applyTheorem 3.3 to show thats1 = 1� nXk=2 @�1@�k = 1 + nXk=2 �r1k(y1)�r11 + f11(y1)2 � 1 + nXk=2 �r1k(y1)�r11 � 
R > 0;8



where R = max f�rkk(yk); k = 1; 2; : : : ; ng. In a similar way we see thatsj � 
R > 0 for j = 2; 3; : : : ; n. The Gershgorin Circle Theorem (see e.g.[12, p. 341]) implies then there is a constant � > 0 such that real parts ofall the eigenvalues of J(F ) are greater than �. Since nonreal eigenvalues,if any, occur in conjugate pairs it follows that the determinant det J(F ) ispositive for all ��� 2 IRn. 2Lemma 3.5 The function F is proper [13], i.e. k���k2 !1 implies kF (���)k2 !1.Proof. We write F = (Fj)nj=1. The inner product of vectors a;b 2 IRn isdenoted by ha;bi and the p-norm of a vector aIRn is denoted by kakp. Bythe Mean Value Theorem applied to Fj : IRn ! IR and vectors a; ��� 2 IRnthere is a vector bj in the convex hull of the set fa; ���g such that(Fj(���)� Fj(a))2 = hgradFj(bj); ���� ai; j = 1; 2; : : : ; n; (18)where gradFj(bj) is the gradient of Fj at bj . By the de�nition of F itfollows thatgradFj(bj) = � �@�j@�1 (bj) �@�j@�2 (bj) � � � � @�j@�n (bj) � :Next we consider the matrixG = 0BBBB@ 1 �@�1@�2 (b1) � � � � @�1@�n (b1)�@�2@�1 (b2) 1 � � � � @�2@�n (b2)... ... . . . ...�@�n@�1 (bn) �@�n@�2 (bn) � � � 1 1CCCCA :We apply Theorem 3.3 and use the uniform Minkowski conditions to provethat G is a Minkowski matrix with bound 
. Calculations are similar tothose in the proof of Lemma 3.4 and we omit them. Next it follows byrelations (18) and Lemma 2.1 thatkF (���)� F (a)k24 = kG(���� a)k2 � 
pnk���� ak2:Finally, if k���k2 !1 then kF (���)k2 !1 since the 2-norm and the 4-normon IRn are equivalent. Hence F is a proper function. 2Theorem 3.6 For each n-tuple m = (m1;m2; : : : ;mn) of nonnegative in-tegers the set of eigenvalue hypersurfaces �j = �(mj)j (���j), j = 1; 2; : : : ; n,has exactly one point of intersection in IRn.9



Proof. We �x m and suppress it. We consider the function F : IRn ! IRngiven by F (���) = (�j � �j(���j))nj=1. Lemmas 3.4 and 3.5 tell us that F is aproper function and that the determinant of its Jacobian is positive for all��� 2 IRn. By Hadamard's Inverse Function Theorem [13, Thm. A] it followsthat F : IRn ! IRn is a di�eomorphism. Hence the inverse image F�1(0),which is the intersection of the eigenvalue hypersurfaces �j = �j(���j), j =1; 2; : : : ; n, is a single point. 2Next we describe the limiting behaviour of the eigenvalue hypersurfaces.Proposition 3.7 The eigenvalue hypersurfaces have the following proper-ties :1. �(m)j (���j) is an increasing function in each parameter �l 2 ���j,2. �(0)j (���j) < minn0;�dj1cj1 o for all j,3. lim�k!1 �(0)j (���j) = minn0;�dj1cj1 o for all j and k 6= j,4. lim�k!1 �(m)j (���j) =1 for m > 0, j; k = 1; 2; : : : ; n, j 6= k,5. lim�k!�1 �(m)j (���j) = �1 for m � 0, j; k = 1; 2; : : : ; n, j 6= k.Proof. We shall prove only the property 2 in detail. The property 1 isobvious from positivity of all the partial derivatives, the proof of 3 dependson the fact that f is an increasing function in each �k 2 ���j which followsfrom [8], and the proofs of 4 and 5 follow by considering the correspondingasymptotic problems and are similar to the proof of [2, Lemma 3.4].For 2, one has to go back to [8, pp. 60-64]. Consider the jth. equationas a one-parameter problem, but depending on ���j. Let � be the Pr�uferangle. Thus � is a function of x 2 [0; 1], the eigenparameter �j and then � 1 constants ���j. The zeroth eigensurface �(0)j is the intersection pointof f(�j) = cot �(1; �j ; ���j) with the hyperbola gj(�j) = (aj�j + bj)=(cj�j +dj). Now because of the assumptions on aj; bj ; cj and dj , the hyperbola isincreasing. On the other hand, the graph of f has countably many branches.The hyperbola cuts the leftmost branch of f in the left half plane. Since thevertical asymptote for the hyperbola is �dj=cj , the point of intersection hasto lie on the left of this vertical line also. Hence 2 is proved.Suppose that ��� 2 IRn is an eigenvalue of the problem (10), (11) and (12)under assumptions (C), (Ia) and (II)-(IV) and that yj(���), j = 1; 2; : : : ; n; are10



the corresponding eigenfunctions. Let hj be the number of zeros of yj(���) onthe interval (0; 1). The n-tuple of nonnegative integers h = (h1; h2; : : : ; hn)is called the oscillation count of ��� and hj is called the j-th oscillation countof ���.By [8, Thm. 3.1] it follows that on each hypersurface �(mj)j (���j) withmj > 0 we have 2n oscillation counts. The j-th oscillation count changeswhen we cross the hyperplane �j = �dj1cj1 . Then N (mj)j is determined so that�N(mj )j �1j (���j) < �dj1cj1 � �Nj(mj)j (���j):Hence hj = ( mj ; if �(mj)j < �dj1cj1mj � 1; otherwise: (19)The following result now follows by Proposition 3.7 and above relations (19).Theorem 3.8 If there are M eigenvalues with the same oscillation countthen:1. M � 2n,2. there is at most one oscillation count corresponding to M = 2n eigen-values,3. for M 6= 2k, k = 1; 2; : : : ; n � 1, there is only a �nite number ofoscillation counts that correspond to M eigenvalues,4. for M = 2k, k = 1; 2; : : : ; n� 1, there is an in�nite number of oscilla-tion counts that correspond to M eigenvalues.4 Eigenvalue hypersurfaces in the case that bound-ary conditions at both ends are eigenparameterdependentNow we consider the problem (10), (11) and (12) under assumptions (Ib)and (II)-(IV) and study the properties for the corresponding eigenvalue hy-persurfaces. The arguments in the proofs are similar to those above underassumption (Ia). We specify which results are used in the proofs but do notgive all details. 11



Lemma 4.1 There exists an in�nite sequence n�(m)j (���j)o1m=0 of real eigen-values. Each of �(m)j (���j) depend continuously on all �l 2 ���j and the se-quence of eigenvalues n�(m)j (���j)o1m=0 is (strictly) increasing for each ���j 2IRn�1.Proof. We �x j = 1 for simplicity. We view boundary value problem�y001 + q1 � nXk=2�kr1k! y1 = �jr11y1together with (11) and (12) as a parameterized one parameter Sturm-Liouvilleboundary value problem with eigenparameter dependent boundary condi-tions. The existence of �(m)1 (���1) with required properties follows by [8,Thms 4.2 and 4.3]. 2Lemma 4.2 To each eigenvalue �(m)j (���j) there exists a real eigenfunctiony(m)j (x; ���j) of norm 1 for all ���j such that for each x 2 [0; 1] and eachcompact set Kj � IRn�1 the eigenfunction y(m)j (x; ���j) and its derivativewith respect to x depend continuously on ���j 2 Kj. Furthermore, there existsa sequence of natural numbers nN (m)j1 (���j)o1m=0 and nN (m)j2 (���j)o1m=0 suchthat ym(���j) has m zeros on (0; 1) for m � N (m)j1 (���j), m� 1 zeros on (0; 1)for N (m)j1 (���j) < m < N (m)j2 (���j) and m�2 zeros on (0; 1) for m � N (m)j2 (���j).The proof is the same as the proof of Lemma 3.2. Only at the end of itthe existence of �(m)1 (���1) with required properties follows by [8, Thm. 4.2].Proposition 4.3 Partial derivatives of �(m)j (���j) with respect to �l 2 ���jexist and are equal to@�(m)j@�l = �0@�rjj(y(m)j ) + 1Xs=0 y(m)j (s)2(cjs�j + djs)21A�1 � �rjl(y(m)j ): (20)Proof. For simplicity we assume j = 1 and l = 2. We use the notation ofthe proof of Proposition 3.3. Consider the identity (16). Dividing it by �,using the boundary conditions (11) and (12), and the continuity establishedin Lemmas 4.1 and 4.2 we obtain�@�1@�2  y1(1)2!11(c11�1 + d11)2 � y1(0)2!10(c10�1 + d10)2! = @�1@�2 �r11(y1) + �r12(y1):12



A straightforward calculation shows that assumptions (Ib) and (II) togetherwith the boundary conditions (11) and (12) imply that�f1s(y1) = y1(s)c1s�1 + d1s ; s = 0; 1:For other derivatives, one carries out the same calculation with the rolesof 1 and 2 replaced by j and l, respectively. 2Theorem 4.4 The set of eigenvalue hypersurfaces �j = �mjj (���j), j =1; 2; : : : ; n, has exactly one intersection point in IRn for each n-tuple m =(m1;m2; : : : ;mn) of nonnegative integers.Proof. The proof is almost identical to the proof of Lemmas 3.4 and 3.5, andTheorem 3.6. We use Proposition 4.3 to show that function F : IRn ! IRngiven by F (���) = (�j � �j(���j))nj=1 is a C1 function and to show that itsJacobian matrix has a positive determinant. Further we show that F is aproper function and hence it is a di�eomorphism by Hadamard's InverseFunction Theorem [13, Thm. A]. Then F�1(0) is the intersection point ofthe eigenvalue hypersurfaces. 2The limiting behaviour of the eigenvalue hypersurfaces follows by [8,Thm. 4.4 and Cor. 4.5].Proposition 4.5 The eigenvalue hypersurfaces have the following proper-ties :1. �(0)j (���j) < minf0;�dj0cj0 ;�dj1cj1 g for all j,2. lim�k!1 �(0)j (���j) = minf0;�dj0cj0 ;�dj1cj1 g for all j and k 6= j,3. lim�k!�1 �(m)j (���j) = �1 for m � 0, j; k = 1; 2; : : : ; n, j 6= k,4. lim�k!1 �(m)j (���j) = �1 for m � 0, j; k = 1; 2; : : : ; n, j 6= k.Suppose that ��� 2 IRn is an eigenvalue of the problem (10), (11) and (12)under assumptions (C), (Ib) and (II)-(IV) and that yj(���), j = 1; 2; : : : ; n; arethe corresponding eigenfunctions. By [8, Thm. 4.2] it follows that on eachhypersurface �(mj)j (���j) with mj > 0 we have 3n oscillation counts. That is,the j-th oscillation count changes when we cross the hyperplanes �j = �djscjs ,13



s = 0; 1. Write e0 = minn�djscjs ; s = 0; 1o and e1 = maxn�djscjs ; s = 0; 1o.Then the numbers N (mj )jk , k = 1; 2; are determined so that�N(mj )j1 �1j (���j) < e0 � �N(mj )j2 �1j (���j) < e1 � �Nj(mj )j (���j):It further follows thathj = 8>><>>: mj ; if �(mj)j < e0mj � 1; if e0 � �(mj)j < e1mj � 2; otherwise: (21)Proposition 4.5 and above relations (21) are used to obtain the followingresult.Theorem 4.6 If there are M eigenvalues with the same oscillation countthen:1. M � 3n,2. there is at most one oscillation count corresponding to M = 3n eigen-values,3. for M 6= 3k, k = 1; 2; : : : ; n � 1, there is only a �nite number ofoscillation counts that correspond to M eigenvalues,4. for M = 3k, k = 1; 2; : : : ; n� 1, there is an in�nite number of oscilla-tion counts that correspond to M eigenvalues.References[1] F.V. Atkinson. Multiparameter Eigenvalue Problems, Academic Press,New York, London, 1972.[2] T. Bhattacharyya, P.A. Binding, K. Seddighi. Two parameter right de�-nite Sturm-Liouville problems with eigenparameter dependent boundaryconditions, submitted.[3] T. Bhattacharyya, P.A. Binding, K. Seddighi. Multiparameter Sturm-Liouville problems with eigenparameter dependent boundary conditions,submitted. 14
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