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Abstract

We study a system of ordinary differential equations that are linked
by parameters and are subject to boundary conditions that depend on
parameters. We assume certain definiteness conditions on the coeffi-
cient functions and on the boundary conditions that yield, in the cor-
responding abstract setting, a right definite case. Then the existence
of the eigenvalues and completeness of eigenfunctions are well under-
stood. We give results on location of the eigenvalues and oscillation of
the eigenfunctions.

1 Introduction

In the paper we consider systems of multiparameter Sturm-Liouville prob-

lems with eigenparameter dependent boundary conditions. They were first

studied by Bhattacharyya, Binding, and Seddighi in [2, 3]. Our results are on

location of eigenvalues and oscillation of the corresponding eigenfunctions.
In one-parameter case one studies differential equation

— (py)' + qy = Mry (1)
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subject to boundary conditions

boy(0) = do (py') (0) (2)
and

biy(1) = di (py') (1), (3)
where p, p', ¢, and r are continuous functions on [0,1], p and r are posi-
tive, and (bg,ds) € IR?\{0}, s = 0,1. Then there are countably many real
eigenvalues Ay < A1 < Ay < ... < A\, < ..., accumulating at infinity, each
with (up to a scalar multiple) unique eigenfunction y,. The eigenfunctions
{yn};2, are complete. One of the central topics in the Sturm-Liouville the-
ory is the oscillation theory. Namely, the eigenfunction y, possesses exactly
n roots on (0, 1), i.e. y, has the oscillation count equal to n (see [10, Ch. 8]
for all of these). When the boundary conditions (2) and/or (3) are replaced
by eigenparameter dependent boundary conditions

(@A + bo) y(0) = (coX + do) (py') (0), (4)
and

(a1A +b1) y(1) = (1A + d) (py') (1), (5)
where

apdy — bocy < 0 and a1dy — bie; >0 (6)

there still are countably many eigenvalues A\g < A1 < Ao < ... < Ay < ..,
accumulating at infinity, each with (up to a scalar multiple) unique eigen-
function y,,. The eigenfunctions {y, };2, are complete and all the oscillation
counts appear. However, there is a repeated oscillation count if either bound-
ary conditions (2) and (5) or boundary conditions (3) and (4) are assumed,
and there are two double oscillations counts or a triple oscillation count if (4)
and (5) are assumed (see [8] for details). We remark that these results may
fail if the sign conditions (6) are omitted. Then nonreal and nonsemisimple
eigenvalues may occur [6, 7].

In a multiparameter generalization we consider a system of ordinary
differential equations

’ n
- (pjy}) +qjyj = (Z >\k7“jk> Yi, J=1,2,---,n, (7)
k=1

where p;, p;-, gj, and 7, are real and continuous functions on [0,1] and p;
are positive on [0, 1], subject to boundary conditions

(ajoj + bjo) 55(0) = (cjo); + djo) (pju}) (0) (8)



and

(a0 +bj1) y; (1) = (e +djn) (ps) (1)- 9)
We assume the so-called Minkowski definiteness conditions on the functions
Tik, Jok = 1,2,..., n, together with certain sign conditions on numbers

wjs = ajsdjs — bjscjs, s = 0,1. These conditions yield in the corresponding
abstract setup a right definite case [3]. Then all the eigenvalues are real
and the corresponding eigenfunctions are complete (see [1, 15, 16]). We
generalize the oscillation theory to the general n-parameter case. We also
discuss the behaviour of the eigenvalue hypersurfaces. These results for
n =2 and ajo = ¢jo =0, j = 1,2, are given in [2].

2 Preliminaries

By a transformation of the independent variable, we can assume without
loss of generality that p;, j = 1,2,...,n, are identically equal to 1 (see [8,
Appendix]). Then differential equations (7) become

n
—y + qjy; = (Z >‘k7“jk> Yi, J =12 ,n, (10)
k=1

and the boundary conditions (8) and (9) become

(ajoA; + bjo) 45 (0) = (cjoXj + djo) y;(0) (11)
and
(aj1Aj +bj1) y;i(1) = (ciAj +dj1) y5(1), (12)
respectively.
Let us introduce some notation. For s = 0,1 and 7 = 1,2,...,n, we
write

st = ajsdjs — jsts-
If a function y is in L?[0, 1] then we denote by 75 (y) the integral f01 i yl?,
and if y = (y1,%2,...,yn) is an n-tuple of functions in L?[0,1] then we
denote by po(y) the determinant det[f;x(y;)]7 ;. We write By for the unit
ball of L2[0,1].

In what follows we use the following assumptions:

(C) gjand 1, j,k = 1,2,...,n, are real and continuous functions on [0, 1],



(I) (a‘) ajo = Cjo = 07 (b](]adjO) ?é (070)7 .7 = 1727' A

or

(b) wjo <0 forj=1,2,...,n,
(II) wj1 >0for j =1,2,...,n,
(III) 7ik(y) <O for j,k=1,2,...,n, j #k, and for all y € L?[0,1], y # 0,
(IV) i1 7ik(y) >0 for 5 =1,2,...,n and for all y € L?[0,1], y # 0.

By scaling the constants ajs, bjs, cjs and d;s we can replace the inequali-
ties in assumptions (Ib) and (II) by wjo = —1 and wj; = 1, respectively. We
assume that these simplifications are done.

Following [5] we call the assumptions (III) and (IV) the Minkowski con-
ditions. Since we assume (C), i.e., rj; are continuous functions, it follows
that the Minkowski condition (IV) is uniform, i.e. there exists a constant
v > 0 such that for ally € By and j =1,2,...,n,

(IV?) Yk=1 Tik(y) > -

After an invertible transformation of parameters is performed, the uniform
Minkowski conditions follow from uniform right definiteness and uniform
ellipticity conditions [5, p. 19 and p. 23]. The latter conditions are more
familiar in the literature on multiparameter spectral theory. A system of
equations (10) (or more generally a system of equations (7)) is called uni-
formly right definite if there exists a constant y > 0 such that po(y) > v
for all y = (y1,¥2,.-.,yn) € B}, and it is called uniformly elliptic if there
exist (ap,00,...,0p,) € R" and 4 > 0 such that >} axpojr(y) > o
for all y = (y1,92,-.-,yn) € Bl and all j. Here pg;i(y) is the cofactor
of po(y) corresponding to 7jx(y;). Note that if we assumed uniform right
definiteness and uniform ellipticity it would not be possible, in general, to
obtain the Minkowski conditions by an invertible linear transformation of
parameters without losing the form of boundary conditions (11) and (12)
and assumptions (Ib) and (IT). After such a transformation of parameters,
more general boundary conditions are obtained from (11) and (12); namely,
each )\; is replaced by a linear combination of all the eigenparameters A,
k=1,2,...,n. (Multiparameter Sturm-Liouville problems with these gen-
eral boundary conditions are studied in [3]). However, before eigenvalue and
oscillation theory for such multiparameter problems can be discussed, some
further analysis of one-parameter Sturm-Liouville differential equations with
eigenparameter dependent boundary condition would be required. Here we



follow the path of [2] and assume the stronger conditions and apply the
available one-parameter analysis of Binding, Browne, and Seddighi [8].

At the end of this section we introduce a notion of Minkowski matrix
and give a bound for its minimal singular value.

A real matrix A = [ajk]?,kzl is called a Minkowski matriz if the following
conditions hold:

1. aj; >0forj=1,2,...,n,
2. ajp, <0for j,k=1,2,...,n,5 #k,
3. Y h—1ajr >y >0for j=1,2,...,n.
Constant 7 above is called a bound of the Minkowski matrix A.

Lemma 2.1 If A is a Minkowski matriz with a bound v and o,(A) is its
minimal singular value then

on(A) >

S

Proof. The minimal singular value satisfies a relation 0, (A) = min;,—1 [[A7||2
(see e.g. [12, p. 428]). We choose a vector z = [%’]?:1 with a norm [|z]|s = 1.
Suppose that k is such that |zy| > |z;| for j = 1,2,...,n. Then we have

n
Y ar

J=1j#k

n
> akjx

=1

> |agpry|—

n n
> apglorl+ Y aggleg] > (Zakj) |z > ¥|zkl.

=Lk i=1

Because we assume that ||z|ls = 1 it follows that |zx| > ﬁ The above
inequality implies that ||Az|s > % O

3 Eigenvalues in the case that boundary condi-
tions at one end depend on eigenparameter

We first consider in detail the problem (10), (11) and (12) under assump-
tions (C), (Ta) and (IT)-(IV) and study the properties of the corresponding
eigenvalue hypersurfaces. This is a generalization of two-parameter results
proved in [2]. The proofs here are similar and depend on results in [§8]. A
crucial new step is an application of Hadamard’s Inverse Function Theorem
[13, Thm. A].



Let us now fix j and consider Sturm-Liouville problem (10), (11) and (12)
under assumptions (Ia) and (IT)-(IV). We write A; for the set of parameters

Alal#j'

Lemma 3.1 There exists an infinite sequence \j = Ag-m) (Aj),m=0,1,2,...,

of real eigenvalue hypersurfaces. Fach of the functions )\gm)(/\j) depends
continuously on all \j € X; and for each value X; € IR"~! the sequence of

eigenvalues {Agm) (Aj)}oo . is strictly increasing.
m=

Proof. We fix 5 = 1 for simplicity. We view the boundary value problem

n
—yi + (CH - Z >\k7"1k> Y1 = N1yt
k=2

together with (11) and (12) as a parameterized one parameter Sturm-Liouville

boundary value problem with eigenparameter dependent boundary condi-

tion. The existence of )\gm (A1) with required properties follows by [8, Thms

3.1 and 3.2]. 0
(

Lemma 3.2 To each eigenvalue )\jm)(kj) there exists a real eigenfunction
y(-m) = y(-m) (:1:, A;-m)) with Hyj(m)H =1 for all X; and such that for each x €

[0,1] and each compact set K; C IR™ ! the eigenfunction y](-m)

tive with respect to x depend continuously on X; € K;. Furthermore, there

and its deriva-

exists a sequence of natural numbers N](m) = ](m) (Aj), m=0,1,2,...,

(m)
J

such that ys ’ has m zeros on the interval (0,1) for m < N](m) and m — 1

zeros on (0,1) for m > N](m).

Proof. The proof is similar to the proof of [2, Lemma 2.2]. For simplicity
we fix = 1 and suppress it. Let

0 1
Y
y (éi;?/) and A(z, ) <q_>\(x( ))rl_Ejlﬁ)\m 0>

Then y is a solution of
y' = Az, Ny.

Observe that A is a continuous function of z and A. Then for A lying in a
compact subset K the operator norm ||A(z,A)|| on L?[0,1] @ L?[0, 1] has an



upper bound which may depend on z. Then the function fy : R? - R?
defined by fy (z,a) = A(z, A)a, for z € [0,1] and a € IR? is Lipschitz. The
continuity of y(™(z,X) and %y(m) (z,A) then follows by [14, Thm. 3.2]
using the same arguments as in the proof of [2, Lemma 2.2]. The existence
of )\gm)(k) with required properties follows by [8, Thm. 3.1]. O

Theorem 3.3 Partial derivative of )\gm)(/\j) with respect to \j € Aj exists
and is equal to

A SN S N
—=- fjj(yjm)Jr,]—,)Q uy; ), (13)

o\

where y(-m)(l) = 4™ (1,X;). Moreover, the derivative 34)'\1(,\]-) is continu-

J J
ous, positive, and bounded on the entire R™ .

Proof. For simplicity we assume j = 1 and [ = 2 and we write A’ for the set
of remaining parameters X\, 7 = 3,4, ...,n. Furthermore, we fix A’ € IR" 2
and a nonnegative integer m, and we suppress m.

Assume that y; = yi(z, A2, X’) is the eigenfunction corresponding to
A1 (A2, A') and that z; = z1(z, A2 + €, X') is the eigenfunction corresponding
to A1 (A2 + €, X') for some € > 0. So we have

n
Yyl +qiy1 = <>\1(>\2, A)rin + Aaria + ) Atr”) v (14)
t=2

and

n
—2 +quz1 = (AI(AZ +e X+ Qe +eria+ ) Atm) a9
t=2

Multiplying the first equation by z; and the second by y;, subtracting and
integrating, we obtain

1 1
(yiz1 — y1zi)|é = (A (A2 + 6 A) = A (A2, X)) /0 T11Y121 + 6/0 T12Y121-

(16)
Dividing by € and using the continuity established in Lemmas 3.1 and 3.2,

we have )
y1(1) wn N o\
((011>\1 + d11)2> 00X Tll(yl) oo TIZ(yl)



Then
o\

2 —1
= 10 )2> 712(y1)- (17)

(criA1 +din

Since y; and 7j; are continuous it follows that g—g\\; is continuous. Note that
ly1]] = 1 by Lemma 3.2. Then the Minkowski condition (III) and identity
(17) imply that g—g\\; > 0 for all (Ao, A’) € R"™!. By the continuity of rio it
follows that M9 = max{ri3(z);0 < z < 1} is finite. The uniform Minkowski
conditions imply that r11(y1) > n<y. Using these and identity (17) it follows
that 242 (X') < 212 for all X' € R™ .

A straightforward calculation shows that (12) with j = 1 implies that

y1(1)
ciiA +din

- (7“11(3/1) +

—fuly) =

For other derivatives, one carries out the same calculation with the roles
of 1 and 2 replaced by j and [, respectively. O

For each n-tuple m = (mq,ms, ..., my) of nonnegative integers we con-

sider the set of eigenvalue hypersurfaces \; = )\;mj) (Aj), j = 1,2,...,n.
We fix m and, for simplicity of notation, we suppress it. Consider next
the function F : R" — IR" given by F(X) = (X\j — Xj(X;))7_,. Assume

J=1
that y; = y; (z, A;) is the eigenfunction corresponding to A;(A;) and write
fily;) = —%. By Theorem 3.3 it follows that function F is a C'-
function. Its Jacobian matrix is equal to
| _du ... _on
02 OAn
Lo 1 L L%
I V)
o1 02

Lemma 3.4 The determinant of the Jacobian matriz J(F) is positive for
all X € R".

Proof. Recall that the uniform Minkowski condition (IV’) holds. Then
Tik(y;) <0 for j # k and > ) _; 7ji(y;) > v > 0. Let s; be the sum of the
entries of the j-th row of the Jacobian matrix J(F'). Take 5 = 1 and apply
Theorem 3.3 to show that

n — n —

1k (y1) Tk(y1) o

B - N T T A LI )
' = Ok = T+ fu(yn)? = T R




where R = max {rgi(yx); k=1,2,...,n}. In a similar way we see that
55 > % > 0 for j = 2,3,...,n. The Gershgorin Circle Theorem (see e.g.
[12, p. 341]) implies then there is a constant 5 > 0 such that real parts of
all the eigenvalues of J(F') are greater than (. Since nonreal eigenvalues,
if any, occur in conjugate pairs it follows that the determinant det J(F') is
positive for all A € IR™. O

Lemma 3.5 The function F is proper [13], i.e. | Al — oo implies ||F'(A)]|2 —
0.

Proof. We write F' = (F})7_;. The inner product of vectors a,b € R" is
denoted by (a,b) and the p-norm of a vector alR" is denoted by ||a||,. By
the Mean Value Theorem applied to Fj : R" — IR and vectors a, A € IR"
there is a vector b; in the convex hull of the set {a, A} such that

(Fj(A) — Fj(a))? = (grad Fj(b;),A —a), j =1,2,...,n, (18)

where grad Fj(b;) is the gradient of F; at b;. By the definition of F it
follows that

oN; O\ O\s
grad Fj(b;) = ( —an(bj) —5E(by) - —grt(by) )
Next we consider the matrix
1 —Hi(by) - —53(by)
— 52 (by) 1 coo =822 (by)
G = ) ] :
_%(bn) _%(bn) 1

We apply Theorem 3.3 and use the uniform Minkowski conditions to prove
that G is a Minkowski matrix with bound . Calculations are similar to
those in the proof of Lemma 3.4 and we omit them. Next it follows by
relations (18) and Lemma 2.1 that

IF(A) = F(a)|? = [G(A —a)ll> > %IIA — all>.

Finally, if || Al]2 — oo then ||[F(A)|]2 — oo since the 2-norm and the 4-norm
on IR™ are equivalent. Hence F' is a proper function. O

Theorem 3.6 For each n-tuple m = (my,ma,...,my,) of nonnegative in-
tegers the set of eigenvalue hypersurfaces \j = >\§-mj) (Aj), 1 =1,2,...,n,
has exactly one point of intersection in IR™.



Proof. We fix m and suppress it. We consider the function F' : R" — IR"
given by F(X) = (\; — Aj(Aj));l:l' Lemmas 3.4 and 3.5 tell us that F is a
proper function and that the determinant of its Jacobian is positive for all
A € R". By Hadamard’s Inverse Function Theorem [13, Thm. A] it follows
that F : IR" — IR" is a diffeomorphism. Hence the inverse image F~1(0),
which is the intersection of the eigenvalue hypersurfaces \; = A;j(X;), j =
1,2,...,n, is a single point. O

Next we describe the limiting behaviour of the eigenvalue hypersurfaces.

Proposition 3.7 The eigenvalue hypersurfaces have the following proper-

ties :
1. )\g-m)(kj) is an increasing function in each parameter A\ € Aj,
. d; :
2. Ag-o)(kj) < mln{O, _?ﬁ} for all j,

3. limy, 00 )\g-o)(,\j) = min{ ,—%} for all j and k # 7,

4o limy, oo A (X)) = 00 form >0, 4,k =1,2,...,n, j #Fk,

5. limy,y—oc A (X)) = =00 form >0, j,k =1,2,...,n, j # k.

Proof. We shall prove only the property 2 in detail. The property 1 is
obvious from positivity of all the partial derivatives, the proof of 3 depends
on the fact that f is an increasing function in each \; € A; which follows
from [8], and the proofs of 4 and 5 follow by considering the corresponding
asymptotic problems and are similar to the proof of [2, Lemma 3.4].

For 2, one has to go back to [8, pp. 60-64]. Consider the jth. equation
as a one-parameter problem, but depending on A;. Let 6 be the Priifer
angle. Thus 6 is a function of z € [0,1], the eigenparameter \; and the

n — 1 constants Aj. The zeroth eigensurface )\5-0) is the intersection point
of f(A\j) = cot@(1,A;, ;) with the hyperbola g;(A;) = (aj\; +b;)/(c;A; +
d;). Now because of the assumptions on aj, bj,c; and dj, the hyperbola is
increasing. On the other hand, the graph of f has countably many branches.
The hyperbola cuts the leftmost branch of f in the left half plane. Since the
vertical asymptote for the hyperbola is —d;/c;, the point of intersection has
to lie on the left of this vertical line also. Hence 2 is proved. [ |

Suppose that A € IR" is an eigenvalue of the problem (10), (11) and (12)
under assumptions (C), (Ta) and (IT)-(IV) and that y;(X), j = 1,2,...,n, are

10



the corresponding eigenfunctions. Let h; be the number of zeros of y;(A) on
the interval (0,1). The n-tuple of nonnegative integers h = (hy, ho, ..., hy)
is called the oscillation count of A and h; is called the j-th oscillation count
of A.

By [8, Thm. 3.1] it follows that on each hypersurface )\;mj )(Aj) with
m; > 0 we have 2" oscillation counts. The j-th oscillation count changes

when we cross the hyperplane \; = —%. Then N ](mj ) is determined so that
Nj(mj)*l dj1 Nj(m;)
A (A7) < === < A7)
71
Hence (m3) 4
h; = mj, if )\] . <-—a (19)
m; — 1, otherwise.

The following result now follows by Proposition 3.7 and above relations (19).

Theorem 3.8 If there are M eigenvalues with the same oscillation count
then:

1. M <2n,

2. there is at most one oscillation count corresponding to M = 2" eigen-
values,

3. for M # 2% k = 1,2,...,n — 1, there is only a finite number of
oscillation counts that correspond to M eigenvalues,

4. for M =2F k=1,2,...,n—1, there is an infinite number of oscilla-
tion counts that correspond to M eigenvalues.

4 Eigenvalue hypersurfaces in the case that bound-
ary conditions at both ends are eigenparameter
dependent

Now we consider the problem (10), (11) and (12) under assumptions (Ib)
and (II)-(IV) and study the properties for the corresponding eigenvalue hy-
persurfaces. The arguments in the proofs are similar to those above under
assumption (Ia). We specify which results are used in the proofs but do not
give all details.

11



Lemma 4.1 There exists an infinite sequence {)\gm) (,\j)}oo o of real eigen-
m=

values. Fach of )\gm)(kj) depend continuously on all \; € X; and the se-
(m

quence of eigenvalues {)\-

; ) (Aj)}oo . is (strictly) increasing for each X; €
m=
R™ .

Proof. We fix j = 1 for simplicity. We view boundary value problem

n
—yi + (CH - >\k7"1k> Y1 = ATy
k=2

together with (11) and (12) as a parameterized one parameter Sturm-Liouville
boundary value problem with eigenparameter dependent boundary condi-
tions. The existence of )\gm)(kl) with required properties follows by [8,
Thms 4.2 and 4.3]. O
(m)
J
y](m) (z,Xj) of norm 1 for all Aj such that for each x € [0,1] and each
compact set K; C IR™ ! the eigenfunction y](-m) (z,Aj) and its derivative
with respect to x depend continuously on Xj € K. Furthermore, there exists

a sequence of natural numbers {N(m) (A-)}Oo and {N(m) (A-)}Oo such
71 J m=0 72 J m=0
that ym(Aj) has m zeros on (0,1) for m < Nﬁn)(lj), m — 1 zeros on (0,1)

for N](T)(Aj) <m < N](;n) (Aj) and m—2 zeros on (0,1) for m > N](;n) (Aj).

Lemma 4.2 To each eigenvalue X;"’(A;) there exists a real eigenfunction

The proof is the same as the proof of Lemma 3.2. Only at the end of it

the existence of )\gm)(z\l) with required properties follows by [8, Thm. 4.2].

Proposition 4.3 Partial derivatives of )\g-m)(kj) with respect to N\j € A;
exist and are equal to

aA(_m) (m) 1 y(_m)(s)Q -t (m)
3il = — {7y, + ) ]—)2 ma(y;). (20)

Proof. For simplicity we assume 5 = 1 and [ = 2. We use the notation of
the proof of Proposition 3.3. Consider the identity (16). Dividing it by e,
using the boundary conditions (11) and (12), and the continuity established
in Lemmas 4.1 and 4.2 we obtain

O\ ( y1(1)%wi y1(0)2w1o ) O _ -
o - = ——"11(y1) +r12(y1)-
e \ (et h1 +di1)?  (crod + dip)?

)Y

12



A straightforward calculation shows that assumptions (Ib) and (II) together
with the boundary conditions (11) and (12) imply that

y1(s)
— =———— s=0,1.
fls(yl) Cls>\1 + dls ) )
For other derivatives, one carries out the same calculation with the roles
of 1 and 2 replaced by j and [, respectively. O

Theorem 4.4 The set of eigenvalue hypersurfaces \; = )\;nj (Aj), 1 =
1,2,...,n, has exactly one intersection point in IR™ for each n-tuple m =
(my,ma,...,my) of nonnegative integers.

Proof. The proof is almost identical to the proof of Lemmas 3.4 and 3.5, and
Theorem 3.6. We use Proposition 4.3 to show that function F' : R" — IR"
given by F(X) = (A; — A;(Aj))_, is a C' function and to show that its
Jacobian matrix has a positive determinant. Further we show that F' is a
proper function and hence it is a diffeomorphism by Hadamard’s Inverse
Function Theorem [13, Thm. A]. Then F~!(0) is the intersection point of
the eigenvalue hypersurfaces. O

The limiting behaviour of the eigenvalue hypersurfaces follows by [8,
Thm. 4.4 and Cor. 4.5].

Proposition 4.5 The eigenvalue hypersurfaces have the following proper-
ties :
0 . d; d; .
1. >\§- )(Aj) < min{0, _Engv —;]Li} for all g,

0 d

J(Aj) = min{0, ~ 50 4L} for all j and k # j,

2. limy, 00 A s

J

3. limy, Ag-m)(kj) =—o00 form >0, j,k=1,2,...,n, j £k,

Jo limy, oo AV (A)) = —00 form >0, j,k=1,2,...,n, j #Fk.

Suppose that A € IR" is an eigenvalue of the problem (10), (11) and (12)
under assumptions (C), (Ib) and (IT)-(IV) and that y;(X), 7 = 1,2,...,n, are
the corresponding eigenfunctions. By [8, Thm. 4.2] it follows that on each
hypersurface Ag-mj)(kj) with m; > 0 we have 3" oscillation counts. That is,

the j-th oscillation count changes when we cross the hyperplanes \; = —%j%,

13



s = 0,1. Write ey = min{—%]%,s :0,1} and ey = max{—%ij,s :0,1}.

Then the numbers N, ](,Tj), k = 1,2, are determined so that

N(mj)—l N(mj)—l

TG <eo <A T (Ag) <ep < ANy,
It further follows that
mj, if )\;mj) < e
hj = mj — 1, if ey < Agmj) <e (21)

m; — 2, otherwise.

Proposition 4.5 and above relations (21) are used to obtain the following
result.

Theorem 4.6 If there are M eigenvalues with the same oscillation count
then:

1. M < 3",

2. there is at most one oscillation count corresponding to M = 3" eigen-
values,

3. for M # 3k, k = 1,2,...,n — 1, there is only a finite number of
oscillation counts that correspond to M eigenvalues,

4. for M =3F k=1,2,...,n— 1, there is an infinite number of oscilla-
tion counts that correspond to M eigenvalues.
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