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Quadrati eigenvalue problem (QEP)
Q(�) = �2M + �C +K

We onsider a speial ase when� M;C;K are real symmetri tridiagonal matries and� QEP is hyperboli (overdamped).
An example is the overdamped mass-spring system.Our goal is to ompute all the eigenvalues, i.e. salars � suhthat det(Q(�)) = 0. The eigenvetors an be later obtainedby inverse iteration.IfM is nonsingular n�n matrix then there are 2n eigenvalues.
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Overview
� Hyperboli and overdamped QEP� Inertia of a hyperboli QEP� det(Q(�)) and its derivatives� Rank two divide and onquer approah� Laguerre method and bisetion� Ehrlih{Aberth method� Durand{Kerner method� Numerial experiments� Conlusion� Diagonal homotopy
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Hyperboli QEP
Q(�) = �2M + �C +K is hyperboli if M > 0 and(xTCx)2 � 4(xTMx)(xTKx) > 0for all x 6= 0.Properties:� all eigenvalues and eigenvetors are real� eigenvalues are semisimple� a gap between n largest (primary) and n smallest (seon-dary) eigenvalues� n linearly independent vetors assoiated with the primaryand the seondary eigenvalues, respetively� Q is hyperboli i� there exists �0 suh that Q(�0) < 0.
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Overdamped QEP
For eah x 6= 0 the equation�2xTMx+ �xTCx+ xTKxhas two real solutions �1(x) < �2(x):Minimax priniple: if �2n � � � � � �1 are eigenvalues of ahyperboli QEP Q(�) then�i = maxS�Rndim(S)=i min06=x2S �2(x)and �n+i = maxS�Rndim(S)=i min06=x2S �1(x)for i = 1; : : : ; n.A hyperboli QEP is overdamped if C > 0 and K � 0.Additional properties:� all eigenvalues are negative� overdamped QEP are shifted hyperboli QEP:Q(�+ �) = �2M + �(C + 2�M) +K + �C + �2M:Department of MathematisUniversity of Ljubljana 5



Inertia of a hyperboli QEP
Inertia of a symmetri matrix A is a triple(�(A); �(A); �(A)), where �; � and � are the numbers ofnegative, zero and positive eigenvalues of A, respetively.Theorem: Let  be suh that Q() < 0.a) If  � � then �(Q(�)) equals the number of eigenva-lues of Q that are greater than �.b) If � �  then �(Q(�)) equals the number of eigenva-lues of Q that are smaller than �.Proof: Q(�) is a symmetri matrix with ordered eigenvalues�n(�) � � � � � �1(�)for eah �. �i are ontinuos funtions of �. � is an eigenvalueof Q i� one of �1(�); : : : ; �n(�) is 0,At � =  all �i are negative and at � = �1 all �i arepositive. Eah �i rosses the x-axis exatly twie, one left andone right of .0 1 2 � � � n� 1 n � � � n n� 1 � � � 2 1 0�1  �  �! 1
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Bisetion and other methods
Based on the inertia we an use bisetion to obtain the k-theigenvalue, but the onvergene is slow. Therefore we applymethods that were suessfully applied to tridiagonal generalizedeigenproblems.� Laguerre's iteration{ K. Li, T.Y. Li (1993) - symmetri tridiagonal eigenpro-blem{ K. Li, T.Y. Li, Z. Zeng (1994) - generalized symmetritridiagonal eigenproblem� Ehrlih{Abert iteration{ D.A. Bini, L. Gemignani, F. Tisseur (2003) - nonsymme-tri tridiagonal eigenproblem� Durand{Kerner method{ K. Li (1999) - generalized symmetri tridiagonal eigen-problemThe above methods require stable and eÆient omputationof �(Q(�)), f(�), f 0(�)=f(�) and f 00(�)=f(�), wheref(�) = det(Q(�)).
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Three term reurrenesLet Q(�) = 266664
a1 b1 0b1 a2 b2. . . . . . . . .bn�2 an�1 bn�10 bn�1 an

377775 ;
where ai = ai(�) and bi = bi(�). Thenf0 = 1, f1 = a1, fr+1 = ar+1fr � b2rfr�1:f 00 = 0, f 01 = a01,f 0r+1 = a0r+1fr + ar+1f 0r � 2brb0rfr�1 � b2rf 0r�1.f 000 = 0; f 001 = a001;f 00r+1 = a00r+1fr + 2a0r+1f 0r + ar+1f 00r � 2b0r22fr�1�2brb00rfr�1 � 4brb0rf 0r�1 � b2rf 00r�1:As the above reurrenes may su�er from overow{underowproblems, we de�ne di = fifi�1 , gi = f 0ifi , hi = f 00ifi and obtaind1 = a1, dr+1 = ar+1 � b2rdr :g0 = 0, g1 = a01a1 ,gr+1 = 1dr+1(a0r+1 + ar+1gr � 1dr(2brb0r + b2rgr�1)).h0 = 0; h1 = a001a1 ;hr+1 = 1dr+1(a00r+1 + 2a0r+1gr + ar+1hr� 1dr(2b02r + 2brb00r + 4brb0rgr�1 + b2rhr�1)):Department of MathematisUniversity of Ljubljana 8



It follows that fn = d1 � � � dn.Time omplexity for the omputation of f; f 0 and f 00 is appro-ximately:� f : 12 n� f and f 0: 25n� f; f 0 and f 00: 44nRemark: it is known thatf 0(�)=f(�) = Tr(Q(�)�1Q0(�)):Bini, Gemignani and Tisseur use this formula for a stable O(n)omputation of f 0=f via QR deomposition when f(�) =det(A � �I) and A is tridiagonal. Could this approah begeneralized for the omputation of Tr(A�1B) where A and Bare tridiagonal?
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Divide and onquer
Let Q(�) = 266664

a1 b1 0b1 a2 b2. . . . . . . . .bn�2 an�1 bn�10 bn�1 an
377775 ;

where ai = ai(�) and bi = bi(�). We hoosem � n=2 andset bm = 0. We obtainQ0(�) = �Q1(�) 00 Q2(�) � :
Q1(�), Q2(�) and therefore Q0(�) are hyperboli QEP. Theeigenvalues e�2n � � � � � e�1 of Q0 are approximations for theeigenvalues �2n � � � � � �1 of Q.Let Q(�; t) = tQ(�) + (1 � t)Q0(�). If the eigenvaluesof Q(�; t) are real for t 2 [0; 1℄ then we an show that theyinterlae.Theorem: If �n(K)2 > 4�1(M)�1(C) then Q(�; t) ishyperboli for t 2 [0; 1℄.
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Interlaing property
Theorem: Let eigenvalues of Q(�; t) be real for t 2 [0; 1℄and let e�2n � � � � � e�1 be the eigenvalues of Q0(�) and�2n � � � � � �1 the eigenvalues of Q. Then:a) e�1 � �1 and �2n � e�2n,b) e�i+1 � �i � e�i�1, for i = 2; : : : ; n � 1 and i =n+ 2; : : : ; 2n� 1,) e�n+1 � �n+1 < �n � e�n.
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Laguerre's method
Let f(�) = det(Q(�)). Laguerre's iteration is
L�(x) = x+ 2n0��f 0(x)f(x) �vuut(2n� 1) (2n � 1)��f 0(x)f(x) �2 � 2nf 00(x)f(x) !1A:
The method is globally onvergent with ubi onvergene in aneighbourhood of the orresponding simple eigenvalue.If we add �2n+1 = �1 and �0 =1 then for x 2 (�i+1; �i)we have �i+1 < L�(x) < x < L+(x) < �i:Divide and onquer: eigenvalues e�2n � � � � � e�1 of Q0(�)are initial approximations for �2n � � � � � �1.As e�i+1 � �i � e�i�1 we an always use e�i as an initialapproximation for �i. From �(Q(e�i)) we see if �i > e�i ore�i < �i and then use L+ or L� sequene.
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Bisetion and Laguerre's method
If e�i is loser to �i�1 or �i+1, then the onvergene an bevery slow.

λi-1λiλi+1The neessary ondition for the ubi onvergene near a singleeigenvalue � is that the sign of �f(x)0=f(x) agrees withthe sign of � � x. To improve the onvergene we �rstuse bisetion on interval [�i; �i+1℄ ( or [�i; �i�1℄) until theondition is ahieved.

Due to numerial errors, the ondition�f(x)0=f(x)(��x) >0 an also be ahieved near �i�1 or �i+1. Additional riteria isthat near �i the sign of f 0(x) has to agree with (�1)i+1.Department of MathematisUniversity of Ljubljana 13



Ehrlih{Aberth's method
The method simultaneously approximates all the zeros of apolynomial f(�) = det(Q(�)). From an initial approximationx(0) 2 C 2n the method generates a sequene x(j) 2 C 2n whihloally onverges to the eigenvalues of Q(�). The equation is

x(k+1)j = x(k)j � f(x(k)j )f 0(x(k)j )1� f(x(k)j )f 0(x(k)j ) 2nXl=1l 6=j 1x(k)j � x(k)lfor j = 1; : : : ; 2n.If we implement the method in the Gauss{Seidel style thenthe onvergene for simple roots is ubial and linear for mul-tiple roots. We iterate only those eigenvalues that have notonverged yet.For an eÆient use of the method we need good initial appro-ximations, and fast and stable omputation of p(x)=p0(x).For initial approximations we again use divide and onquerwith rank two modi�ations. To eliminate multiple values inthe initial approximation we slightly perturb the eigenvalues ofQ0(�). Department of MathematisUniversity of Ljubljana 14



Durand{Kerner's method
Another method that simultaneously approximates all the zerosof a polynomial f(�) = det(Q(�)) is Durand{Kerner's me-thod. As the method requires that the leading oeÆient of thepolynomial is one we apply it onp(�) = 1det(M) det(Q(�)):
Similar to Ehrlih{Aberth the method generates a sequenex(j) 2 R2n whih loally onverges to the eigenvalues ofQ(�). The equation isx(k+1)j = x(k)j � p(x(k)j )2nYl=1l 6=j x(k)j � x(k)l
for j = 1; : : : ; 2n.If we implement the method in the Gauss{Seidel style then theonvergene for simple roots is superquadratial and linear formultiple roots. As before, we iterate only the eigenvalues thathave not onverged yet.Remark: K. Yi reports that although the method always on-verges in pratie, this has not been proved yet.Department of MathematisUniversity of Ljubljana 15



Multiple eigenvalues
When we have multiple eigenvalue or lose eigenvalues, we anexpet problems and linear onvergene in all three presentedmethods. Some solutions suggested in the literature are:In Laguerre's method we may estimate the multipliity or thenumber of eigenvalues in the luster using the inertia. Ifthe multipliity of the eigenvalue is r we apply the modi�edLaguerre's iteration
Lr�(x) = x+ 2n �f 0(x)f(x) �s(2n� 1)�2n�rr ��f 0(x)f(x) �2 � 2nf 00(x)f(x) �!:
whih onverges ubially.In Ehrlih{Aberth's and Durand{Kerner's method, when weobtain the eigenvalue of multipliity r, we �x all r instanesand ontinue with the remaining eigenvalue approximations. Inthis way we prevent zero values in the denominator.
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Comparison and numerial results
In Matlab we tested all three methods on a limited set of tridi-agonal overdamped QEPs. We ompared the average numberof iterations. In all three methods one step (for one eigenvalueapproximation) has linear time omplexity.� One step of Durand{Kerner's method is the heapest as itrequires only values of f .� One step of Ehrlih{Aberth's method requires f and f 0 andis roughly equivalent to 2:4 Durand{Kerner steps.� One step of Laguerre's method is the most expensive. Itrequires f , f 0 and f 00, and is roughly equivalent to 4:7Durand{Kerner steps.The testing overdamped QEPs have the following struture:� M and K: diagonals are random values from [0:5; 1℄,odiagonals are random values from [0; 0:1℄.� C: diagonals are random values from [4; 5℄, odiagonalsare random values from [0; 0:5℄.
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method avg. iter. avg. iter. in last step � imp. fator timen = 20LB 6.8 4.0 14.4 2.5AE 6.2 3.5 7.4 0.9DK 13.1 8.5 8.5 0.8n = 40LB 5.2 2.1 7.6 7.7AE 5.0 2.1 4.4 2.2DK 8.6 3.3 3.3 1.6n = 100LB 4.5 1.9 6.8 43.6AE 3.9 1.6 3.4 8.4DK 6.8 2.5 2.5 4.5n = 200LB 4.5 2.1 7.6 178.5AE 3.4 1.4 2.9 27.3DK 5.8 2.3 2.3 13.0n = 300LB 3.9 1.6 5.8 365.6AE 3.0 1.2 2.5 54.2DK 4.6 1.6 1.6 19.9Durand{Kerner's method is faster than polyeig(K,C,M) forn � 100. For example, polyeig(K,C,M) requires 39.6s forn = 200.As the dimension of the matries inreases, the eigenvaluesof Q0(�) better approximate eigenvalues of Q(�) and themethods require fewer steps in the �nal divide and onquerphase. Department of MathematisUniversity of Ljubljana 18



Conlusions
Three eigensolvers for tridiagonal hyperboli QEPs.Generalizations:� All methods an be easily parallelized.� Similar approah might be generalized to:{ nonsymmetri and non hyperboli tridiagonal quadratipolynomial problems{ tridiagonal polynomial problemsFuture work:� handling of multiple eigenvalues� more numerial tests� stable omputation of f; f 0 and f 00.� an ontinuation and path following be as eÆient as otherthree methods
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Continuation method
A ontinuation method has been suessfully applied to thesymmetri and nonsymmetri eigenvalue problem, to the ge-neralized eigenvalue problem and other eigenproblems. Chu,Li and Sauer (1988) presented a ontinuation method for ageneral �-matrix problem that does not exploit the propertiesof an overdamped QEP as the following method.Let M0; C0 and K0 be diagonal matries and letQ(�; t) = (1� t)Q0(�) + tQ1(�);where Q0(�) = �2M0 + �C0 +K0;Q1(�) = �2M + �C +K:We onstrut a homotopy H : Rn � R � [0; 1℄! Rn � RH(x; �; t) = � Q(�; t)x12(xTx� 1) � :
The solution of H(x; �; 1) = 0 orresponds to the eigenpairsof Q. The solution of H(x; �; 0) = 0 is trivial and we hoosethe initial matries M0; C0, and K0 in suh a way that alleigenvalues of Q0(�) are algebraially simple.Department of MathematisUniversity of Ljubljana 20



We follow the set H�1(0) from the known solution ofH(x; �; 0) = 0 at t = 0 to the solution of Q at t = 1.Theorem: Let M0; C0, and K0 be diagonal matries suhthat0 � (M0)ii < �min(M); �max(C) � (C0)ii;(K0)ii � �min(K)for i = 1; : : : ; n. Then Q(�; t) is a hyperboli QEP fort 2 [0; 1℄.Remark: If the QEP is hyperboli but not overdamped, thenwe an not apply the above theorem. However, using anappropriate shift it is possible to transform eah hyperboliQEP into an overdamped QEP.Theorem: There exists a subset S of Rn with fullmeasure suh that if (k1; : : : ; kn) 2 S and K0 =diag(k1; : : : ; kn), then all eigenvalues of Q(�; t) arealgebraially simple for t 2 [0; 1).We have 2n disjoint smooth urves in Rn � R , eah leadsfrom an eigenpair of Q0(�) to the eigenpair of Q1(�). Thehomotopy has the order-preserving property.
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Following the eigenurves
We may follow the eigenurve through (x; �; t) by thepreditor-orretion sheme. We have� _x_� � = �Q(�; t) Q0(�; t)xxT 0 ��1 ��(Q1(�)�Q0(�))x0 � ;
_� = �xT��2(A�A0) + �(B �B0) + (C � C0)�xxT�2�A(t) +B(t)�x :

Let us assume that the step size h was determined. Then wea) use Hermite interpolation to predit �(0)(ti+1) from�(ti�1), �0(ti�1), �(ti), and �0(ti).b) use one step of the inverse power method to predit theeigenvetor: Q(�(0)(ti+1); ti+1)y = x0);x(1) = ykyk:) use a modi�ed Rayleigh quotient method with the initialapproximation (�(0); x(0))
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Deetions
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Eigenvalue urves do not ross eah other but do ome verylose.
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