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Two-parameter eigenvalue problem

e \We consider two-parameter eigenvalue problem

Aix = A Bix + p Chix
(W)
Asy = A Bay + p Cay,

where A;, B;, C; are n X n matrices, A\, u € C, and =,y € C"
e Eigenvalue: a pair (A, p) that satisfies (W) for nonzero « and y

e Eigenvector: the tensor product x ® y

e Problem: compute some (all) eigenvalues (), 1) and eigenvectors =z ® y
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Separation of variables (s.o0.v.)

Au+vu =0 on €, ulso =0

Rectangle: €2 = [0, a] X [0,b], s.ov. =
' + Az =0, x(0) = z(a) = 0,
y" + py =0, y(0) = y(b) = 0.
Circle: Q) = {ac2 + y2 < a2}, polar coordinates, s.o.v. —>
" + AP =0, ®(0) = ¢(27) = 0,
r ' rR) + (v — Ar7*)R =0, R(0) < oo, R(a) = 0.
Ellipse: Q = {(x1/c1)® + (x2/c2)® < 1}, elliptic coordinates, s.o.v. =

vlll + (2A cosh(2y;) — p)vy =0
v;, — (2Xcos(2yy) — p)ve = 0.
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Some two-parameter problems that appear in the algebraic form

Osborne (1963): The optimum value of the overrelaxation parameter w in the SOR method for
a separable elliptic partial differential equation in two independent variables can be obtained
from the eigenvalues of a certain two-parameter eigenvalue problem.

Leiseutre, Mamishev, et al (2001): The estimation of material electrical properties from
measurements of interdigital dielectrometry sensors. When the sensors are applied to the
material that is composed of two layers, the properties of the individual layers are the
eigenvalues of the appropriate two-parameter eigenvalue problem.

Cottin (2001): Dynamic model updating. We have a spring-mass model where the mass
matrix is known and the stiffness parameter values of two springs have to be updated based
on the outside measurements of the natural frequencies. The updated parameters are the
eigenvalues of a two-parameter problem.
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Tensor product approach

A1£13 = A\Bixz + ,LLC1CE (W)
Asy = ABoy + uCsy

e On S :=C"® C" of the dimension n? we define

Ay = Bi®Cy—C1® By
A = AiIRC,—C1® A,
Ay = B1®Ay— A1 ® Bs.

e Two-parameter problem (W) is equivalent to coupled GEP

Alz = )\Aoz

Where > = ® Y. AQZ = /,LAO,Z (A)

e (W) is nonsingular <= Ay is invertible.

° Ao_lAl and Ao_lAg commute.
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Right definite problem

Problem
Alzc = )\le —|— ,uClaz,
(W)
Azy = ABoy + pCay.
is right definite when

o A, B;, C; real symmetric

2Bz 2'Ciz
y'Boy y' Cay

° > 0 for nonzero x, y (equivalent to Ay s.p.d.)

If (W) is right definite then

® eigenpairs are real
e there exist n° linearly independent eigenvectors

e cigenvectors of distinct eigenvalues are Ag-orthogonal, i.e. (21 ® y1)  Ag(zs @ y2) =0
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Some available numerical methods

e Blum, Curtis, Geltner (1978) and Browne, Sleeman (1982): gradient method,

e Blum, Chang (1978): Minimum Residual Quotient Iteration (MRQI) for the problem
Ax = ABx 4+ puCx and conditions ||z|| = 1, f(x) = 0, where f is a real functional,

e Bohte (1980): Newton's method for eigenvalues,
e Miuiller (1982): continuation method for one two-parameter equation,
e Slivnik, Tomsi¢ (1986): solving (A) with standard numerical methods,

e Ji, Jiang, Lee (1992): generalization of MRQI for (W): Generalized Rayleigh Quotient
lteration (GRQI).

e Shimasaki (1995): continuation method for a special class of RD problems.

e P. (1999): continuation method for RD problem.

e P. (2000): continuation method for weakly elliptic problem.

e Hochstenbach, P. (2002): Jacobi-Davidson type method for RD problem.
e Hochstenbach, Kosir, P. (2003): Jacobi-Davidson type method.
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Continuation method

(C2n+2 known initial solution

goal solution

solution curve

tZO —

Ajoz = AByoz + pChroz
Agoy = ABgoy + nCaoy W= (1-t)Wo +tW

initial problem W with homotopy
known solutions
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t=1

Ajx = ABijx + uChix
Agy = ABay + pnCay

original problem W



Following the homotopy curve

e \We numerically follow the homotopy curve by a prediction-correction scheme using arc
length as the parameter.

e Euler's method is used as a predictor.

e Newton's method is used as a corrector.
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Properties of a continuation method

e In tensor product space matrices A; are of order n? and the time complexity is O(nG).

e Matrices in the continuation method are of moderate size O(n).

— One predictor-corrector step has time complexity O (n?).
— We have to multiply this number with n? as we are following n° curves.
— We have to multiply it further with the number of P-C steps per curve.

e The continuation method allows an elegant parallel implementation.
e The continuation method works without approximations of eigenpairs.

e Even if we are interested in a small portion of eigenvalues, we have to compute all the
eigenvalues.
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Continuation method in the right definite case

We can assume that By and C are s.p.d.

Initial problem:
Al()CU = )\Blil?

Ay = nCay

Aix = ABixz + utChz,
Asy = AtBoy + uChy.

Eigenvalues and eigenvectors are real, we can use t as a parameter.

There are only finitely many singular points where we have multiple eigenvalues. As
eigenvectors are Ag-orthogonal we can jump over.

Predictor: constant (the last approximation from the previous step)

Corrector: the tensor Rayleigh quotient iteration
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Continuation method in the weakly elliptic case

Weakly elliptic: All matrices are symmetric and one of By, C4, By, C5 is definite, we can
assume that B and C are positive definite.

For an eigenvalue (\, p) we have either A\, u € Ror A\, p € R.

Initial problem: We can construct symmetric S7 and S5 in a way that

a) all eigenvalues of the two-parameter problem

Six = ABix + uChix,
Soy = ABay + uCay. (Wo)

are algebraically simple,

b) the construction reveals the solutions of (Wj).

Wti
(1 —t)Ajx + tS1z = ABixz + pChiz,

(1 —t)Asy + tSex = ABay + uCsy.
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Continuation method in the weakly elliptic case (cont.)

e We use arclength as a parameter.
e There are only finitely many values ¢ € [0, 1] where (W) has a multiple eigenvalue.
e All bifurcations are turning points.

e \We can not avoid the turning points.

Change from real to complex space in a quadratic turning point

Banff 2003
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JD-like method for the right definite case: extraction

Ritz—Galerkin conditions: search spaces = test spaces: w1 € U1k, us € Usy

(Al — O'B1 — TC’l)ul 1 thlk
(A2 — O’BQ — TCQ)UQ 1 Z/fzk

= projected right def. 2-parameter problem

UﬁAlUlkcl = O'Uil;fBlUlkcl —|— TU{‘F,cClUlkcl
Ug;fAQUQkCQ O'Ug;fBQUQkCQ + TU;CCQUQkCQ

Ritz vectors: uy = Ujrci, ug = Usrco, where c1, co € R*

Ritz value: (o, 1), Ritz pair: ((o,7),u1 ® uz)
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JD-like method for the RD case: algorithm

1. s1 =wuy and sy =wuy (starting vectors)
fork=1,2,...

2. (Uik-1,s1) = Uk
(Us,i—1, 82) = Usp

3. Extract appropriate Ritz pair ((o, 7),¢c1 ® c3) of

UﬁAlUlkcl = O'Uil;ﬂBlUlkcl —1— TUﬁolUlkcl
Ug;QAQUQkCQ = O'Ug;cBQUQkCQ —|— TU£C2U2k02
4 T1 = (Al — O'Bl — Tcl)U1
. T2 == (AQ — O'B2 — TCQ)UQ

5. Stop if (||r]|* + [|m2)|*)* < e

6. Solve (approximately) an s; L w1, s3 L wus from corr. equation(s)

Banff 2003

JD-like algorithm to find eigenpair of 2-parameter RD eigenvalue problem

16



JD-like method for the RD case: expansion, s; 1L uq, so L us
Ai(ur + s1) = ABi(u1 + s1) + pCi(ur + s1)
Az(ug 4+ s2) = ABa(ug + s2) + pCa(us + s2)

Two correction equations

(I — ululT)(Al — O'B1 — 7'01)(_[ — uluf)sl = —7m
(I — ugui)(Ag — 0By — 7C2) (I — ugui )so

e orthogonal projections preserve the symmetry

e we solve the equations only approximately with a Krylov subspace method with initial
guess O (e.g., few steps of MINRES or GMRES).
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JD-like method for RD case: computing more eigenpairs

Eigenvectors are Ag-orthogonal:

(1@ y1)  Ag(za ® ya) = 0

Standard deflation techniques can not be applied:

o (z ® y)LAO can not be written as U ® V, where Y C R" and V C R".

e there can exist eigenvalues (\, u) and (M, u') with eigenvectors * ® y and =’ ® v/,
respectively, such that (A, u) # (A, i) and =z = =/,

Our approach: In selection consider only Ritz vectors that are Ag-orthogonal to already
computed eigenvectors.
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Two-sided JD-like method for a general problem: extraction

Petrov—Galerkin conditions: search spaces u; € U;, test spaces v; € Vi

(A1 — O'Bl — TCl)ul 1 Vlk,
(Az — O'BQ — TC2)U2 J_ Vzk,

where u; € U;;,\{0} = projected two-parameter problem

Vf;gAlUlkCl — UV12B1U11601 -|— TVf;ﬂClUlkCl,
V22A2U2kc2 — O-V2>;€B2U2]@C2 + TV;;CQUQ]{CQ,

where u; = Uj;rc; 7O fort = 1,2 and o, 7 € C.

Petrov vectors: u; = Ujrc;, v; = Vired;, ¢;, d; € (Ck

Petrov value: (o, 7), Petrov triple: ((o,7),u1 ® uz, v1 ® va)
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Two-sided JD-like method: algorithm

1. s; =u; and t; =wv, (starting vectors)
fork =1,2,...

2. (Uik-1,s:) = Ui
(Vik—1,t:;) = Vig

3. Extract appropriate Petrov triple ((o, 7),c1 ® c2, d1 ® ds3) of

V12A1U1k01 = UVl*kBlUlkcl + TVl’;ClUlkcl,

Vi AgUspcs = oV BoUapca + TV, CoUsypcs,
4 T'LR — (Az —oB; — 7'C'Z)uZ

rf = (A;—oB;— 7Ci)";

. 1/2
5. Stop if (||r1% + 1112 + I7F112 + 17511%) 7 < e

6.  Solve (approximately) subspace extensions s;, t; from corr. equation(s)
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Two-sided JD-like method: expansion, s; | a;, t; L b;

A correction equation for the vector wu;:

(I — Civi) (A; — oB; — 1C}) (I — uiai> Si = —1)

%k
Uz’ C; aiui

fore =1, 2, where ¢; X v; and a; L u;.

Similarly, a correction equation for the vector v;:

(I— uz)(Az—O'B/L—TCZ) (I—U z)tz':—’l"iL

* *

for 1+ = 1, 2, where d/L l U; and bz ,J/_ V;.
Different choices of vectors a;, b;, c¢;, d; lead to different correction equations.

We suggest the preconditioner M; = A; — ArB; — purC;, where (A, pur) is the target.
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Two-sided vs. one-sided

Statistics of the Jacobi—Davidson type method using the same set of 10 random initial vectors
for computing 10 closest eigenvalues to the (0, 0), matrices are of size 100.

For each eigenvalue we select the closest Petrov value to the origin until the residual becomes
smaller than &change and in the remaining steps we select Petrov triple with the minimum
residual.

two-sided J-D
€change — 101 €change — 10~ 0 €change — 102
GMRES In 10 Conv. Avg. Iter. In 10 Conv. Avg. Iter. In 10 Conv. Avg. Iter.
5 3.4 4.2 6.4 400.0 3.3 3.9 4.7 400.0 2.7 3.0 4.3 400.0
10 4.7 7.4 19.4 3245 5.9 8.0 10.2 387.8 5.3 6.2 5.6 400.0
20 6.8 9.4 15.2 255.3 6.6 9.2 26.1 301.8 6.9 9.4 145 300.3
40 7.2 9.5 29.1 284.0 7.3 9.5 16.2 292.3 7.0 9.0 14.2 354.9
one-sided J-D
€change — 1071 €change — 1070 €change — 10~2
GMRES In 10 Conv. Avg. Iter. In 10 Conv. Avg. lter. In 10 Conv. Avg. Iter.
5 2.0 5.2 21.3 400.0 1.3 1.3 6.9 400.0 0.5 0.5 1.6 400.0
10 2.9 7.1 21.7 357.3 2.6 3.0 4.1 400.0 1.9 1.9 1.6 400.0
20 3.5 9.9 72.7 189.5 3.0 3.7 24.0 400.0 1.9 2.1 4.2 400.0
40 3.0 9.9 75.1 143.8 3.5 4.0 5.1 380.5 2.9 3.2 25.6 400.0
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Conclusions

Continuation method:

e if we need all eigenvalues (eigenvectors)
e can be applied to right definite or weakly elliptic problems

e casy parallelization

Jacobi—-Davidson type method:

e if we need selected eigenvalues (e.g., closest to the target)

e works for right definite and general nonsingular problems

Both methods:

e work with matrices of size O(n) and not O(n?)

e do not require initial approximations
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