
A Jaobi{Davidson type method for a right de�nitetwo-parameter eigenvalue problemBor PlestenjakDepartment of mathematis, University of Ljubljana, SloveniaJoint work with Mihiel E. Hohstenbah (Utreht University)Two-parameter eigenvalue problem. We onsiderA1x = �B1x + �C1xA2y = �B2y + �C2y; (1)
where Ai; Bi; Ci are ni � ni real matries for i = 1; 2. A pair (�; �) is an eigenvalue if it satis�es (1) for nonzerox; y. The tensor produt x
 y is the orresponding eigenvetor .Problem: �nd (approximate) eigenvalue (�; �) and (approximate) eigenvetor x
 y.
Right de�nite problem.� Matries Ai; Bi; Ci are symmetri.� For nonzero x; y we have ����� xTB1x xTC1xyTB2y yTC2y ����� > 0:A right de�nite problem has real eigenpairs and there exist n1n2 linearly independent eigenvetors.Tensor produt approah. On the tensor produt spae Rn1 
 Rn2 we de�ne�0 = B1 
 C2 � C1 
B2�1 = A1 
 C2 � C1 
A2�2 = B1 
A2 �A1 
B2:Problem (1) an be then expressed as two oupled generalized eigenvalue problems (GEP)�1z = ��0z�2z = ��0z: (2)

If a problem is right de�nite then� �i is symmetri,� �0 is symmetri positive de�nite,� ��10 �1 and ��10 �2 ommute.We an solve problem (2) using standard methods for GEP, but the dimension is N := n1n2.Department of mathematisUniversity of Ljubljana 1



Jaobi-Davidson type method. As in eah subspae method we start with a given searh subspae from whihapproximations to eigenpairs are omputed (extration). In the extration we solve the same type of eigenvalue problemas the original one, but of a smaller dimension. After eah step we expand the subspae by a new diretion (expansion).As the searh subspae grows, the eigenpair approximations should onverge to an eigenpair of the original problem.Extration. Let the k-dimensional searh subspaes Uk of Rn1 and Vk of Rn2 be represented by matriesUk 2 Rn1�k and Vk 2 Rn2�k with orthonormal olumns, respetively. The Ritz{Galerkin onditions(A1 � �B1 � �C1)u ? Uk(A2 � �B2 � �C2)v ? Vk;lead to the smaller projeted right de�nite two-parameter problemUTk A1Uk = �UTk B1Uk+ �UTk C1Uk;V Tk A2Vkd = �V Tk B2Vkd+ �V Tk C2Vkd; (3)
An eigenvalue (�; �) of (3) is a Ritz value. If (�; �) is an eigenvalue of and 
 d is the orresponding eigenvetor,then u
v is a Ritz vetor , where u = Uk and v = Vkd. Altogether we obtain k2 Ritz pairs that are approximationsto the eigenpairs of (1).Residuals are de�ned as r1 = (A1 � �B1 � �C1)ur2 = (A2 � �B2 � �C2)v:Expansion. We are looking for improvements s ? u, t ? v, suh thatA1(u+ s) = �B1(u+ s) + �C1(u+ s)A2(v + t) = �B2(v + t) + �C2(v + t): (4)
Theorem: ((�; �); u
v) Ritz pair, u = x�s, v = y�t ) p(���)2 + (���)2 = O(ksk2+ktk2)If we rewrite �rst equation in (4) as(A1 � �B1 � �C1)s = �r1 + (���)B1u + (���)C1u + (���)B1s+ (���)C1sthen� (�� �)B1s+ (�� �)C1s is a \mixed" 3rd order term and we neglet it� (�� �)B1u + (�� �)C1u is a \mixed" 2nd order term and we:I neglet itII projet it away
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I. Corretion equations with orthogonal projetions. When we neglet 2nd and 3rd order terms we obtain(A1 � �B1 � �C1)s = �r1:As the right-hand side is orthogonal to u, so is the left-hand side. We get two separate orretion equations(I � uuT )(A1 � �B1 � �C1)(I � uuT )s = �r1(I � vvT )(A2 � �B2 � �C2)(I � vvT )t = �r2: (5)
Orthogonal projetions preserve the symmetry of the matries. The equations (5) for s and t are not of full rank butthey are onsistent. We solve them only approximately with a Krylov subspae method with initial guess 0, for instaneby a few steps of MINRES.II. Corretion equation with oblique projetion. When we neglet 3rd order terms we obtain(A1 � �B1 � �C1)s = �r1 + (�� �)B1u + (�� �)C1u(A2 � �B2 � �C2)t = �r2 + (�� �)B2v + (�� �)C2v:If we de�ne M = � A1 � �B1 � �C1 00 A2 � �B2 � �C2 �

r = � r1r2 �then we an write M � st � = �r + (�� �) � B1uB2v � + (�� �) � C1uC2v �:We projet 2nd order terms away using the oblique 2D-projetion P = I � V (WTV )�1WT , wherespan(V ) = span�� B1uB2v � ; � C1uC2v ��
W = � u 00 v � ;and obtain the orretion equation PMP � st � = �r: (6)

As before we solve (6) only approximately with a Krylov subspae method with initial guess 0, for instane by a fewsteps of GMRES.The JD-type method with the orretion equation (6) is a Newton sheme, aelerated by the projetion of (1) ontothe subspae of all previous approximations. Therefore, we an expet loally at least quadrati onvergene when theorretion equations are solved exatly.
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Seletion of Ritz pairs.� If we are interested in exterior eigenvalues, for instane in the one with maximal �, then in every step we seletRitz pair ((�; �); u
 v) with maximal �. In this ase we have monotoni onvergene �k " �:Of ourse, like in many subspae methods misonvergene is possible and we an obtain � 6= �max.� If we are interested in interior eigenvalues, for instane in the one losest to (0; 0), then in every step we seletRitz pair ((�; �); u 
 v) with minimum �2 + �2. The onvergene is errati, but numerial results show thatthe method an be used for interior eigenvalues as well.The question remains if it is possible to generalize harmoni Ritz values to a right de�nite two-parameter eigenvalueproblem. Any progress on this subjet might lead to better methods for interior eigenvalues.Computing more eigenpairs. Standard deation tehniques an not be applied for two reasons:� (x
 y)?�0 an not be written as U 
 V , where U � Rn1 and V � Rn2 .� There an exist eigenvalues (�; �) and (�0; �0) with eigenvetors x 
 y and x0 
 y0, respetively, suh that(�; �) 6= (�0; �0) and x = x0.Our approah: As eigenvetors with di�erent eigevalues are �0-orthogonal, i.e: (x1 
 y1)T�0(x2 
 y2) = 0, weonsider in seletion only Ritz vetors that are �0-orthogonal to already omputed eigenvetors.Summary of the algorithm.1. s =u1 and t =v1 (starting vetors)for k = 1; 2; : : : (outer loop)2. MGS(Uk�1; s) ! Uk (expansion)MGS(Vk�1; t) ! Vk3. Compute rightmost Ritz pair ((�; �); 
 d) of (extration)UTk A1Uk = �UTk B1Uk+ �UTk C1UkV Tk A2Vkd = �V Tk B2Vkd+ �V Tk C2Vkd4. Compute residualsr1 = (A1 � �B1 � �C1)ur2 = (A2 � �B2 � �C2)v5. Stop if (kr1k2 + kr2k2)1=2 � " (stopping riteria)6. Solve approximately an s ? u; t ? v from orretion equation(s)JD-like algorithm for rightmost eigenvalue of a right de�nite two-parameter eigenvalue problemRestarts. As the existing methods are able to solve only low-dimensional two-parameter problems in a reasonabletime, we expand searh spaes up to the preseleted dimension lmax and then restart the algorithm using the mostpromising lmin eigenvetor approximations as a basis for the initial searh spae.Time omplexity. Suppose that n = n1 = n2 and let m be the number of GMRES steps. The time omplexityof one outer step is:� dense matries: O(mn2)� sparse matries: O(mMV ), where MV denotes matrix-vetor multipliation with n� n matrix.Department of mathematisUniversity of Ljubljana 4



Numerial experiments. For the test examples we takeAi = QiFiQTiBi = QiGiQTiCi = QiHiQTi ;where� F1; F2; G2;H1 are random diagonal matries 2 (0; 1),� G1;H2 are random diagonal matries 2 (1; 2),� Qi is a random orthogonal matrix.We shift the obtained right de�nite problem so that the arithmetimean of the eigenvalues is (0; 0). −2 −1.5 −1 −0.5 0 0.5 1 1.5
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Convergene plot for eigenvalue with the maximal � for n = 100 and u = v = [1 � � � 1℄T . The plots show thelog10 of the residual norm � := (kr1k2 + kr2k)1=2 versus the outer iteration number k using 2 (solid line), 10(dotted line), and 25 (dashed line) GMRES steps to solve the orretion equation with orthogonal projetions (leftplot) and oblique projetions (right plot), respetively.Computing more eigenpairs.
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Statistis. We tested the method using di�erent orretion equations and di�erent inner iteration proesses. Thefolowing plots present the average number of iterations, perentage of onvergene to the hosen eigenvalue, andaverage number of ops over 250 trials with di�erent random initial vetors.
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Conlusion. New JD-like method for two-parameter eigenvalue problem� �rst method for large matries� hoie of orthogonal or oblique (Newton-like) orretion equation: 2 orthogonal 1-D or 1 oblique2-D projetor� orthogonal variant is less expensive for exterior eigenvalues� oblique variant is more expensive but more reliable for interior eigenvalues� harmoni approah is not obvious� straightforward generalization to > 2-parameters� work in progress: Ritz theory, JD for general two-parameter eigenvalue problemPreprint is available at www-lp.fmf.uni-lj.si/plestenjak/bor.htm.
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