Jacobi-Davidson Method for Two-Parameter Eigenvalue Problems

Bor Plestenjak
Department of Mathematics
University of Ljubljana

This is joint work with M. Hochstenbach

Outline

- Two-parameter eigenvalue problem (2EP)
- Jacobi-Davidson type methods for 2EP
- Harmonic Rayleigh–Ritz for 2EP
- Work in progress: singular 2EP

Two-parameter eigenvalue problem

• Two-parameter eigenvalue problem:

$$A_1 x = \lambda B_1 x + \mu C_1 x$$

$$A_2 y = \lambda B_2 y + \mu C_2 y,$$
(2EP)

where A_i, B_i, C_i are $n \times n$ matrices, $\lambda, \mu \in \mathbb{C}$, $x, y \in \mathbb{C}^n$.

- Eigenvalue: a pair (λ, μ) that satisfies (2EP) for nonzero x and y.
- Eigenvector: the tensor product $x \otimes y$.
- There are n^2 eigenvalues.
- Goal: compute eigenvalues (λ, μ) close to a target (σ, τ) and eigenvectors $x \otimes y$.

Tensor product approach

$$A_1 x = \lambda B_1 x + \mu C_1 x$$

$$A_2 y = \lambda B_2 y + \mu C_2 y$$
(2EP)

ullet On $\mathbb{C}^n \otimes \mathbb{C}^n$ we define $n^2 imes n^2$ matrices

$$\Delta_0 = B_1 \otimes C_2 - C_1 \otimes B_2$$

$$\Delta_1 = A_1 \otimes C_2 - C_1 \otimes A_2$$

$$\Delta_2 = B_1 \otimes A_2 - A_1 \otimes B_2.$$

• 2EP is equivalent to a coupled GEP

$$\Delta_1 z = \lambda \Delta_0 z$$

$$\Delta_2 z = \mu \Delta_0 z,$$

$$(\Delta)$$

where $z = x \otimes y$.

• 2EP is nonsingular $\iff \Delta_0$ is nonsingular

$$\Delta_0^{-1} \Delta_1 z = \lambda z$$
$$\Delta_0^{-1} \Delta_2 z = \mu z$$

• $\Delta_0^{-1}\Delta_1$ and $\Delta_0^{-1}\Delta_2$ commute.

Right definite problem

(2EP)
$$A_1 x = \lambda B_1 x + \mu C_1 x$$

$$A_2 y = \lambda B_2 y + \mu C_2 y$$

$$\Delta_0 = B_1 \otimes C_2 - C_1 \otimes B_2$$

$$\Delta_1 = A_1 \otimes C_2 - C_1 \otimes A_2$$

$$\Delta_2 = B_1 \otimes A_2 - A_1 \otimes B_2$$

$$\Delta_2 z = \mu \Delta_0 z$$

$$\Delta_2 z = \mu \Delta_0 z$$

$$\Delta_3 z = \lambda \Delta_0 z$$

$$\Delta_4 z = \lambda \Delta_0 z$$

$$\Delta_5 z = \mu \Delta_0 z$$

$$\Delta_5 z = \mu \Delta_0 z$$

$$\Delta_6 z = \mu \Delta_0 z$$

$$\Delta_7 z = \mu \Delta_0 z$$

$$\Delta_8 z = \mu \Delta_0 z$$

2EP is right definite when A_i, B_i, C_i are Hermitian and Δ_0 is positive definite.

If 2EP is right definite then

- eigenpairs are real
- there exist n^2 linearly independent eigenvectors
- eigenvectors of distinct eigenvalues are Δ_0 -orthogonal, i.e., $(x_1 \otimes y_1)^T \Delta_0(x_2 \otimes y_2) = 0$

Numerical methods

First option: standard algorithms for explicitly computed matrices Δ :

(2EP)
$$A_1 x = \lambda B_1 x + \mu C_1 x$$

$$A_2 y = \lambda B_2 y + \mu C_2 y$$

$$\Delta_0 = B_1 \otimes C_2 - C_1 \otimes B_2$$

$$\Delta_1 = A_1 \otimes C_2 - C_1 \otimes A_2$$

$$\Delta_2 = B_1 \otimes A_2 - A_1 \otimes B_2$$

$$\Delta_2 z = \mu \Delta_0 z$$

$$\Delta_2 z = \mu \Delta_0 z$$

$$\Delta_3 z = \lambda \Delta_0 z$$

$$\Delta_4 z = \lambda \Delta_0 z$$

$$\Delta_5 z = \mu \Delta_0 z$$

$$\Delta_5 z = \mu \Delta_0 z$$

$$\Delta_7 z = \mu \Delta_0 z$$

$$\Delta_8 z = \mu \Delta_0 z$$

Algorithms that work with matrices A_i, B_i, C_i :

- Blum, Curtis, Geltner (1978), and Browne, Sleeman (1982): gradient method,
- Bohte (1980): Newton's method for eigenvalues,
- Ji, Jiang, Lee (1992): Generalized Rayleigh Quotient Iteration.
- Continuation method:
 - Shimasaki (1995): for a special class of RD problems,
 - P. (1999): for RD problems, Tensor Rayleigh Quotient Iteration,
 - P. (2000): for weakly elliptic problems.
- Jacobi-Davidson type methods.
 - Hochstenbach, P. (2002): for RD problems,
 - Hochstenbach, Košir, P. (2005): for general nonsingular 2EP,
 - Hochstenbach, P. (2007): JD with harmonic extraction.

Jacobi-Davidson method

Subspace methods (Arnoldi, Lanczos, JD, ...) compute eigenpairs from low dimensional subspaces. The main ingredients are:

- Extraction: We compute an approximation to an eigenpair from a given search subspace (Rayleigh-Ritz, harmonic Rayleigh-Ritz, . . .).
- Expansion: After each step we expand the subspace by a new direction.

Jacobi-Davidson method:

- a new direction to the subspace is orthogonal or oblique to the last chosen Ritz vector,
- approximate solutions of certain correction equations are used for expansion.

JD method can be efficiently generalized for two-parameter eigenvalue problems, while this is not clear for subspace methods based on Krylov subspaces.

JD-like method for the right definite case

Extraction: Ritz-Galerkin conditions: search spaces = test spaces: $u \in \mathcal{U}_k$, $v \in \mathcal{V}_k$

$$(A_1 - \sigma B_1 - \tau C_1)u \perp \mathcal{U}_k$$

 $(A_2 - \sigma B_2 - \tau C_2)v \perp \mathcal{V}_k$

⇒ projected right definite two-parameter eigenvalue problem

$$U_{k}^{T} A_{1} U_{k} c = \sigma U_{k}^{T} B_{1} U_{k} c + \tau U_{k}^{T} C_{1} U_{k} c$$

$$V_{k}^{T} A_{2} V_{k} d = \sigma V_{k}^{T} B_{2} V_{k} d + \tau V_{k}^{T} C_{2} V_{k} d$$

Ritz value: (σ, τ) , Ritz vectors: $u = U_k c$, $v = V_k d$, where $c, d \in \mathbb{R}^k$

Expansion: Correction equation for new directions s, t:

$$(I - uu^{T})(A_{1} - \sigma B_{1} - \tau C_{1})(I - uu^{T})s = -(A_{1} - \sigma B_{1} - \tau C_{1})u$$

$$(I - vv^{T})(A_{2} - \sigma B_{2} - \tau C_{2})(I - vv^{T})t = -(A_{2} - \sigma B_{2} - \tau C_{2})v.$$

Works well for exterior eigenvalues.

Two-sided JD-like method for a general problem

Petrov-Galerkin conditions: search spaces $u_i \in \mathcal{U}_{ik}$, test spaces $v_i \in \mathcal{V}_{ik}$

$$(A_1 - \sigma B_1 - \tau C_1)u_1 \quad \perp \quad \mathcal{V}_{1k}$$
$$(A_2 - \sigma B_2 - \tau C_2)u_2 \quad \perp \quad \mathcal{V}_{2k},$$

⇒ projected two-parameter eigenvalue problem

$$V_{1k}^* A_1 U_{1k} c_1 = \sigma V_{1k}^* B_1 U_{1k} c_1 + \tau V_{1k}^* C_1 U_{1k} c_1$$

$$V_{2k}^* A_2 U_{2k} c_2 = \sigma V_{2k}^* B_2 U_{2k} c_2 + \tau V_{2k}^* C_2 U_{2k} c_2,$$

where $u_i = U_{ik}c_i \neq 0$ for i = 1, 2 and $\sigma, \tau \in \mathbb{C}$.

Petrov value: (σ, τ) , Petrov vectors: $u_i = U_{ik}c_i$, $v_i = V_{ik}d_i$, where $c_i, d_i \in \mathbb{C}^k$

Usually performs better than the one-sided method.

Works well for exterior eigenvalues.

Harmonic Rayleigh-Ritz for 2EP

GEP:
$$Ax = \lambda Bx$$

subspace is \mathcal{U}_k , target is au

Rayleigh-Ritz:
$$Au - \theta Bu \perp \mathcal{U}_k$$

Spectral transformation:
$$(A - \tau B)^{-1}Bx = (\lambda - \tau)^{-1}x$$

Harmonic Rayleigh-Ritz: $Au - \theta Bu \perp (A - \tau B) \mathcal{U}_k$

$$A_1 x = \lambda B_1 x + \mu C_1 x$$

$$A_2 y = \lambda B_2 y + \mu C_2 y$$

subspace is $\mathcal{U}_k \otimes \mathcal{V}_k$, target is (σ, τ)

Rayleigh-Ritz:
$$(A_1 - \theta B_1 - \eta C_1) u \perp \mathcal{U}_k$$

$$(A_2 - \theta B_2 - \eta C_2) v \perp \mathcal{V}_k$$

Harmonic Rayleigh-Ritz for 2EP

GEP:
$$Ax = \lambda Bx$$

subspace is \mathcal{U}_k , target is au

Rayleigh-Ritz:
$$Au - \theta Bu \perp \mathcal{U}_k$$

Spectral transformation:
$$(A - \tau B)^{-1}Bx = (\lambda - \tau)^{-1}x$$

Harmonic Rayleigh-Ritz: $Au - \theta Bu \perp (A - \tau B) \mathcal{U}_k$

$$A_1 x = \lambda B_1 x + \mu C_1 x$$

$$A_2 y = \lambda B_2 y + \mu C_2 y$$

subspace is $\mathcal{U}_k \otimes \mathcal{V}_k$, target is (σ, au)

Rayleigh-Ritz:
$$(A_1 - \theta B_1 - \eta C_1) u \perp \mathcal{U}_k$$

$$(A_2 - \theta B_2 - \eta C_2) v \perp \mathcal{V}_k$$

Spectral transformation: ? ? ?

Harmonic Rayleigh-Ritz for 2EP

GEP:
$$Ax = \lambda Bx$$

subspace is \mathcal{U}_k , target is au

Rayleigh-Ritz:
$$Au - \theta Bu \perp \mathcal{U}_k$$

Spectral transformation:
$$(A - \tau B)^{-1}Bx = (\lambda - \tau)^{-1}x$$

Harmonic Rayleigh-Ritz:
$$Au - \theta Bu \perp (A - \tau B) \mathcal{U}_k$$

2EP:
$$A_1x = \lambda B_1x + \mu C_1x$$
$$A_2y = \lambda B_2y + \mu C_2y$$

subspace is
$$\mathcal{U}_k \otimes \mathcal{V}_k$$
, target is (σ, τ)

Spectral transformation: ? ? ?

JD-like method with harmonic Rayleigh-Ritz for 2EP

- 1. $s=\mathbf{u_1}$ and $t=\mathbf{v_1}$ (starting vectors), $U_0=V_0=[\]$ for $k=1,2,\ldots$
- 2. $(U_{k-1}, s) \to U_k$, $(V_{k-1}, t) \to V_k$
- 3. Extract appropriate harmonic Ritz pair $((\xi_1, \xi_2), c \otimes d)$
- 4. Take $u = U_k c$, $v = V_k d$ and compute tensor Rayleigh quotient

$$\theta = \frac{(u \otimes v)^* \Delta_1(u \otimes v)}{(u \otimes v)^* \Delta_0(u \otimes v)} = \frac{(u^* A_1 u)(v^* C_2 v) - (u^* C_1 u)(v^* A_2 v)}{(u^* B_1 u)(v^* C_2 v) - (u^* C_1 u)(v^* B_2 v)}$$

$$\eta = \frac{(u \otimes v)^* \Delta_2(u \otimes v)}{(u \otimes v)^* \Delta_0(u \otimes v)} = \frac{(u^* B_1 u)(v^* A_2 v) - (u^* A_1 u)(v^* B_2 v)}{(u^* B_1 u)(v^* C_2 v) - (u^* C_1 u)(v^* B_2 v)}$$

- 5. $r_1 = (A_1 \theta B_1 \eta C_1)u$ $r_2 = (A_2 \theta B_2 \eta C_2)v$
- 6. Stop if $(||r_1||^2 + ||r_2||^2)^{1/2} \le \varepsilon$
- 7. Solve (approximately) an $s \perp u, t \perp v$ from corr. equation(s)

Numerical example

n=1000, problem is not right definite. We want to compute 50 eigenvalues closest to the origin using at most 2500 outer iterations.

	Two-sided Ritz			Harmonic Ritz				
GMRES	eigs	in 10	in 30	iter	time	in 10	in 30	in 50
8	12	9	12	226	119	10	30	46
16	19	10	19	106	73	10	30	44
32	22	10	22	89	87	10	29	40
64	30	10	29	93	118	10	28	40

The convergence graphs for the two-sided Ritz extraction (left) and the harmonic Ritz extraction (right) for the first 40 outer iterations using 8 GMRES steps in the inner iteration.

Model updating as a singular 2EP

This is joint work with A. Muhič.

Model updating (Cottin 2001, Cottin and Reetz 2006): finite element models of multibody systems are updated to match the measured input-output data.

Updating two degrees of freedom by two measurements is equivalent to:

Find the smallest perturbation of matrix A by a linear combination of matrices B and C, such that $A - \lambda B - \mu C$ has the prescribed eigenvalues σ_1 and σ_2 .

Model updating as a singular 2EP

This is joint work with A. Muhič.

Model updating (Cottin 2001, Cottin and Reetz 2006): finite element models of multibody systems are updated to match the measured input-output data.

Updating two degrees of freedom by two measurements is equivalent to:

Find the smallest perturbation of matrix A by a linear combination of matrices B and C, such that $A - \lambda B - \mu C$ has the prescribed eigenvalues σ_1 and σ_2 .

The problem can be expressed as a two-parameter eigenvalue problem

$$(A - \sigma_1 I)x = \lambda Bx + \mu Cx,$$

$$(A - \sigma_2 I)y = \lambda By + \mu Cy.$$

$$det(B \otimes C - C \otimes B) = 0 \implies \text{this problem is singular}$$

Eigenvalues are candidates for the best model update.

Quadratic 2EP as a singular 2EP

We consider

$$(A_1 + \lambda B_1 + \mu C_1 + \lambda^2 D_1 + \lambda \mu E_1 + \mu^2 F_1)x = 0$$

$$(A_2 + \lambda B_2 + \mu C_2 + \lambda^2 D_2 + \lambda \mu E_2 + \mu^2 F_2)y = 0,$$
(Q2EP)

where A_i, B_i, \ldots, F_i are $n \times n$ matrices, (λ, μ) is an eigenvalue, and $x \otimes y$ is the corresponding eigenvector. In the generic case the problem has $4n^2$ eigenvalues.

Quadratic 2EP as a singular 2EP

We consider

$$(A_1 + \lambda B_1 + \mu C_1 + \lambda^2 D_1 + \lambda \mu E_1 + \mu^2 F_1)x = 0$$

$$(A_2 + \lambda B_2 + \mu C_2 + \lambda^2 D_2 + \lambda \mu E_2 + \mu^2 F_2)y = 0,$$
(Q2EP)

where A_i, B_i, \ldots, F_i are $n \times n$ matrices, (λ, μ) is an eigenvalue, and $x \otimes y$ is the corresponding eigenvector. In the generic case the problem has $4n^2$ eigenvalues.

We can linearize Q2EP as a two-parameter eigenvalue problem, one such linearization is

$$\left(\begin{bmatrix} A_1 & B_1 & C_1 \\ 0 & I & 0 \\ 0 & 0 & I \end{bmatrix} + \lambda \begin{bmatrix} 0 & D_1 & \frac{1}{2}E_1 \\ -I & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} + \mu \begin{bmatrix} 0 & \frac{1}{2}E_1 & F_1 \\ 0 & 0 & 0 \\ -I & 0 & 0 \end{bmatrix} \right) \begin{bmatrix} x \\ \lambda x \\ \mu x \end{bmatrix} = 0$$

$$\left(\begin{bmatrix} A_2 & B_2 & C_2 \\ 0 & I & 0 \\ 0 & 0 & I \end{bmatrix} + \lambda \begin{bmatrix} 0 & D_2 & \frac{1}{2}E_2 \\ -I & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} + \mu \begin{bmatrix} 0 & \frac{1}{2}E_2 & F_2 \\ 0 & 0 & 0 \\ -I & 0 & 0 \end{bmatrix} \right) \begin{bmatrix} y \\ \lambda y \\ \mu y \end{bmatrix} = 0,$$

where matrices are of size $3n \times 3n$. This problem is singular.

Numerical method for singular 2EP

(2EP)
$$A_1 x = \lambda B_1 x + \mu C_1 x$$

$$A_2 y = \lambda B_2 y + \mu C_2 y$$

$$\Delta_0 = B_1 \otimes C_2 - C_1 \otimes B_2$$

$$\Delta_1 = A_1 \otimes C_2 - C_1 \otimes A_2$$

$$\Delta_2 = B_1 \otimes A_2 - A_1 \otimes B_2$$

$$\Delta_2 z = \mu \Delta_0 z$$

$$\Delta_2 z = \mu \Delta_0 z$$

$$\Delta_3 z = \mu \Delta_0 z$$

$$\Delta_4 z = \lambda \Delta_0 z$$

$$\Delta_5 z = \mu \Delta_0 z$$

Singular 2EP
$$\iff \det(\Delta_0) = 0$$

For singular 2EP, there are no general results linking the eigenvalues of (2EP) and (Δ) .

Numerical method for singular 2EP

(2EP)
$$A_1x = \lambda B_1x + \mu C_1x$$

$$A_2y = \lambda B_2y + \mu C_2y$$

$$\Delta_0 = B_1 \otimes C_2 - C_1 \otimes B_2$$

$$\Delta_1 = A_1 \otimes C_2 - C_1 \otimes A_2$$

$$\Delta_2 = B_1 \otimes A_2 - A_1 \otimes B_2$$

$$\Delta_2z = \mu \Delta_0z$$

$$\Delta_2z = \mu \Delta_0z$$

$$\Delta_3z = \lambda \Delta_0z$$

$$\Delta_4z = \lambda \Delta_0z$$

$$\Delta_5z = \lambda \Delta_0z$$

$$\Delta_5z = \lambda \Delta_0z$$

Singular 2EP
$$\iff$$
 $\det(\Delta_0) = 0$

For singular 2EP, there are no general results linking the eigenvalues of (2EP) and (Δ) .

Numerical method: we extract the common regular part of matrix pencils (Δ) . Thus we obtain matrices $\widetilde{\Delta}_0$, $\widetilde{\Delta}_1$, and $\widetilde{\Delta}_2$, such that:

- ullet $\widetilde{\Delta}_0$ is nonsingular,
- eigenvalues of

$$\widetilde{\Delta}_{1}\widetilde{z} = \lambda \widetilde{\Delta}_{0}\widetilde{z} \\
\widetilde{\Delta}_{2}\widetilde{z} = \mu \widetilde{\Delta}_{0}\widetilde{z} \qquad (\widetilde{\Delta})$$

are common regular eigenvalues of (Δ) .

For Q2EP and model updating we can show that

regular eigenvalues of (2EP) = eigenvalues of $(\widetilde{\Delta})$ = regular eigenvalues of (Δ) .

Conclusions

J-D works for nonsingular two-parameter eigenvalue problems.

The harmonic approach can be generalized to the 2EP.

Singular 2EP: work in progress ...