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Quadratic eigenvalue problem (QEP)

Q(\) = N’M +\C + K

We consider a special case when

o M,C, K are real symmetric tridiagonal matrices and

e QEP is hyperbolic (overdamped).

An example is the overdamped mass-spring system.

Our goal is to compute all the eigenvalues, i.e. scalars A such

that det(Q (X)) = 0. The eigenvectors can be later obtained
by inverse iteration.

If M is nonsingular n X n matrix then there are 2n eigenvalues.
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Overview

e Hyperbolic and overdamped QEP

e Inertia of a hyperbolic QEP

o det(Q()\)) and its derivatives

e Rank two divide and conquer approach
e Laguerre method and bisection

e Ehrlich—-Aberth method

e Durand—Kerner method

e Numerical experiments

e Conclusion

e Diagonal homotopy
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Hyperbolic QEP

Q(N\) = A*M 4+ \C + K is hyperbolic if M > 0 and
(' Cx)® — 4(z" Mz)(z' Kz) > 0
for all x # 0.

Properties:

e all eigenvalues and eigenvectors are real
e cigenvalues are semisimple

e a gap between n largest (primary) and n smallest (secon-
dary) eigenvalues

e n linearly independent vectors associated with the primary
and the secondary eigenvalues, respectively

e Q is hyperbolic iff there exists A\ such that Q(\g) < O.
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Overdamped QEP

For each  # 0O the equation
,LLQ;UTMJ; + ,LL;UTC’J; + 2 Kz
has two real solutions u1(x) < pa(x).

Minimax principle: if X9, < .-+ < X; are eigenvalues of a
hyperbolic QEP Q () then

A;, = max min us(x
‘ SCRN o;éxes'u( )
dim(S)=1
and
Ant; = max min pui(x
e SCR" O;é.q;es’u( )
dim(S)=1
fore=1,...,n.

A hyperbolic QEP is overdamped if C' > 0 and K > 0.

Additional properties:

e all eigenvalues are negative
e overdamped QEP are shifted hyperbolic QEP:

QN+ 6) = XM + X\(C +20M) + K + 6C + 6°M.
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Inertia of a hyperbolic QEP

Inertia  of a symmetric matrix A is a triple
(v(A),C(A),w(A)), where v, and 7 are the numbers of
negative, zero and positive eigenvalues of A, respectively.

Theorem: Let ~ be such that Q(~v) < 0.
a) If v < pu then v(Q(w)) equals the number of eigenva-
lues of (Q that are greater than wu.

b) If u < ~ then v(Q(wn)) equals the number of eigenva-
lues of () that are smaller than pu.

Proof: Q () is a symmetric matrix with ordered eigenvalues

on(p) < -+ < oi(p)

for each w. o; are continuos functions of ©. X is an eigenvalue
of @ iff one of o1 (N),...,on(N)is O,

At pu = ~ all o; are negative and at © = Z£oo all o; are
positive. Each o; crosses the x-axis exactly twice, once left and
once right of ~.

co1r2 .-~ n—-1n---nn-1 --- 210
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Bisection and other methods

Based on the inertia we can use bisection to obtain the k-th
eigenvalue, but the convergence is slow. Therefore we apply
methods that were successfully applied to tridiagonal generalized
eigenproblems.

e Laguerre’s iteration
— K. Li, T.Y. Li (1993) - symmetric tridiagonal eigenpro-
blem
— K. Li, T.Y. Li, Z. Zeng (1994) - generalized symmetric
tridiagonal eigenproblem
e Ehrlich—Abert iteration
— D.A. Bini, L. Gemignani, F. Tisseur (2003) - nonsymme-
tric tridiagonal eigenproblem
e Durand-Kerner method

— K. Li (1999) - generalized symmetric tridiagonal eigen-
problem

The above methods require stable and efficient computation

of v(QN)), f(A), f/(N)/f(X) and f7(X)/f(X), where
f(A) = det(Q(A)).
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Three term recurrences
Let _
al bl 0
b1 a- b2

bn—2 Qp—1 bn—l

0 bn—l Anp

where a; = a;(\) and b; = b;(\). Then
fo=1, fi=a1, fri1=ar1fr — b2 fr1.

fo =0, fi = ay,
Fro1 = @i fr+ arsa fl = 26,0 fra — B2f1 .

f1/°,—}—1 r—}—lfr + 2a’r+1f + 7“+1f/, - 2b/2 .fr 1
_Qbrb;’fr—l — 4brb;~fr—1 - b72~-fr—1

As the above recurrences may suffer from overflow—underflow

fs f{ f//
b2
dlza,l, dr_|_1:a,r_|_1_d_i.

and obtain

/
9020,912%,

gr+1 = (ar+1 + Ar4+19r — d_1r(2b7"b;° + bigr—l))-

d+1

ho =0, h; = -1,

aq
1 7 /
hr—i—l T dpg (a’r—i—l + 2a’r—i—lg7“ + a’T'—i—lh

— L1202 4 2b,b" + 4b,b.gr—1 + b2h,1)).
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It follows that f,, = di - - - d,.

Time complexity for the computation of f, f’ and f” is appro-

ximately:

e f:12n
e fand f': 25n
o f,f and f": 44n

Remark: it is known that
F'/FN) = Tr(Q(N) Q' (M)

Bini, Gemignani and Tisseur use this formula for a stable O(n)
computation of f'/f via QR decomposition when f(\) =
det(A — AI) and A is tridiagonal. Could this approach be
generalized for the computation of Tr(A ' B) where A and B

are tridiagonal?
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Divide and conquer

Let _ )
ai b1 0

b1 a9 b2

bn—2 An—1 bn—l

0 bn—l An

where a; = a;(\) and b; = b;(\). We choose m ~ n /2 and
set b,,, = 0. We obtain

_@i(n) 0
@old) = 0 Q2(N)

Q1(N), Qg()\) and therefore Qo(\) are hyperbolic QEP. The
eigenvalues Agn < - - < X\ of Qo are approximations for the
eigenvalues Ay, < -+ - < A7 of Q.

Let Q(A,t) = tQ(N) + (1 — t)Qo(A). If the eigenvalues
of Q(A,t) are real for t € [0, 1] then we can show that they
interlace.

Theorem: If A\, (K)? > 4X1(M)X1(C) then Q(\,t) is
hyperbolic for ¢t € [0, 1].
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Interlacing property

Theorem: Let eigenvalues of Q (A, t) be real for t € [0, 1]

and let Ay, < --- < Aq be the eigenvalues of Qy(\) and

Aop <+ -+ < A1 the eigenvalues of Q. Then:

a) Xl < A1 and A, < Xgn,

b) Nig1 < N < Mg, fori =2,...,n—1and i =
n+2,...,2n — 1,

C) 3‘/n+1 S >‘n—|—1 < An S Xn
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Laguerre’s method

Let f(A\) = det(Q(A)). Laguerre’s iteration is

2n

—f'(z) _ (= @)_, @)
(f(x) i\l(% 1) <(2n 1)( f@:)) 2 f(m)>>

Lyi(z)=x+

The method is globally convergent with cubic convergence in a
neighbourhood of the corresponding simple eigenvalue.

If we add Aopt1 = —oo and A\g = oo then forx € (>"H-17 >\z)
we have

Aitr1 < L_(z) < x < Li(x) < A;.

Divide and conquer: eigenvalues Aon < < 1 of Qo(N)
are initial approximations for A9, < --- < Aq.

o~ o~

As Xit1 < A; < Xi_1 we can always use \; as an initial
approximation for A;. From v(Q(X\;)) we see if A\; > X; or
A; < A; and then use L or L _ sequence.
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Bisection and Laguerre’s method

If X\; is closer to A\;_1 or A\;11, then the convergence can be
very slow.

W

7\d+1 7\4 7\4-1

The necessary condition for the cubic convergence near a single
eigenvalue \ is that the sign of —f(z)'/f(x) agrees with
the sign of A — . To improve the convergence we first
use bisection on interval [A;, Aj+1] ( or [A;, A;—1]) until the
condition is achieved.

Due to numerical errors, the condition — f(z)'/ f(z)(A—z) >
O can also be achieved near A\;_; or \;11. Additional criteria is
that near \; the sign of f'(z) has to agree with (—1)"**.
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Ehrlich—Aberth’s method

The method simultaneously approximates all the zeros of a
polynomial f(A\) = det(Q(X)). From an initial approximation
£(®) € C?" the method generates a sequence /) € C?" which

locally converges to the eigenvalues of Q (). The equation is

7
k
(k+1) _ (k) _ (o5
:Bj —-:rj

(k)y, 2n
f(xj ) 1

R
f’(mgk)) ; af;g.k) ()

— - xl
I#]

fory =1,...,2n.

If we implement the method in the Gauss—Seidel style then
the convergence for simple roots is cubical and linear for mul-
tiple roots. We iterate only those eigenvalues that have not
converged vyet.

For an efficient use of the method we need good initial appro-
ximations, and fast and stable computation of p(z)/p'(x).

For initial approximations we again use divide and conquer
with rank two modifications. To eliminate multiple values in

the initial approximation we slightly perturb the eigenvalues of

Qo(A).
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Durand—Kerner’s method

Another method that simultaneously approximates all the zeros
of a polynomial f(A) = det(Q(X)) is Durand—Kerner's me-
thod. As the method requires that the leading coefficient of the
polynomial is one we apply it on

1
p(A) = dot (M) det(Q(N)).

Similar to Ehrlich—Aberth the method generates a sequence

£9) € R® which locally converges to the eigenvalues of
Q (). The equation is

(k)

LD (k) p(z;”)
J J 2n

(k) (k)
[[=" — =
=1
1#j
fory =1,...,2n.

If we implement the method in the Gauss—Seidel style then the
convergence for simple roots is superquadratical and linear for
multiple roots. As before, we iterate only the eigenvalues that
have not converged yet.

Remark: K. Yi reports that although the method always con-
verges in practice, this has not been proved vyet.
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Multiple eigenvalues

When we have multiple eigenvalue or close eigenvalues, we can
expect problems and linear convergence in all three presented
methods. Some solutions suggested in the literature are:

In Laguerre’s method we may estimate the multiplicity or the
number of eigenvalues in the cluster using the inertia. If

the multiplicity of the eigenvalue is » we apply the modified
Laguerre’s iteration

Lrj:(x) =+

2n
—f(x) o (2n=r (= @\° @)
( fw T \/(2" ”( = (Fah) 2 ))

which converges cubically.

In Ehrlich—Aberth’'s and Durand—Kerner’'s method, when we
obtain the eigenvalue of multiplicity r, we fix all r instances
and continue with the remaining eigenvalue approximations. In
this way we prevent zero values in the denominator.
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Comparison and numerical results

In Matlab we tested all three methods on a limited set of tridi-
agonal overdamped QEPs. We compared the average number
of iterations. In all three methods one step (for one eigenvalue
approximation) has linear time complexity.

e One step of Durand—Kerner's method is the cheapest as it
requires only values of f.

e One step of Ehrlich—Aberth’'s method requires f and f’ and
Is roughly equivalent to 2.4 Durand—Kerner steps.

e One step of Laguerre’'s method is the most expensive. It

requires f, f' and f”, and is roughly equivalent to 4.7
Durand—Kerner steps.

The testing overdamped QEPs have the following structure:

e M and K: diagonals are random values from [0.5, 1],
codiagonals are random values from [0, 0.1].

e (': diagonals are random values from [4, 5], codiagonals
are random values from [0, 0.5].
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method | avg. iter. avg. iter. in last step X imp. factor time
n = 20

LB 6.8 4.0 14.4 2.5

AE 6.2 3.5 7.4 0.9

DK 13.1 8.5 8.5 0.8
n = 40

LB 5.2 2.1 7.6 7.7

AE 5.0 2.1 4.4 2.2

DK 8.6 3.3 3.3 1.6
n = 100

LB 4.5 1.9 6.8 43.6

AE 3.9 1.6 3.4 8.4

DK 6.8 2.5 2.5 4.5
n = 200

LB 4.5 2.1 7.6 | 178.5

AE 3.4 1.4 2.9 27.3

DK 5.8 2.3 2.3 13.0
n = 300

LB 3.9 1.6 5.8 | 365.6

AE 3.0 1.2 25 54.2

DK 4.6 1.6 1.6 19.9

Durand—Kerner's method is faster than polyeig(K,C,M) for

n > 100. For example, polyeig(K,C,M) requires 39.6s for

n = 200.

As the dimension of the matrices increases, the eigenvalues
of Qo(A) better approximate eigenvalues of Q(\) and the
methods require fewer steps in the final divide and conquer

phase.
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Conclusions

Three eigensolvers for tridiagonal hyperbolic QEPs.

Generalizations:

e All methods can be easily parallelized.

e Similar approach might be generalized to:

— nonsymmetric and non hyperbolic tridiagonal quadratic
polynomial problems

— tridiagonal polynomial problems
Future work:

e handling of multiple eigenvalues
e more numerical tests
e stable computation of f, f’ and f".

e can continuation and path following be as efficient as other
three methods

4
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Continuation method

A continuation method has been successfully applied to the
symmetric and nonsymmetric eigenvalue problem, to the ge-
neralized eigenvalue problem and other eigenproblems. Chu,
Li and Sauer (1988) presented a continuation method for a
general A-matrix problem that does not exploit the properties
of an overdamped QEP as the following method.

Let My, Cy and K be diagonal matrices and let

where

Qo(A) N My + ACo + Ko,

Q1(N)

ANM 4+ 2\C + K.

We construct a homotopy H : R X R x [0,1] - R" X R

H(z,\t) = [ QU t)a ] .

Lz'z —1)

The solution of H(x, A\, 1) = O corresponds to the eigenpairs
of Q. The solution of H (2, A,0) = O is trivial and we choose
the initial matrices My, Cy, and Kg in such a way that all
eigenvalues of QQo(\) are algebraically simple.
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We follow the set H '(0) from the known solution of
H(xz,X,0) =0 att = 0 to the solution of Q at ¢t = 1.

Theorem: Let My, Cy, and K be diagonal matrices such
that

0 S (MO)zz < Amin(M)a Amax(c) S (CO)iia

(Ko)ii < Amin(K)
fori = 1,...,n. Then Q(\,t) is a hyperbolic QEP for
t € [0,1].

Remark: If the QEP is hyperbolic but not overdamped, then
we can not apply the above theorem. However, using an

appropriate shift it is possible to transform each hyperbolic
QEP into an overdamped QEP.

Theorem: There exists a subset S of R™ with full
measure such that if (ky,...,k,) € S and Ko =
diag(k1, ..., kn), then all eigenvalues of Q(A\,t) are
algebraically simple for ¢t € [0, 1).

We have 2n disjoint smooth curves in R™ X R, each leads
from an eigenpair of Qo(\) to the eigenpair of Q1(A\). The
homotopy has the order-preserving property.
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Following the eigencurves

We may follow the eigencurve through (x, A,t) by the
predictor-correction scheme. We have

[i] _ [Q(;\qzt) Q/(i\), t)fff]_l [—(Q1(>\) N QO(A))QU] |

2T (AQ(A — Ag) + A(B — Bo) + (C — CO))x

= o7 (2XA(1) + B(1) )

Let us assume that the step size h was determined. Then we

a) use Hermite interpolation to predict A (t;,1) from
)\(ti—l); A/(tz’—l), )\(tz’), and )\/(ti).
b) use one step of the inverse power method to predict the

eigenvector:

QA (tiy1), tig1)y = =¥,

v _ Y
[yl
c) use a modified Rayleigh quotient method with the initial

approximation ()\(0) , 33(0))
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Deflections
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