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Two-parameter eigenvalue problem

• Two-parameter eigenvalue problem:

A1x = λB1x + µC1x

(W)
A2y = λB2y + µC2y,

where Ai, Bi, Ci are n× n matrices, λ, µ ∈ C, and x, y ∈ Cn.

• Eigenvalue: a pair (λ, µ) that satisfies (W) for nonzero x and y.

• Eigenvector: the tensor product x⊗ y.
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Two-parameter eigenvalue problem

• Two-parameter eigenvalue problem:

A1x = λB1x + µC1x

(W)
A2y = λB2y + µC2y,

where Ai, Bi, Ci are n× n matrices, λ, µ ∈ C, and x, y ∈ Cn.

• Eigenvalue: a pair (λ, µ) that satisfies (W) for nonzero x and y.

• Eigenvector: the tensor product x⊗ y.

• Problem: compute some (all) eigenvalues (λ, µ) and eigenvectors x⊗ y.
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Separation of variables: ∆u + νu = 0 on Ω, u|δΩ = 0

Rectangle: Ω = [0, a]× [0, b] =⇒ two S–L equations (ν = λ + µ)

x′′ + λx = 0, x(0) = x(a) = 0,

y′′ + µy = 0, y(0) = y(b) = 0.
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Separation of variables: ∆u + νu = 0 on Ω, u|δΩ = 0

Rectangle: Ω = [0, a]× [0, b] =⇒ two S–L equations (ν = λ + µ)

x′′ + λx = 0, x(0) = x(a) = 0,

y′′ + µy = 0, y(0) = y(b) = 0.

Circle: Ω = {x2 + y2 ≤ a2}, polar coordinates =⇒ a triangular situation

Φ′′ + λΦ = 0, Φ(0) = Φ(2π) = 0,

r−1(rR′)′ + (ν − λr−2)R = 0, R(0) < ∞, R(a) = 0.
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Separation of variables: ∆u + νu = 0 on Ω, u|δΩ = 0

Rectangle: Ω = [0, a]× [0, b] =⇒ two S–L equations (ν = λ + µ)

x′′ + λx = 0, x(0) = x(a) = 0,

y′′ + µy = 0, y(0) = y(b) = 0.

Circle: Ω = {x2 + y2 ≤ a2}, polar coordinates =⇒ a triangular situation

Φ′′ + λΦ = 0, Φ(0) = Φ(2π) = 0,

r−1(rR′)′ + (ν − λr−2)R = 0, R(0) < ∞, R(a) = 0.

Ellipse: Ω = {(x/a)2 + (y/b)2 ≤ 1}, elliptic coordinates (c focus)

=⇒ modified Mathieu’s and Mathieu’s DE ( 4λ = c2ν)

v
′′
1 + (2λ cosh(2y1)− µ)v1 = 0, v1(0) = v1(d) = 0,

v
′′
2 − (2λ cos(2y1)− µ)v2 = 0, v2(0) = v2(π/2) = 0.
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Tensor product approach

A1x = λB1x + µC1x (W)

A2y = λB2y + µC2y

• On Cn ⊗ Cn of the dimension n2 we define

∆0 = B1 ⊗ C2 − C1 ⊗ B2

∆1 = A1 ⊗ C2 − C1 ⊗ A2

∆2 = B1 ⊗ A2 − A1 ⊗ B2.

• Two-parameter problem (W) is equivalent to a coupled GEP

∆1z = λ∆0z
(∆)∆2z = µ∆0z,

where z = x⊗ y.

• (W) is nonsingular ⇐⇒ ∆0 is nonsingular.

• ∆−1
0 ∆1 and ∆−1

0 ∆2 commute.
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Right definite problem

(W )
A1x = λB1x + µC1x

A2y = λB2y + µC2y

∆0 = B1 ⊗ C2 − C1 ⊗ B2

∆1 = A1 ⊗ C2 − C1 ⊗ A2

∆2 = B1 ⊗ A2 − A1 ⊗ B2

∆1z = λ∆0z

∆2z = µ∆0z
(∆)

(W) is right definite when

• Ai, Bi, Ci real symmetric

•
���� xTB1x xTC1x

yTB2y yTC2y

���� = (x⊗ y)
T
∆0(x⊗ y) > 0 for x, y 6= 0 (equiv. ∆0 s.p.d.)

If (W) is right definite then

• eigenpairs are real

• there exist n2 linearly independent eigenvectors

• eigenvectors of distinct eigenvalues are ∆0-orthogonal, i.e. (x1 ⊗ y1)
T∆0(x2 ⊗ y2)=0
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Algorithm with ∆ matrices

∆1z = λ∆0z

∆2z = µ∆0z

1. Generalized Schur decomposition Q∗∆0Z = R and Q∗∆1Z = S, where Q and Z are unitary, R and S are
upper triangular, and the multiple values of λi := sii/rii are clustered along the diagonal of R−1S.

R =

2
664

R11 R12 · · · R1p

0 R22 · · · R2p
...

... . . . ...
0 0 · · · Rpp

3
775 , S =

2
664

S11 S12 · · · S1p

0 S22 · · · S2p
...

... . . . ...
0 0 · · · Spp

3
775 ,

where the size of Rii and Sii is mi and m1 + · · ·+ mp = n2.

2. Compute diagonal blocks T11, . . . , Tpp of T = Q∗∆2Z, partitioned conformally with R and S.

3. Compute the eigenvalues µi1, . . . , µimi
of the GEP Tiiw = µRiiw for i = 1, . . . , p.

4. Reindex (λ1, µ11), . . . , (λ1, µ1m1
); . . . ; (λp, µp1), . . . , (λp, µpmp) into (λ1, µ1), . . . , (λ

n2, µ
n2).

5. For each eigenvalue (λj, µj) compute the eigenvectors xj ⊗ yj for j = 1, . . . , n2.

The time complexity is O(n6).
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Some available numerical methods

• Blum, Curtis, Geltner (1978), and Browne, Sleeman (1982): gradient method,

• Bohte (1980): Newton’s method for eigenvalues,

• Slivnik, Tomšič (1986): solving (∆) with standard numerical methods for RD problem,

• Ji, Jiang, Lee (1992): Generalized Rayleigh Quotient Iteration.

• Shimasaki (1995): continuation method for a special class of RD problems.

• P. (1999): continuation method for RD problem, Tensor Rayleigh Quotient Iteration

• P. (2000): continuation method for weakly elliptic problem.

• Hochstenbach, P. (2002): Jacobi-Davidson type method for RD problem.

• Hochstenbach, Košir, P. (2005): Two-sided Jacobi-Davidson type method.
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Subspace methods and Jacobi–Davidson method

Subspace methods compute eigenpairs from low dimensional subspaces. They work as follows:

• Extraction: We start with a given search subspace from which approximations to eigenpairs

are computed. In the extraction we usually have to solve the same type of eigenvalue problem

as the original one, but of a smaller dimension.

• Expansion: After each step we expand the subspace by a new direction.

As the search subspace grows the eigenpair approximations should converge to an eigenpair of

the original problem.
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Subspace methods and Jacobi–Davidson method

Subspace methods compute eigenpairs from low dimensional subspaces. They work as follows:

• Extraction: We start with a given search subspace from which approximations to eigenpairs

are computed. In the extraction we usually have to solve the same type of eigenvalue problem

as the original one, but of a smaller dimension.

• Expansion: After each step we expand the subspace by a new direction.

As the search subspace grows the eigenpair approximations should converge to an eigenpair of

the original problem.

Jacobi–Davidson method is a subspace method where:

• a new direction to the subspace is orthogonal or oblique to the last chosen Ritz vector,

• approximate solutions of certain correction equations are used for expansion.
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JD-like method for the right definite case: extraction

Ritz–Galerkin conditions: search spaces = test spaces: u ∈ Uk, v ∈ Vk

(A1 − σB1 − τC1)u ⊥ Uk

(A2 − σB2 − τC2)v ⊥ Vk

⇒ projected right definite two-parameter problem

UT
k A1Ukc = σUT

k B1Ukc + τUT
k C1Ukc

V T
k A2Vkd = σV T

k B2Vkd + τV T
k C2Vkd

Ritz vectors: u = Ukc, v = Vkd for c, d ∈ Rk

Ritz value: (σ, τ), Ritz pair: ((σ, τ), u⊗ v)
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JD-like method for the two-parameter RD eigenvalue problem

1. s =u1 and t =v1 (starting vectors), U0 = V0 = [ ]

for k = 1, 2, . . .

2. (Uk−1, s) → Uk

(Vk−1, t) → Vk

3. Extract appropriate Ritz pair ((σ, τ), c⊗ d) of

UT
k A1Ukc = σUT

k B1Ukc + τUT
k C1Ukc

V T
k A2Vkd = σV T

k B2Vkd + τV T
k C2Vkd

4.
r1 = (A1 − σB1 − τC1)u

r2 = (A2 − σB2 − τC2)v

5. Stop if (‖r1‖2 + ‖r2‖2)1/2 ≤ ε

6. Solve (approximately) an s ⊥ u, t ⊥ v from corr. equation(s)
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JD-like method: expansion: s ⊥ u, t ⊥ v

A1(u + s) = λB1(u + s) + µC1(u + s)

A2(v + t) = λB2(v + t) + µC2(v + t)

Two correction equations

(I − uuT )(A1 − σB1 − τC1)(I − uuT )s = −r1

(I − vvT )(A2 − σB2 − τC2)(I − vvT )t = −r2

• We solve the equations only approximately with a Krylov subspace method with initial guess

0 (e.g., few steps of MINRES or GMRES).

• We suggest the preconditioner Mi = Ai − λTBi − µTCi, where (λT, µT) is the target.

Theorem: Ritz pair ((σ, τ), u⊗ v) is an approximation to ((λ, µ), (u + s)⊗ (v + t))

⇒
q

(λ− σ)2 + (µ− τ)2 = O(‖s‖2
+ ‖t‖2

)
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JD-like method: computing more eigenpairs

Standard deflation techniques can not be applied:

• (x⊗ y)
⊥∆0 can not be written as U ⊗ V , where U ⊂ Rn and V ⊂ Rn.

• there can exist eigenvalues (λ, µ) 6= (λ′, µ′) with eigenvectors x ⊗ y1 and x ⊗ y2,

respectively.
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JD-like method: computing more eigenpairs

Standard deflation techniques can not be applied:

• (x⊗ y)
⊥∆0 can not be written as U ⊗ V , where U ⊂ Rn and V ⊂ Rn.

• there can exist eigenvalues (λ, µ) 6= (λ′, µ′) with eigenvectors x ⊗ y1 and x ⊗ y2,

respectively.

Eigenvectors are ∆0-orthogonal:

(x1 ⊗ y1)
T
∆0(x2 ⊗ y2) = 0

Our approach: In extraction we consider only Ritz vectors that are ∆0-orthogonal to the already

computed eigenvectors.
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Two-sided JD-like method for a general problem: extraction

Petrov–Galerkin conditions: search spaces ui ∈ Uik, test spaces vi ∈ Vik

(A1 − σB1 − τC1)u1 ⊥ V1k,

(A2 − σB2 − τC2)u2 ⊥ V2k,

⇒ projected two-parameter problem

V
∗
1kA1U1kc1 = σV

∗
1kB1U1kc1 + τV

∗
1kC1U1kc1,

V
∗
2kA2U2kc2 = σV

∗
2kB2U2kc2 + τV

∗
2kC2U2kc2,

where ui = Uikci 6= 0 for i = 1, 2 and σ, τ ∈ C.

Petrov vectors: ui = Uikci, vi = Vikdi, ci, di ∈ Ck

Petrov value: (σ, τ), Petrov triple: ((σ, τ), u1 ⊗ u2, v1 ⊗ v2)

Residuals:
rR

i = (Ai − σBi − τCi)ui,

rL
i = (Ai − σBi − τCi)

∗vi
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Two-sided JD-like algorithm

1. si =ui and ti =vi (starting vectors), Ui0 = Vi0 = [ ]

for k = 1, 2, . . .

2. (Ui,k−1, si) → Uik

(Vi,k−1, ti) → Vik

3. Extract appropriate Petrov triple ((σ, τ), c1 ⊗ c2, d1 ⊗ d2) of

V ∗
1kA1U1kc1 = σV ∗

1kB1U1kc1 + τV ∗
1kC1U1kc1,

V ∗
2kA2U2kc2 = σV ∗

2kB2U2kc2 + τV ∗
2kC2U2kc2,

4.
rR

i = (Ai − σBi − τCi)ui

rL
i = (Ai − σBi − τCi)

∗vi

5. Stop if
�
‖rR

1 ‖
2 + ‖rR

2 ‖
2 + ‖rL

1 ‖
2 + ‖rL

2 ‖
2
�1/2

< ε

6. Solve (approximately) si and ti from correction equations
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Inverse eigenvalue problems

We have n× n matrices A0, A1, . . . , Ak, k ≤ n, and we are looking for a linear combination

M = A0 − λ1A1 − · · · − λkAk,

such that M has eigenvalues α1, . . . , αk.

This is a multiparameter eigenvalue problem

(A0 − α1I)x1 = λ1A1x1 + · · ·+ λkAkx1

...

(A0 − αkI)xk = λ1A1xk + · · ·+ λkAkxk.
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Inverse eigenvalue problems

We have n× n matrices A0, A1, . . . , Ak, k ≤ n, and we are looking for a linear combination

M = A0 − λ1A1 − · · · − λkAk,

such that M has eigenvalues α1, . . . , αk.

This is a multiparameter eigenvalue problem

(A0 − α1I)x1 = λ1A1x1 + · · ·+ λkAkx1

...

(A0 − αkI)xk = λ1A1xk + · · ·+ λkAkxk.

Cottin (2001): Dynamic model updating. In a spring-mass model the mass matrix is known and

the stiffness parameters of two springs have to be updated based on the outside measurements

of the natural frequencies.

These problems are singular, so we can not apply the existing methods.
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Determinantal representations

Zeroes of a polynomial p(x) = a0x
n + · · ·+ an are the eigenvalues of the companion matrix.
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Determinantal representations

Zeroes of a polynomial p(x) = a0x
n + · · ·+ an are the eigenvalues of the companion matrix.

Vinnikov (1989): For a given polynomial

p(x, y) = a00x
n
y

n
+ a01x

n
y

n−1
+ a10x

n−1
y

n
+ · · ·+ ann

exists a determinantal representation A, B, C such that

p(x, y) = det(A + xB + yC).
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Determinantal representations

Zeroes of a polynomial p(x) = a0x
n + · · ·+ an are the eigenvalues of the companion matrix.

Vinnikov (1989): For a given polynomial

p(x, y) = a00x
n
y

n
+ a01x

n
y

n−1
+ a10x

n−1
y

n
+ · · ·+ ann

exists a determinantal representation A, B, C such that

p(x, y) = det(A + xB + yC).

p(λ, µ) = 0

q(λ, µ) = 0
=⇒ companion problem

A1u = λB1u + µC1u

A2v = λB2v + µC2v.
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Determinantal representations

Zeroes of a polynomial p(x) = a0x
n + · · ·+ an are the eigenvalues of the companion matrix.

Vinnikov (1989): For a given polynomial

p(x, y) = a00x
n
y

n
+ a01x

n
y

n−1
+ a10x

n−1
y

n
+ · · ·+ ann

exists a determinantal representation A, B, C such that

p(x, y) = det(A + xB + yC).

p(λ, µ) = 0

q(λ, µ) = 0
=⇒ companion problem

A1u = λB1u + µC1u

A2v = λB2v + µC2v.

Question: How to construct a determinantal representation?

The 2nd International Conference on Structured Matrices, Hong Kong Baptist University, 2006 19



Structured matrices

If we apply finite differences to

−
�

p1(x1)y
′
1(x1)

�′
+ q1(x1)y1(x1) =

�
λ a11(x1) + µ a12(x1)

�
y1(x1)

−
�

p2(x2)y
′
2(x2)

�′
+ q2(x2)y2(x2) =

�
λ a21(x2) + µ a22(x2)

�
y2(x2)

then matrix Ai is tridiagonal and Bi, Ci are diagonal for i = 1, 2.

Can we exploit this structure for efficient methods for

∆1z = λ∆0z

(∆)∆2z = µ∆0z,

where
∆0 = B1 ⊗ C2 − C1 ⊗ B2

∆1 = A1 ⊗ C2 − C1 ⊗ A2

∆2 = B1 ⊗ A2 − A1 ⊗ B2?

The 2nd International Conference on Structured Matrices, Hong Kong Baptist University, 2006 20



Conclusion

Twoparameter eigenvalue problems can be solved numerically...
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Conclusion

Twoparameter eigenvalue problems can be solved numerically...

Thank you for your attention.
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Multiparameter eigenvalue problems

V10x1 = λ1V11x1 + λ2V12x1 + · · ·+ λkV1kx1

V20x2 = λ1V21x2 + λ2V22x2 + · · ·+ λkV2kx2

...

Vk0xk = λ1Vk1xk + λ2Vk2xk + · · ·+ λkVkkxk.

A k-tuple λ = (λ1, . . . , λk) is an eigenvalue and x = x1 ⊗ · · · ⊗ xk is the corresponding eigenvector.
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Multiparameter eigenvalue problems

V10x1 = λ1V11x1 + λ2V12x1 + · · ·+ λkV1kx1

V20x2 = λ1V21x2 + λ2V22x2 + · · ·+ λkV2kx2

...

Vk0xk = λ1Vk1xk + λ2Vk2xk + · · ·+ λkVkkxk.

A k-tuple λ = (λ1, . . . , λk) is an eigenvalue and x = x1 ⊗ · · · ⊗ xk is the corresponding eigenvector.

∆0 =

���������

V
†
11 V

†
12 · · · V

†
1k

V
†
21 V

†
22 · · · V

†
2k

...
...

...
V
†
k1

V
†
k2

· · · V
†
kk

���������
, ∆i =

����������

V
†
11 · · · V

†
1,i−1 V

†
10 V

†
1,i+1 · · · V

†
1k

V
†
21 · · · V

†
2,i−1 V

†
20 V

†
2,i+1 · · · V

†
2k

...
...

...
...

V
†
k1

· · · V
†
k,i−1

V
†
k0

V
†
k,i+1

· · · V
†
kk

����������
, i = 1, . . . , k,

where V
†
ij is defined by V

†
ij(x1 ⊗ · · · ⊗ xi ⊗ · · · ⊗ xk) = x1 ⊗ · · · ⊗ Vijxi ⊗ · · · ⊗ xk and linearity.

A nonsingular MEP (i.e., ∆0 nonsingular) is equivalent to the associated joined problem

∆ix = λi∆0x, i = 1, . . . , k,

for decomposable tensors x = x1 ⊗ · · · ⊗ xk, where the matrices ∆−1
0 ∆i commute.
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Two-sided vs. one-sided JD

Statistics of the Jacobi–Davidson type method using the same set of 10 random initial vectors

for computing 10 closest eigenvalues to the origin, matrices are of size 100.

For each eigenvalue we select the closest Petrov value to the origin until the residual becomes

smaller than εchange; in the remaining steps we select Petrov triple with the minimum residual.

two-sided correction equation

εchange = 10−1 εchange = 10−1.5 εchange = 10−2

GMRES In 10 Conv. Iter. In 10 Conv. Iter. In 10 Conv. Iter.

5 3.4 4.2 400.0 3.3 3.9 400.0 2.7 3.0 400.0
10 4.7 7.4 324.5 5.9 8.0 387.8 5.3 6.2 400.0
20 6.8 9.4 255.3 6.6 9.2 301.8 6.9 9.4 300.3
40 7.2 9.5 284.0 7.3 9.5 292.3 7.0 9.0 354.9

one-sided correction equation

εchange = 10−1 εchange = 10−1.5 εchange = 10−2

GMRES In 10 Conv. Iter. In 10 Conv. Iter. In 10 Conv. Iter.

5 2.0 5.2 400.0 1.3 1.3 400.0 1.2 0.5 400.0
10 2.9 7.1 357.3 2.6 3.0 400.0 1.9 1.9 400.0
20 3.5 9.9 189.5 3.0 3.7 400.0 1.9 2.1 400.0
40 3.0 9.9 143.8 3.5 4.0 380.5 2.9 3.2 400.0
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