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Two-parameter eigenvalue problem. \We consider

Az = ABjz + uCix
Ay = ABay + pCay,

(1)

where A;, B;, C; are n; X n; real matrices for ¢ = 1, 2. A pair (A, ) is an eigenvalue if it satisfies (1) for nonzero
x,y. The tensor product x Q y is the corresponding eigenvector.

Problem: find (approximate) eigenvalue (A, ;1) and (approximate) eigenvector = & y.

Right definite problem.

e Matrices A;, B;, C; are symmetric.
a:TBla: xTclx

> 0.
yI'Boy vyl Cay

e For nonzero x, y we have

A right definite problem has real eigenpairs and there exist n1ng linearly independent eigenvectors.

Tensor product approach. On the tensor product space R""1 @ R™2 we define

Ag=B1®Cy —C1 ® By
A1 =A1®Cy —C1 ® Ay
Ag = B1 ® A2 — A1 Q Ba.

Problem (1) can be then expressed as two coupled generalized eigenvalue problems (GEP)

A1z = AApz 2)
Aoz = uAgpz.
If a problem is right definite then
e A, is symmetric,
e A\ is symmetric positive definite,
° Ao_lAl and Ao_lAg commute.
We can solve problem (2) using standard methods for GEP, but the dimension is N := nins.
A
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Jacobi-Davidson type method. As in each subspace method we start with a given search subspace from which

approximations to eigenpairs are computed (extraction). In the extraction we solve the same type of eigenvalue problem
as the original one, but of a smaller dimension. After each step we expand the subspace by a new direction (expansion).
As the search subspace grows, the eigenpair approximations should converge to an eigenpair of the original problem.

Extraction. Let the k-dimensional search subspaces U, of R™1 and V), of R™2 be represented by matrices

U € R™>F and V. € R™2 ¥ with orthonormal columns, respectively. The Ritz—Galerkin conditions

(Ay —oBy — 17C1)u L U,
(A2 — O'BQ — ’7'02)’0 4 szv

lead to the smaller projected right definite two-parameter problem

Ul'A1Uye = oUl B1Uge + 17U C1Uye,

T T T (3)

An eigenvalue (o, 7) of (3) is a Ritz value. If (o, T) is an eigenvalue of and ¢ ® d is the corresponding eigenvector,
then u @ v is a Ritz vector, where u = Uyj.c and v = V,.d. Altogether we obtain k? Ritz pairs that are approximations
to the eigenpairs of (1).

r1 = (A1 —oBy — 7C1)u

Residuals are defined as
rog = (A — 0By — 7C9)w.

Expansion. \We are looking for improvements s | w, t L v, such that

Ai(u+s) =ABi(u+s) + pCi(u+s)

Ag(v+1t) = ABa(v+1t) + pCa(v +1). (4)

Theorem: ((o, 7), u®w) Ritz pair, u = z—s, v = y—t = /(A—0)2 + (u—7)2 = O(||s]|*+t]|?)

If we rewrite first equation in (4) as
(A1 —oBy —1C1)s = —r1 + (A—0)Biu + (u—71)Cru + (A—0)B1s + (u—71)Cis
then

e (A—0)Bis+ (u— 1)Cqsis a "mixed” 3rd order term and we neglect it
o (A\—o)Biu—+ (u— 7)Cruis a “mixed” 2nd order term and we:

| neglect it
Il project it away
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l. Correction equations with orthogonal projections. \When we neglect 2nd and 3rd order terms we obtain
(A —oB1 —1C1)s = —rq.
As the right-hand side is orthogonal to u, so is the left-hand side. We get two separate correction equations

(I —wul)(A] —oBy — 7C1)T — wul)s = —ry

5
(I —vvl)(Ag — 0By — 7C) (I — vt = —rg. )

Orthogonal projections preserve the symmetry of the matrices. The equations (5) for s and ¢ are not of full rank but

they are consistent. We solve them only approximately with a Krylov subspace method with initial guess O, for instance
by a few steps of MINRES.

Il. Correction equation with oblique projection. \When we neglect 3rd order terms we obtain

(Ay —oBy —7C1)s = —r1 + (A = 0)Biu + (p — 7)Cru
(A2 — 0By — 7Co)t = =12 + (A — 0)Bav + (u — 7)Cav.
If we define

-Al—O'Bl—Tcl 0

0 Ao — oBy — 7C9
o]

r2

then we can write

M{j}:—r+(A—a){g;ﬁ]+(u—7){g;f]

We project 2nd order terms away using the oblique 2D-projection P = [ — V(WTV)_1WT, where

span(V) = span ({ g;f ] ! { g;z D

u O
wo= |5 5]

and obtain the correction equation

PMP { i ] = —r. (6)

As before we solve (6) only approximately with a Krylov subspace method with initial guess O, for instance by a few
steps of GMRES.

The JD-type method with the correction equation (6) is a Newton scheme, accelerated by the projection of (1) onto
the subspace of all previous approximations. Therefore, we can expect locally at least quadratic convergence when the
correction equations are solved exactly.
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Selection of Ritz pairs.

e |If we are interested in exterior eigenvalues, for instance in the one with maximal A, then in every step we select
Ritz pair ((o, 7), © ® v) with maximal o. In this case we have monotonic convergence o T A.
Of course, like in many subspace methods misconvergence is possible and we can obtain A %= Amax.

e If we are interested in interior eigenvalues, for instance in the one closest to (0, 0), then in every step we select
Ritz pair ((o, 7), w ® v) with minimum o + 72. The convergence is erratic, but numerical results show that
the method can be used for interior eigenvalues as well.

The question remains if it is possible to generalize harmonic Ritz values to a right definite two-parameter eigenvalue
problem. Any progress on this subject might lead to better methods for interior eigenvalues.

Computing more eigenpairs. Standard deflation techniques can not be applied for two reasons:

1 .
o (x®y) A0 can not be written as i/ @ V, where i/ C R™ and V C R"2.

e There can exist eigenvalues (X, ) and (A, ) with eigenvectors z @ y and =’ ® ', respectively, such that
(A p) # N, p)andz =2’

Our approach: As eigenvectors with different eigevalues are Ag-orthogonal, i.e: (2] ® yl)TAO(:cg ® y2) = 0, we
consider in selection only Ritz vectors that are Ag-orthogonal to already computed eigenvectors.

Summary of the algorithm.

1. s =uj and t =vy (starting vectors)
fork=1,2,... (outer loop)
2. MGS(Up_1,s) = U (expansion)
MGS(Vk_l, t) — Vk:
3.  Compute rightmost Ritz pair ((o, 7),c ® d) of (extraction)
UL'A1Uye = oUL'BiUe + UL C1Uce
vilia,vid = oVI'BaVid + 7V CoVid
4. Compute residuals
rn = (Ai—o0oB;—71C1)u
ro = (Ag—o0By—1C9)v
5. Stop if (||r1]|® + ||7"2||2)1/2 <e (stopping criteria)

6. Solve approximately an s 1L u,t L v from correction equation(s)

JD-like algorithm for rightmost eigenvalue of a right definite two-parameter eigenvalue problem

Restarts. As the existing methods are able to solve only low-dimensional two-parameter problems in a reasonable

time, we expand search spaces up to the preselected dimension [ax and then restart the algorithm using the most
promising l,,i, €igenvector approximations as a basis for the initial search space.

Time complexity. Suppose that n = n; = n9 and let m be the number of GMRES steps. The time complexity

of one outer step is:

e dense matrices;: O(mn?)

e sparse matrices: O(mM V'), where MV denotes matrix-vector multiplication with n X n matrix.
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Numerical experiments. For the test examples we take 15

1t N
A; = Q:FQF SN
B; = Q;GiQ; o5
C; = Q;H;Q}, n ool

where 05

e F', Fy Go, Hy are random diagonal matrices € (0, 1), N

e (1, Hy are random diagonal matrices € (1, 2),

e (), is a random orthogonal matrix. s 1 o5 o o5 1 15

A
We shift the obtained right definite problem so that the arithmetic

: : Distribution of ei lues fi = 100
mean of the eigenvalues is (0, 0). Istribution ot €igenvalues tor

Convergence history.
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Convergence plot for eigenvalue with the maximal A for n = 100 and u = v = [1 --- 1]7. The plots show the

logyq of the residual norm p := (IrilI? + ||7°2||)1/2 versus the outer iteration number k using 2 (solid line), 10
(dotted line), and 25 (dashed line) GMRES steps to solve the correction equation with orthogonal projections (left
plot) and oblique projections (right plot), respectively.

Computing more eigenpairs.
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First 15 (left plot) and first 30 (right plot) computed eigenvalues with maximal A for n = 100 computed using
selection for Ritz vectors. The JD-type method used 5 GMRES steps for the correction equation with orthogonal
projections.
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Statistics.

We tested the method using different correction equations and different inner iteration processes. The

folowing plots present the average number of iterations, percentage of convergence to the chosen eigenvalue, and

average number of flops over 250 trials with different random initial vectors.
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2-D projector

e first method for large matrices

e orthogonal variant is less expensive for exterior eigenvalues

e harmonic approach is not obvious

e straightforward generalization to > 2-parameters

Preprint is available at www-Ip.fmf.uni-lj.si/plestenjak /bor.htm.

Conclusion. New JD-like method for two-parameter eigenvalue problem

e choice of orthogonal or oblique (Newton-like) correction equation: 2 orthogonal 1-D or 1 oblique

e oblique variant is more expensive but more reliable for interior eigenvalues

e work in progress: Ritz theory, JD for general two-parameter eigenvalue problem
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