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Two-parameter eigenvalue problem

e Two-parameter eigenvalue problem:

Alx = )\le -+ ,LLClil?

2EP
Asy = ABoy + nCay, (2EP)

where A;, B;, C; are n X n matrices, A\, u € C, z,y € C".
e Eigenvalue: a pair (A, ) that satisfies (2EP) for nonzero x and y.
e [Cigenvector: the tensor product x & y.
e There are n? eigenvalues.

e Goal: compute eigenvalues (), 11) close to a target (o, 7) and eigenvectors =z ® y.
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Tensor product approach

Ala: = )\Blaz —+ ,uC’laz

(2EP)
Asy = ABoy + uChy
e On C" ® C" we define n? x n? matrices
Ay = B ®Cy—C;® By
A = AARC—-—C1® A
Ay = B1® Ay — A1 ® Bs.
e 2EP is equivalent to a coupled GEP
Alz = )\Aoz
Aoz = nApz, (D)

where z = = ® y.

e 2EP is nonsingular <=- Ay is nonsingular

AalAlz = Az
AalAgz = uz
° AalAl and AalAg commute.
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Right definite problem

Ag= B ® Cy — C1 ® By
A=A RC —C1 ® Ay
Ay =B ® Ay — A1 ® Bo

Ala: p— )\Bla: —I— ,uClac
Aoy = ABoy + nChy

Alz = )\AQZ

(2EP) Aoz = uApz (8)

2EP is right definite when A;, B;, C; are Hermitian and Ay is positive definite.
If 2EP is right definite then
® eigenpairs are real

e there exist n° linearly independent eigenvectors

e eigenvectors of distinct eigenvalues are Ag-orthogonal, i.e., (x1 ® yl)TAo(wg ® y2) =0
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Numerical methods

First option: standard algorithms for explicitly computed matrices A:

Ag= B ® Cy — C; ® By
A=A QCy—C; ® A
Ao =B ® Ay — A1 ® B>

Aix = ABix + uChix
Asy = ABoy + uChy

Alz = )\Aoz

(2EP) Asz = ulpz (A)

Algorithms that work with matrices A;, B;, C;:

e Blum, Curtis, Geltner (1978), and Browne, Sleeman (1982): gradient method,
e Bohte (1980): Newton's method for eigenvalues,
e Ji, Jiang, Lee (1992): Generalized Rayleigh Quotient lteration.
e Continuation method:
— Shimasaki (1995): for a special class of RD problems,
— P. (1999): for RD problems, Tensor Rayleigh Quotient Iteration,
— P. (2000): for weakly elliptic problems.

e Jacobi-Davidson type methods.
— Hochstenbach, P. (2002): for RD problems,
— Hochstenbach, Kogir, P. (2005): for general nonsingular 2EP,
— Hochstenbach, P. (2007): JD with harmonic extraction.
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Jacobi—-Davidson method

Subspace methods (Arnoldi, Lanczos, JD, ...) compute eigenpairs from low dimensional

subspaces. The main ingredients are:

e [Extraction: We compute an approximation to an eigenpair from a given search subspace
(Rayleigh-Ritz, harmonic Rayleigh-Ritz, . . .).

e [xpansion: After each step we expand the subspace by a new direction.

Jacobi—Davidson method:

e a new direction to the subspace is orthogonal or oblique to the last chosen Ritz vector,

e approximate solutions of certain correction equations are used for expansion.

JD method can be efficiently generalized for two-parameter eigenvalue problems, while this is not

clear for subspace methods based on Krylov subspaces.
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JD-like method for the right definite case

Extraction: Ritz—Galerkin conditions: search spaces = test spaces: u € U, v € Vi

(Al—aBl—TC’l)u 1 Z/{k
(AQ—O'BQ—TCQ)’U 1 Vk;

= projected right definite two-parameter eigenvalue problem

Ul'AUye = oU! BiUyc + TULC Usc
V.I A Vid oVIByVid + 7V,!CyVid

Ritz value: (o, 7), Ritz vectors: u = Uyc, v = Vid, where ¢, d € R”

Expansion: Correction equation for new directions s, t:

(I —uu)(A; — 0By — 7C) (I — uu’)s
(I —vv?)(Ay — 0By — 7Co) (I — vol)t

—(Al - 0‘B1 - TCl)u
—(A2 — O'BQ — TCQ)’U.

Works well for exterior eigenvalues.
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Two-sided JD-like method for a general problem

Petrov—Galerkin conditions: search spaces u; € U, test spaces v; € Vi

(Al — O'B1 — TCl)ul J_ Vlk
(A2 — O‘BQ — TCQ)’U,Q 1 VQk,

—> projected two-parameter eigenvalue problem

Vf;fAlUlk’Cl = O-VfigBlUlk:Cl —+ TV;;CClUlk:Cl
Vo AsUsrco = oV, BaUsgco + 7V, CoUsgca,

where u; = U;pc; A O forte = 1,2 and o, 7 € C.

Petrov value: (o, 7), Petrov vectors: u; = Ujrc;, v; = Vird,;, where ¢;, d; € ck

Usually performs better than the one-sided method.

Works well for exterior eigenvalues.

Householder Symposium XVII, Zeuthen, 2008 9/16



Harmonic Rayleigh—Ritz for 2EP

GEP: Ax = A\Bx

subspace is U, target is T
Rayleigh—Ritz: Au — 0Bu 1L Uy
Spectral transformation: (A — 7B) 'Bx = (A — 1) 'z
Harmonic Rayleigh-Ritzz  Au — 0Bu 1L (A — 7B) Uy

Aix = ABix + uChix

2EP:

Ay = ABaoy 4+ pnChy

subspace is U ® Vi, target is (o, T)
Rayleigh—Ritz: (A1 =0B1—nCyu L U

(A —0Bs —nCy))v L Vg
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Harmonic Rayleigh—Ritz for 2EP

GEP: Ax = A\Bx

subspace is U, target is T
Rayleigh—Ritz: Au — 0Bu 1L Uy
Spectral transformation: (A — 7B) 'Bx = (A — 1) 'z
Harmonic Rayleigh-Ritzz  Au — 0Bu 1L (A — 7B) Uy

Aix = ABix + uChix

2EP:
Ay = ABoy + nuChy
subspace is Ur ® Vi, target is (o, T)
e (A1 — 0By —nCr)u L Uy
Rayleigh—Ritz: (As — 0By —nCo)v L VW
Spectral transformation: [
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Harmonic Rayleigh—Ritz for 2EP

GEP: Ax = A\Bx

subspace is U, target is T
Rayleigh—Ritz: Au — 0Bu 1L Uy
Spectral transformation: (A — 7B) 'Bx = (A — 1) 'z
Harmonic Rayleigh-Ritzz  Au — 0Bu 1L (A — 7B) Uy

Aix = ABix + uChix

2EP:
Ay = ABoy + nuChy
subspace is Ur ® Vi, target is (o, T)
e (A1 — 0By —nCr)u L Uy
Rayleigh—Ritz: (As — 0By —nCo)v L VW
Spectral transformation: [

(Al — 931 — 7’]01) u 1 (Al — O'Bl — Tcl) Uk;

Harmonic Rayleigh—Ritz: (Ay— 0By — nCo)v L (A — 0By — 7Cy) Vi
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JD-like method with harmonic Rayleigh—Ritz for 2EP

1. s =u; and t =wv; (starting vectors), Uy = V) = [ |
fork =1,2,...

2. (Ug-1,8) = Ug, (Vik-1,t) — Vi

3. Extract appropriate harmonic Ritz pair ((£1,&£2), ¢ ® d)

4.  Take u = Ugc, v = Vid and compute tensor Rayleigh quotient
(u @) A1(u®@v) (v Aju) (v Cov) — (u" Cru) (v Asv)

¢ (u®@v) Ag(u ®@v) (v Biu) (v 'Cav) — (u Cru) (v Baw)

N = (u ® v) Az(u ® v) _ (u"Biu) (v Asv) — (u"Aru) (v Bav)

(u®@v) Ag(u@v) (u Biu)(v Cov) — (u" Cru) (v Bav)
5 ™ = (Al — 9B1 — 7701)’11,
. T2 = (A2 — 9B2 — 7]02)’0

6. Stop if ([[r1]” + [lr2[)'* < e

7.  Solve (approximately) an s 1L u,t L v from corr. equation(s)
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Numerical example

n = 1000, problem is not right definite. We want to compute 50 eigenvalues closest to the

origin using at most 2500 outer iterations.

Two-sided Ritz Harmonic Ritz
GMRES | eigs in1l0 in30 | iter time inl0 in30 in50
8 12 9 12 226 119 10 30 46
16 19 10 19 106 73 10 30 44
32 22 10 22 89 87 10 29 40
64 30 10 29 93 118 10 28 40

The convergence graphs for the two-sided Ritz extraction (left) and the harmonic Ritz extraction

(right) for the first 40 outer iterations using 8 GMRES steps in the inner iteration.
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Model updating as a singular 2EP

This is joint work with A. Muhi&.

Model updating (Cottin 2001, Cottin and Reetz 2006): finite element models of multibody
systems are updated to match the measured input-output data.

Updating two degrees of freedom by two measurements is equivalent to:

Find the smallest perturbation of matrix A by a linear combination of matrices B and C, such

that A — AB — uC has the prescribed eigenvalues o1 and 0.
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Model updating as a singular 2EP

This is joint work with A. Muhi&.

Model updating (Cottin 2001, Cottin and Reetz 2006): finite element models of multibody

systems are updated to match the measured input-output data.

Updating two degrees of freedom by two measurements is equivalent to:

Find the smallest perturbation of matrix A by a linear combination of matrices B and C, such

that A — AB — uC has the prescribed eigenvalues o1 and 0.

The problem can be expressed as a two-parameter eigenvalue problem

(A—o1l)x = ABzxz + uCr,

(A—o2l)y = ABy+ pCy.
det(BR® C —C ® B) =0 = this problem is singular
Eigenvalues are candidates for the best model update.
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Quadratic 2EP as a singular 2EP

We consider
(A1 + AB1 4 puCy + N°Dy + AuEy + p’F)z = 0

(Q2EP)
(Ag + ABa + uCy + A’Da + AuEs + p’Fy)y = 0,

where A;, B;, ..., F; are n X n matrices, (X, @) is an eigenvalue, and = ®y is the corresponding

eigenvector. In the generic case the problem has 4n? eigenvalues.
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Quadratic 2EP as a singular 2EP

We consider
(A1 + AB1 4 puCy + N°Dy + AuEy + p’F)z = 0

(Q2EP)
(Ag + ABa + uCy + A’Da + AuEs + p’Fy)y = 0,

where A;, B;, .

eigenvector. In the generic case the problem has 4n? eigenvalues.

.., Fj are n X n matrices, (A, p) is an eigenvalue, and £ ® y is the corresponding

We can linearize Q2EP as a two-parameter eigenvalue problem, one such linearization is

where matrices are of size 3n X 3n.

Ay

B

C1

0
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This problem is singular.

D1 %El 0 %El F1 T
O I O|4+X|-I 0 O |[+p| 0 0 O A 0
0 0 I | | 0 0 0 _ —I 0 0]/ [px_
(A By C] (0 Dy 3E,] 0 1E;, FB]\ [y ]
O I O|+XxX|—-IT 0 O |[+p| 0 0 0O Ay 0,
0 0 I | 0 0 0 _ —I 0 0]/ [py]
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Numerical method for singular 2EP

Ag= B ® Cy — C; ® By
A=A QQC, —C1 Q Ay
Ay =B ® Ay — A1 ® Bs

A1£B = )\le -+ ,uC’laz
Asy = ABoy + uChy

Alz = )\AQZ

(2EP) AQZ = ,UA()Z

(A)

Singular 2EP <—=> det(Ap) = 0

For singular 2EP, there are no general results linking the eigenvalues of (2EP) and (A).
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Numerical method for singular 2EP

Ag= B ® Cy — C; ® By
A=A QQC, —C1 Q Ay
Ay =B ® Ay — A1 ® Bs

Alaj = )\le -+ ,uClaz
Asy = ABoy + uChy

Alz = )\AQZ

(ZEP) AQZ = ,quz

(A)

Singular 2EP <—=> det(Ap) = 0
For singular 2EP, there are no general results linking the eigenvalues of (2EP) and (A).

Numerical method: we extract the common regular part of matrix pencils (A). Thus we obtain
matrices 30, 31, and 82, such that:

e /\( is nonsingular,

e cigenvalues of B B
A1z = Aoz

Agg = /QLAQE/ (A)

are common regular eigenvalues of (A).

For Q2EP and model updating we can show that

regular eigenvalues of (2EP) = eigenvalues of (A) = regular eigenvalues of (A).
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Conclusions
J-D works for nonsingular two-parameter eigenvalue problems.
The harmonic approach can be generalized to the 2EP.

Singular 2EP: work in progress ...
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