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Quadratic eigenvalue problem (QEP)

Q(λ) = λ2M + λC + K, where M , C, K are n× n matrices. If a scalar λ and a nonzero

vector x satisfy Q(λ)x = 0 then λ is an eigenvalue and x is the (right) eigenvector.

If M is nonsingular then there are 2n finite eigenvalues. They are usually computed by a

linearization, e.q., from the 2n× 2n generalized eigenvalue problem�
0 I

−K −C

� �
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�
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This is not efficient for banded matrices M , C, K (e.g., tridiagonal) where the structure is lost.
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This is not efficient for banded matrices M , C, K (e.g., tridiagonal) where the structure is lost.

We will show that the eigenvalues of banded QEP can be efficiently computed as the zeros of

the characteristic polynomial f(λ) = det(Q(λ)).

We first consider a special case where

• M, C, K are real symmetric tridiagonal matrices and

• QEP is hyperbolic.

The eigenvectors can be obtained later by inverse iteration (e.g., Dhillon (1990)).
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Example: a damped mass-spring system

m1 m2 mn

cn

kn+1

c2c1

k1 k2 k3 kn

q1 q2 qn

A damped system of n masses and n + 1 springs leads to the QEP

λ
2
M + λC + K,

where M = diag(m1, . . . , mn), C = diag(c1, . . . , cn), and

K =

2664
k1 + k2 −k2

−k2
. . . . . .
. . . . . . −kn

−kn kn + kn+1

3775 .

M is the mass matrix, C is the damping matrix, and K is the stiffness matrix. The eigenvalues

are the squares of the natural frequencies of the modes of vibration.
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Overview

• Hyperbolic QEP

• Divide-and-conquer approach

• Laguerre’s and Ehrlich–Aberth’s method

• Efficient computation of det(Q(λ)) and its derivatives

• Numerical experiments
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Hyperbolic QEP

Symmetric Q(λ) = λ2M + λC + K is hyperbolic if M > 0 and

(x
T
Cx)

2 − 4(x
T
Mx)(x

T
Kx) > 0

for all x 6= 0. Properties:

• all eigenvalues and eigenvectors are real,

• a gap between n largest (primary) and n smallest (secondary) eigenvalues,

• n linearly independent eigenvectors associated with the primary (secondary) eigenvalues.

• Markus (1988): Symmetric Q with M > 0 is hyperbolic iff exists γ such that Q(γ) < 0.

• Let ν(µ) be the number of negative eigenvalues of Q(µ). Can show:

a) if γ ≤ µ then ν(µ) equals the number of eigenvalues of Q that are greater than µ,

b) if µ ≤ γ then ν(µ) equals the number of eigenvalues of Q that are smaller than µ.

We can compute the k-th eigenvalue by bisection.
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Faster methods

We can compute all eigenvalues by bisection, but the convergence is slow.

We apply other numerical methods for the roots of the characteristic polynomial:

• Laguerre’s method

– Li, Li (1993): symmetric tridiagonal eigenproblem

– Li, Li, Zeng (1994): generalized symmetric tridiagonal eigenproblem

– suitable for the hyperbolic QEP

• Ehrlich–Abert’s method

– Bini, Gemignani, Tisseur (2003): nonsymmetric tridiagonal eigenproblem

– suitable also for a general QEP

The above methods require good initial approximations and stable and efficient computation of

f(λ) = det(Q(λ)), f
′
(λ)/f(λ), and f

′′
(λ)/f(λ).

GAMM Annual Meeting 2006, 27th - 31st March 6



Divide-and-conquer (D&C)

Q(λ) =

266664
a1 b1 0

b1 a2 b2
. . . . . . . . .

bn−2 an−1 bn−1

0 bn−1 an

377775 ,

where ai = ai(λ) and bi = bi(λ). We choose m ≈ n/2 and set bm = 0. We obtain

Q0(λ) =

�
Q1(λ) 0

0 Q2(λ)

�
.

We take the eigenvalues eλ2n ≤ · · · ≤ eλ1 of Q0 as approximations to the eigenvalues

λ2n ≤ · · · ≤ λ1 of Q (and repeat this recursively for Q1 and Q2).

Theorem: If Q is hyperbolic, so is Q0 and the eigenvalues of Q0 and Q interlace:

a) λ2n ≤ eλ2n and eλ1 ≤ λ1,

b) eλi+1 ≤ λi ≤ eλi−1 for i = 2, . . . , n− 1 and i = n + 2, . . . , 2n− 1,

c) eλn+1 ≤ λn+1 < λn ≤ eλn.
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Laguerre’s method

Laguerre’s iteration for f(λ) = det(Q(λ)) is

L±(x) = x +
2n 

−f ′(x)
f(x) ±

s
(2n− 1)

�
(2n− 1)

�
−f ′(x)
f(x)

�2

− 2nf ′′(x)
f(x)

�!.

Has cubic convergence close to a simple eigenvalue.

Global convergence: if we add λ2n+1 = −∞ and λ0 = ∞ then for x ∈ (λi+1, λi) we have

λi+1 < L−(x) < x < L+(x) < λi.

Divide-and-conquer:

• interlation shows that eλi is good initial approximation for λi,

• from ν(Q(eλi)) we see if λi < eλi or eλi < λi and then use L− or L+ sequence.
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Bisection and Laguerre’s method

If eλi is close to λi−1 or λi+1, then the convergence can be very slow.

λi-1λiλi+1
∼ ∼ ∼

λi+1 λi λi-1λi+2

The necessary condition for the cubic convergence near a single eigenvalue λ is

f ′(x)

f(x)
(x− λ) > 0.

We first use bisection on [eλi, eλi+1] (or [eλi, eλi−1]) until the condition is achieved.

GAMM Annual Meeting 2006, 27th - 31st March 9



Ehrlich–Aberth’s method

The method simultaneously approximates all the zeros of a polynomial f(λ) = det(Q(λ)).

From an initial approximation x(0) ∈ C2n the method generates a sequence x(j) ∈ C2n which

locally converges to the eigenvalues of Q. The equation is

x
(k+1)
j = x

(k)
j −

f
�

x
(k)
j

�
f ′
�

x
(k)
j

�
1−

f
�

x
(k)
j

�
f ′
�

x
(k)
j

� 2nX
l=1
l 6=j

1

x
(k)
j − x

(k)
l

for j = 1, . . . , 2n.

If implemented in the Gauss–Seidel style then the convergence for simple roots is cubical.

To eliminate multiple values in the initial approximation obtained by the D&C we slightly perturb

the eigenvalues of Q0.
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Computation of det(Q(λ)) from the three term recurrences

Let

Q(λ) =

266664
a1 b1 0

b1 a2 b2
. . . . . . . . .

bn−2 an−1 bn−1

0 bn−1 an

377775 ,

where ai = ai(λ) and bi = bi(λ). Then

f0 = 1, f1 = a1, fr+1 = ar+1fr − b2
rfr−1.

f ′0 = 0, f ′1 = a′1, f ′r+1 = a′r+1fr + ar+1f ′r − 2brb′rfr−1 − b2
rf ′r−1.

f ′′0 = 0, f ′′1 = a′′1 , f ′′r+1 = a′′r+1fr+2a′r+1f ′r+ar+1f ′′r −2b′2r fr−1−2brb′′rfr−1−4brb′rf ′r−1−b2
rf ′′r−1.

Because of possible overflow–underflow problems, we rather use simillar recurrences for

di =
fi

fi−1

, gi =
f ′i
fi

, hi =
f ′′i
fi

.
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Computation of det(Q(λ)) from the LU decomposition

Bohte (1979): If det(Q(λ)) 6= 0 and PQ(λ) = LU is a LU decomposition of Q(λ), then

f(λ) = det(Q(λ)) = det(P ) · u11u22 · · ·unn.

It follows PQ′(λ) = L′U + LU ′ = MU + LV , where M = L′ is lower triangular with zero

diagonal and V = U ′ is upper triangular.

M and V can be computed from Q′(λ), P, L, and U . Then

f ′(λ)

f(λ)
=

nX
i=1

vii

uii

.

Remarks:

• generalization for f ′′ is straightforward,

• implementation for banded matrices computes f ′/f and f ′′/f in O(n).
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Numerical example 1: hyperbolic tridiagonal QEP

• M and K: diagonals and codiagonals are random from [0.5, 1] and [0, 0.1], respectively,

• C: diagonals and codiagonals are random from [4, 5] and [0, 0.5], respectively.

• ZGGEV: linearization + Lapack routine for the generalized eigenvalue problem

n Ehrlich-Aberth R Laguerre-bisection ZGGEV

average number of iterations in the last D&C

100 1.88 1.86
200 1.76 2.09
400 1.57 1.20
800 1.55 1.26

time in seconds

100 0.02 0.02 0.60
200 0.05 0.06 5.02
400 0.13 0.23 52.95
800 0.48 0.83 684.63

maximum relative error

100 5e-15 5e-15 5e-14
200 5e-15 5e-15 9e-14
400 5e-15 5e-15 1e-13
800 5e-15 5e-15 1e-13
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Numerical example 2: general tridiagonal QEP

QEP 1:

• M : diagonals and codiagonals are random from [0, 1] and [0, 0.1], respectively,

• C: diagonals and codiagonals are random from [0, 1] and [0, 0.5], respectively,

• K: diagonals and codiagonals are random from [0, 1] and [0, 0.2], respectively.

QEP 2: Example from Tisseur and Meerbergen (2000)

• M = tridiag(0.1, 1, 0.1), C = tridiag(−3, 9,−3), K = tridiag(−5, 15,−5)

• all eigenvalues are simple, D&C approximations are double.

QEP 1 QEP 2

ZGGEV Ehrlich–Aberth C ZGGEV Ehrlich–Aberth C

n time error time avg. iter error time error time avg. iter error

100 0.75 4e-13 0.03 1.94 1e-13 0.59 7e-15 0.23 20.10 2e-15
200 6.16 3e-12 0.11 1.72 9e-15 5.23 4e-14 1.02 19.52 2e-15
400 67.09 4e-12 0.39 1.56 4e-14 46.64 6e-14 4.09 18.88 4e-15
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Numerical example 3: banded QEP

We can apply the Ehrlich-Aberth method if an efficient method for the computation of the

characteristic polynomial and its derivative is available. For banded matrices we can use the

method based on the LU factorization.

The initial approximations are obtained by the D&C scheme from the eigenvalues of

Q0(λ) =

�
Q1(λ) 0

0 Q2(λ)

�
.

We take M=randn(n), C=randn(n), and K=randn(n), set mij = cij = kij = 0 for |i−j| > p,

where p is the bandwidth, and apply the Ehrlich-Aberth method. Table shows the average

number of iterations in the last D&C step.

p n = 50 n = 100 n = 200

1 3.91 2.85 2.32
2 5.78 4.18 3.31
3 6.23 5.31 4.44
4 6.42 5.91 5.33
5 9.27 6.44 6.37
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Conclusions

• Two methods for the tridiagonal hyperbolic QEP.

• All methods can be easily parallelized.

• This approach might be applied to:

– nonsymmetric and non hyperbolic tridiagonal quadratic eigenvalue problems,

– tridiagonal polynomial problems,

– banded polynomial eigenvalue problems.

• Algorithm based on LU decomposition might be used for an efficient computation of the

derivative of the determinant.
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