
A Ja
obi{Davidson type method for a right de�nitetwo-parameter eigenvalue problemBor PlestenjakDepartment of mathemati
s, University of Ljubljana, SloveniaJoint work with Mi
hiel E. Ho
hstenba
h (Utre
ht University)Two-parameter eigenvalue problem. We 
onsiderA1x = �B1x + �C1xA2y = �B2y + �C2y; (1)
where Ai; Bi; Ci are ni � ni real matri
es for i = 1; 2. A pair (�; �) is an eigenvalue if it satis�es (1) for nonzerox; y. The tensor produ
t x
 y is the 
orresponding eigenve
tor .Problem: �nd (approximate) eigenvalue (�; �) and (approximate) eigenve
tor x
 y.
Right de�nite problem.� Matri
es Ai; Bi; Ci are symmetri
.� For nonzero x; y we have ����� xTB1x xTC1xyTB2y yTC2y ����� > 0:A right de�nite problem has real eigenpairs and there exist n1n2 linearly independent eigenve
tors.Tensor produ
t approa
h. On the tensor produ
t spa
e Rn1 
 Rn2 we de�ne�0 = B1 
 C2 � C1 
B2�1 = A1 
 C2 � C1 
A2�2 = B1 
A2 �A1 
B2:Problem (1) 
an be then expressed as two 
oupled generalized eigenvalue problems (GEP)�1z = ��0z�2z = ��0z: (2)

If a problem is right de�nite then� �i is symmetri
,� �0 is symmetri
 positive de�nite,� ��10 �1 and ��10 �2 
ommute.We 
an solve problem (2) using standard methods for GEP, but the dimension is N := n1n2.Department of mathemati
sUniversity of Ljubljana 1



Ja
obi-Davidson type method. As in ea
h subspa
e method we start with a given sear
h subspa
e from whi
happroximations to eigenpairs are 
omputed (extra
tion). In the extra
tion we solve the same type of eigenvalue problemas the original one, but of a smaller dimension. After ea
h step we expand the subspa
e by a new dire
tion (expansion).As the sear
h subspa
e grows, the eigenpair approximations should 
onverge to an eigenpair of the original problem.Extra
tion. Let the k-dimensional sear
h subspa
es Uk of Rn1 and Vk of Rn2 be represented by matri
esUk 2 Rn1�k and Vk 2 Rn2�k with orthonormal 
olumns, respe
tively. The Ritz{Galerkin 
onditions(A1 � �B1 � �C1)u ? Uk(A2 � �B2 � �C2)v ? Vk;lead to the smaller proje
ted right de�nite two-parameter problemUTk A1Uk
 = �UTk B1Uk
+ �UTk C1Uk
;V Tk A2Vkd = �V Tk B2Vkd+ �V Tk C2Vkd; (3)
An eigenvalue (�; �) of (3) is a Ritz value. If (�; �) is an eigenvalue of and 

 d is the 
orresponding eigenve
tor,then u
v is a Ritz ve
tor , where u = Uk
 and v = Vkd. Altogether we obtain k2 Ritz pairs that are approximationsto the eigenpairs of (1).Residuals are de�ned as r1 = (A1 � �B1 � �C1)ur2 = (A2 � �B2 � �C2)v:Expansion. We are looking for improvements s ? u, t ? v, su
h thatA1(u+ s) = �B1(u+ s) + �C1(u+ s)A2(v + t) = �B2(v + t) + �C2(v + t): (4)
Theorem: ((�; �); u
v) Ritz pair, u = x�s, v = y�t ) p(���)2 + (���)2 = O(ksk2+ktk2)If we rewrite �rst equation in (4) as(A1 � �B1 � �C1)s = �r1 + (���)B1u + (���)C1u + (���)B1s+ (���)C1sthen� (�� �)B1s+ (�� �)C1s is a \mixed" 3rd order term and we negle
t it� (�� �)B1u + (�� �)C1u is a \mixed" 2nd order term and we:I negle
t itII proje
t it away
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I. Corre
tion equations with orthogonal proje
tions. When we negle
t 2nd and 3rd order terms we obtain(A1 � �B1 � �C1)s = �r1:As the right-hand side is orthogonal to u, so is the left-hand side. We get two separate 
orre
tion equations(I � uuT )(A1 � �B1 � �C1)(I � uuT )s = �r1(I � vvT )(A2 � �B2 � �C2)(I � vvT )t = �r2: (5)
Orthogonal proje
tions preserve the symmetry of the matri
es. The equations (5) for s and t are not of full rank butthey are 
onsistent. We solve them only approximately with a Krylov subspa
e method with initial guess 0, for instan
eby a few steps of MINRES.II. Corre
tion equation with oblique proje
tion. When we negle
t 3rd order terms we obtain(A1 � �B1 � �C1)s = �r1 + (�� �)B1u + (�� �)C1u(A2 � �B2 � �C2)t = �r2 + (�� �)B2v + (�� �)C2v:If we de�ne M = � A1 � �B1 � �C1 00 A2 � �B2 � �C2 �

r = � r1r2 �then we 
an write M � st � = �r + (�� �) � B1uB2v � + (�� �) � C1uC2v �:We proje
t 2nd order terms away using the oblique 2D-proje
tion P = I � V (WTV )�1WT , wherespan(V ) = span�� B1uB2v � ; � C1uC2v ��
W = � u 00 v � ;and obtain the 
orre
tion equation PMP � st � = �r: (6)

As before we solve (6) only approximately with a Krylov subspa
e method with initial guess 0, for instan
e by a fewsteps of GMRES.The JD-type method with the 
orre
tion equation (6) is a Newton s
heme, a

elerated by the proje
tion of (1) ontothe subspa
e of all previous approximations. Therefore, we 
an expe
t lo
ally at least quadrati
 
onvergen
e when the
orre
tion equations are solved exa
tly.
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Sele
tion of Ritz pairs.� If we are interested in exterior eigenvalues, for instan
e in the one with maximal �, then in every step we sele
tRitz pair ((�; �); u
 v) with maximal �. In this 
ase we have monotoni
 
onvergen
e �k " �:Of 
ourse, like in many subspa
e methods mis
onvergen
e is possible and we 
an obtain � 6= �max.� If we are interested in interior eigenvalues, for instan
e in the one 
losest to (0; 0), then in every step we sele
tRitz pair ((�; �); u 
 v) with minimum �2 + �2. The 
onvergen
e is errati
, but numeri
al results show thatthe method 
an be used for interior eigenvalues as well.The question remains if it is possible to generalize harmoni
 Ritz values to a right de�nite two-parameter eigenvalueproblem. Any progress on this subje
t might lead to better methods for interior eigenvalues.Computing more eigenpairs. Standard de
ation te
hniques 
an not be applied for two reasons:� (x
 y)?�0 
an not be written as U 
 V , where U � Rn1 and V � Rn2 .� There 
an exist eigenvalues (�; �) and (�0; �0) with eigenve
tors x 
 y and x0 
 y0, respe
tively, su
h that(�; �) 6= (�0; �0) and x = x0.Our approa
h: As eigenve
tors with di�erent eigevalues are �0-orthogonal, i.e: (x1 
 y1)T�0(x2 
 y2) = 0, we
onsider in sele
tion only Ritz ve
tors that are �0-orthogonal to already 
omputed eigenve
tors.Summary of the algorithm.1. s =u1 and t =v1 (starting ve
tors)for k = 1; 2; : : : (outer loop)2. MGS(Uk�1; s) ! Uk (expansion)MGS(Vk�1; t) ! Vk3. Compute rightmost Ritz pair ((�; �); 

 d) of (extra
tion)UTk A1Uk
 = �UTk B1Uk
+ �UTk C1Uk
V Tk A2Vkd = �V Tk B2Vkd+ �V Tk C2Vkd4. Compute residualsr1 = (A1 � �B1 � �C1)ur2 = (A2 � �B2 � �C2)v5. Stop if (kr1k2 + kr2k2)1=2 � " (stopping 
riteria)6. Solve approximately an s ? u; t ? v from 
orre
tion equation(s)JD-like algorithm for rightmost eigenvalue of a right de�nite two-parameter eigenvalue problemRestarts. As the existing methods are able to solve only low-dimensional two-parameter problems in a reasonabletime, we expand sear
h spa
es up to the presele
ted dimension lmax and then restart the algorithm using the mostpromising lmin eigenve
tor approximations as a basis for the initial sear
h spa
e.Time 
omplexity. Suppose that n = n1 = n2 and let m be the number of GMRES steps. The time 
omplexityof one outer step is:� dense matri
es: O(mn2)� sparse matri
es: O(mMV ), where MV denotes matrix-ve
tor multipli
ation with n� n matrix.Department of mathemati
sUniversity of Ljubljana 4



Numeri
al experiments. For the test examples we takeAi = QiFiQTiBi = QiGiQTiCi = QiHiQTi ;where� F1; F2; G2;H1 are random diagonal matri
es 2 (0; 1),� G1;H2 are random diagonal matri
es 2 (1; 2),� Qi is a random orthogonal matrix.We shift the obtained right de�nite problem so that the arithmeti
mean of the eigenvalues is (0; 0). −2 −1.5 −1 −0.5 0 0.5 1 1.5
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Convergen
e plot for eigenvalue with the maximal � for n = 100 and u = v = [1 � � � 1℄T . The plots show thelog10 of the residual norm � := (kr1k2 + kr2k)1=2 versus the outer iteration number k using 2 (solid line), 10(dotted line), and 25 (dashed line) GMRES steps to solve the 
orre
tion equation with orthogonal proje
tions (leftplot) and oblique proje
tions (right plot), respe
tively.Computing more eigenpairs.
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First 15 (left plot) and �rst 30 (right plot) 
omputed eigenvalues with maximal � for n = 100 
omputed usingsele
tion for Ritz ve
tors. The JD-type method used 5 GMRES steps for the 
orre
tion equation with orthogonalproje
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Statisti
s. We tested the method using di�erent 
orre
tion equations and di�erent inner iteration pro
esses. Thefolowing plots present the average number of iterations, per
entage of 
onvergen
e to the 
hosen eigenvalue, andaverage number of 
ops over 250 trials with di�erent random initial ve
tors.

1 2 4 8 16 32 64
0

20

40

60

80

100

GMRES steps

ite
ra

tio
ns

orthogonal
oblique   

The average number of iterations(the number of outer steps)
20 30 40 50 60 70 80 90

0

50

100

150

200

250

GMRES steps

ite
ra

tio
ns

orthogonal
oblique   

1 2 4 8 16 32 64
0

20

40

60

80

100

GMRES steps

pe
rc

en
ta

ge

Per
entage of 
onvergen
e to thegoal, i.e.� left: eigenvalue with themaximal �,� right: eigenvalue 
losest to(0; 0).
20 30 40 50 60 70 80 90

0

20

40

60

80

100

GMRES steps
pe

rc
en

ta
ge

1 2 4 8 16 32 64
0

2

4

6

8

10

12

14

16

18

GMRES steps

flo
ps Average number of 
ops (�108)

20 30 40 50 60 70 80 90
0

5

10

15

20

25

GMRES steps

flo
ps

Con
lusion. New JD-like method for two-parameter eigenvalue problem� �rst method for large matri
es� 
hoi
e of orthogonal or oblique (Newton-like) 
orre
tion equation: 2 orthogonal 1-D or 1 oblique2-D proje
tor� orthogonal variant is less expensive for exterior eigenvalues� oblique variant is more expensive but more reliable for interior eigenvalues� harmoni
 approa
h is not obvious� straightforward generalization to > 2-parameters� work in progress: Ritz theory, JD for general two-parameter eigenvalue problemPreprint is available at www-lp.fmf.uni-lj.si/plestenjak/bor.htm.
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