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Quadrati
 eigenvalue problem (QEP)
Q(�) = �2M + �C +K

We 
onsider a spe
ial 
ase when� M;C;K are real symmetri
 tridiagonal matri
es and� QEP is hyperboli
 (overdamped).
An example is the overdamped mass-spring system.Our goal is to 
ompute all the eigenvalues, i.e. s
alars � su
hthat det(Q(�)) = 0. The eigenve
tors 
an be later obtainedby inverse iteration.IfM is nonsingular n�n matrix then there are 2n eigenvalues.
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Overview
� Hyperboli
 and overdamped QEP� Inertia of a hyperboli
 QEP� det(Q(�)) and its derivatives� Rank two divide and 
onquer approa
h� Laguerre method and bise
tion� Ehrli
h{Aberth method� Durand{Kerner method� Numeri
al experiments� Con
lusion� Diagonal homotopy
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Hyperboli
 QEP
Q(�) = �2M + �C +K is hyperboli
 if M > 0 and(xTCx)2 � 4(xTMx)(xTKx) > 0for all x 6= 0.Properties:� all eigenvalues and eigenve
tors are real� eigenvalues are semisimple� a gap between n largest (primary) and n smallest (se
on-dary) eigenvalues� n linearly independent ve
tors asso
iated with the primaryand the se
ondary eigenvalues, respe
tively� Q is hyperboli
 i� there exists �0 su
h that Q(�0) < 0.
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Overdamped QEP
For ea
h x 6= 0 the equation�2xTMx+ �xTCx+ xTKxhas two real solutions �1(x) < �2(x):Minimax prin
iple: if �2n � � � � � �1 are eigenvalues of ahyperboli
 QEP Q(�) then�i = maxS�Rndim(S)=i min06=x2S �2(x)and �n+i = maxS�Rndim(S)=i min06=x2S �1(x)for i = 1; : : : ; n.A hyperboli
 QEP is overdamped if C > 0 and K � 0.Additional properties:� all eigenvalues are negative� overdamped QEP are shifted hyperboli
 QEP:Q(�+ �) = �2M + �(C + 2�M) +K + �C + �2M:Department of Mathemati
sUniversity of Ljubljana 5



Inertia of a hyperboli
 QEP
Inertia of a symmetri
 matrix A is a triple(�(A); �(A); �(A)), where �; � and � are the numbers ofnegative, zero and positive eigenvalues of A, respe
tively.Theorem: Let 
 be su
h that Q(
) < 0.a) If 
 � � then �(Q(�)) equals the number of eigenva-lues of Q that are greater than �.b) If � � 
 then �(Q(�)) equals the number of eigenva-lues of Q that are smaller than �.Proof: Q(�) is a symmetri
 matrix with ordered eigenvalues�n(�) � � � � � �1(�)for ea
h �. �i are 
ontinuos fun
tions of �. � is an eigenvalueof Q i� one of �1(�); : : : ; �n(�) is 0,At � = 
 all �i are negative and at � = �1 all �i arepositive. Ea
h �i 
rosses the x-axis exa
tly twi
e, on
e left andon
e right of 
.0 1 2 � � � n� 1 n � � � n n� 1 � � � 2 1 0�1  � 
 �! 1
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Bise
tion and other methods
Based on the inertia we 
an use bise
tion to obtain the k-theigenvalue, but the 
onvergen
e is slow. Therefore we applymethods that were su

essfully applied to tridiagonal generalizedeigenproblems.� Laguerre's iteration{ K. Li, T.Y. Li (1993) - symmetri
 tridiagonal eigenpro-blem{ K. Li, T.Y. Li, Z. Zeng (1994) - generalized symmetri
tridiagonal eigenproblem� Ehrli
h{Abert iteration{ D.A. Bini, L. Gemignani, F. Tisseur (2003) - nonsymme-tri
 tridiagonal eigenproblem� Durand{Kerner method{ K. Li (1999) - generalized symmetri
 tridiagonal eigen-problemThe above methods require stable and eÆ
ient 
omputationof �(Q(�)), f(�), f 0(�)=f(�) and f 00(�)=f(�), wheref(�) = det(Q(�)).
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Three term re
urren
esLet Q(�) = 266664
a1 b1 0b1 a2 b2. . . . . . . . .bn�2 an�1 bn�10 bn�1 an

377775 ;
where ai = ai(�) and bi = bi(�). Thenf0 = 1, f1 = a1, fr+1 = ar+1fr � b2rfr�1:f 00 = 0, f 01 = a01,f 0r+1 = a0r+1fr + ar+1f 0r � 2brb0rfr�1 � b2rf 0r�1.f 000 = 0; f 001 = a001;f 00r+1 = a00r+1fr + 2a0r+1f 0r + ar+1f 00r � 2b0r22fr�1�2brb00rfr�1 � 4brb0rf 0r�1 � b2rf 00r�1:As the above re
urren
es may su�er from over
ow{under
owproblems, we de�ne di = fifi�1 , gi = f 0ifi , hi = f 00ifi and obtaind1 = a1, dr+1 = ar+1 � b2rdr :g0 = 0, g1 = a01a1 ,gr+1 = 1dr+1(a0r+1 + ar+1gr � 1dr(2brb0r + b2rgr�1)).h0 = 0; h1 = a001a1 ;hr+1 = 1dr+1(a00r+1 + 2a0r+1gr + ar+1hr� 1dr(2b02r + 2brb00r + 4brb0rgr�1 + b2rhr�1)):Department of Mathemati
sUniversity of Ljubljana 8



It follows that fn = d1 � � � dn.Time 
omplexity for the 
omputation of f; f 0 and f 00 is appro-ximately:� f : 12 n� f and f 0: 25n� f; f 0 and f 00: 44nRemark: it is known thatf 0(�)=f(�) = Tr(Q(�)�1Q0(�)):Bini, Gemignani and Tisseur use this formula for a stable O(n)
omputation of f 0=f via QR de
omposition when f(�) =det(A � �I) and A is tridiagonal. Could this approa
h begeneralized for the 
omputation of Tr(A�1B) where A and Bare tridiagonal?
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Divide and 
onquer
Let Q(�) = 266664

a1 b1 0b1 a2 b2. . . . . . . . .bn�2 an�1 bn�10 bn�1 an
377775 ;

where ai = ai(�) and bi = bi(�). We 
hoosem � n=2 andset bm = 0. We obtainQ0(�) = �Q1(�) 00 Q2(�) � :
Q1(�), Q2(�) and therefore Q0(�) are hyperboli
 QEP. Theeigenvalues e�2n � � � � � e�1 of Q0 are approximations for theeigenvalues �2n � � � � � �1 of Q.Let Q(�; t) = tQ(�) + (1 � t)Q0(�). If the eigenvaluesof Q(�; t) are real for t 2 [0; 1℄ then we 
an show that theyinterla
e.Theorem: If �n(K)2 > 4�1(M)�1(C) then Q(�; t) ishyperboli
 for t 2 [0; 1℄.
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Interla
ing property
Theorem: Let eigenvalues of Q(�; t) be real for t 2 [0; 1℄and let e�2n � � � � � e�1 be the eigenvalues of Q0(�) and�2n � � � � � �1 the eigenvalues of Q. Then:a) e�1 � �1 and �2n � e�2n,b) e�i+1 � �i � e�i�1, for i = 2; : : : ; n � 1 and i =n+ 2; : : : ; 2n� 1,
) e�n+1 � �n+1 < �n � e�n.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−0.26

−0.24

−0.22

−0.2

−0.18

−0.16

−0.14

−0.12

−0.1

Department of Mathemati
sUniversity of Ljubljana 11



Laguerre's method
Let f(�) = det(Q(�)). Laguerre's iteration is
L�(x) = x+ 2n0��f 0(x)f(x) �vuut(2n� 1) (2n � 1)��f 0(x)f(x) �2 � 2nf 00(x)f(x) !1A:
The method is globally 
onvergent with 
ubi
 
onvergen
e in aneighbourhood of the 
orresponding simple eigenvalue.If we add �2n+1 = �1 and �0 =1 then for x 2 (�i+1; �i)we have �i+1 < L�(x) < x < L+(x) < �i:Divide and 
onquer: eigenvalues e�2n � � � � � e�1 of Q0(�)are initial approximations for �2n � � � � � �1.As e�i+1 � �i � e�i�1 we 
an always use e�i as an initialapproximation for �i. From �(Q(e�i)) we see if �i > e�i ore�i < �i and then use L+ or L� sequen
e.
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Bise
tion and Laguerre's method
If e�i is 
loser to �i�1 or �i+1, then the 
onvergen
e 
an bevery slow.

λi-1λiλi+1The ne
essary 
ondition for the 
ubi
 
onvergen
e near a singleeigenvalue � is that the sign of �f(x)0=f(x) agrees withthe sign of � � x. To improve the 
onvergen
e we �rstuse bise
tion on interval [�i; �i+1℄ ( or [�i; �i�1℄) until the
ondition is a
hieved.

Due to numeri
al errors, the 
ondition�f(x)0=f(x)(��x) >0 
an also be a
hieved near �i�1 or �i+1. Additional 
riteria isthat near �i the sign of f 0(x) has to agree with (�1)i+1.Department of Mathemati
sUniversity of Ljubljana 13



Ehrli
h{Aberth's method
The method simultaneously approximates all the zeros of apolynomial f(�) = det(Q(�)). From an initial approximationx(0) 2 C 2n the method generates a sequen
e x(j) 2 C 2n whi
hlo
ally 
onverges to the eigenvalues of Q(�). The equation is

x(k+1)j = x(k)j � f(x(k)j )f 0(x(k)j )1� f(x(k)j )f 0(x(k)j ) 2nXl=1l 6=j 1x(k)j � x(k)lfor j = 1; : : : ; 2n.If we implement the method in the Gauss{Seidel style thenthe 
onvergen
e for simple roots is 
ubi
al and linear for mul-tiple roots. We iterate only those eigenvalues that have not
onverged yet.For an eÆ
ient use of the method we need good initial appro-ximations, and fast and stable 
omputation of p(x)=p0(x).For initial approximations we again use divide and 
onquerwith rank two modi�
ations. To eliminate multiple values inthe initial approximation we slightly perturb the eigenvalues ofQ0(�). Department of Mathemati
sUniversity of Ljubljana 14



Durand{Kerner's method
Another method that simultaneously approximates all the zerosof a polynomial f(�) = det(Q(�)) is Durand{Kerner's me-thod. As the method requires that the leading 
oeÆ
ient of thepolynomial is one we apply it onp(�) = 1det(M) det(Q(�)):
Similar to Ehrli
h{Aberth the method generates a sequen
ex(j) 2 R2n whi
h lo
ally 
onverges to the eigenvalues ofQ(�). The equation isx(k+1)j = x(k)j � p(x(k)j )2nYl=1l 6=j x(k)j � x(k)l
for j = 1; : : : ; 2n.If we implement the method in the Gauss{Seidel style then the
onvergen
e for simple roots is superquadrati
al and linear formultiple roots. As before, we iterate only the eigenvalues thathave not 
onverged yet.Remark: K. Yi reports that although the method always 
on-verges in pra
ti
e, this has not been proved yet.Department of Mathemati
sUniversity of Ljubljana 15



Multiple eigenvalues
When we have multiple eigenvalue or 
lose eigenvalues, we 
anexpe
t problems and linear 
onvergen
e in all three presentedmethods. Some solutions suggested in the literature are:In Laguerre's method we may estimate the multipli
ity or thenumber of eigenvalues in the 
luster using the inertia. Ifthe multipli
ity of the eigenvalue is r we apply the modi�edLaguerre's iteration
Lr�(x) = x+ 2n �f 0(x)f(x) �s(2n� 1)�2n�rr ��f 0(x)f(x) �2 � 2nf 00(x)f(x) �!:
whi
h 
onverges 
ubi
ally.In Ehrli
h{Aberth's and Durand{Kerner's method, when weobtain the eigenvalue of multipli
ity r, we �x all r instan
esand 
ontinue with the remaining eigenvalue approximations. Inthis way we prevent zero values in the denominator.

Department of Mathemati
sUniversity of Ljubljana 16



Comparison and numeri
al results
In Matlab we tested all three methods on a limited set of tridi-agonal overdamped QEPs. We 
ompared the average numberof iterations. In all three methods one step (for one eigenvalueapproximation) has linear time 
omplexity.� One step of Durand{Kerner's method is the 
heapest as itrequires only values of f .� One step of Ehrli
h{Aberth's method requires f and f 0 andis roughly equivalent to 2:4 Durand{Kerner steps.� One step of Laguerre's method is the most expensive. Itrequires f , f 0 and f 00, and is roughly equivalent to 4:7Durand{Kerner steps.The testing overdamped QEPs have the following stru
ture:� M and K: diagonals are random values from [0:5; 1℄,
odiagonals are random values from [0; 0:1℄.� C: diagonals are random values from [4; 5℄, 
odiagonalsare random values from [0; 0:5℄.
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method avg. iter. avg. iter. in last step � imp. fa
tor timen = 20LB 6.8 4.0 14.4 2.5AE 6.2 3.5 7.4 0.9DK 13.1 8.5 8.5 0.8n = 40LB 5.2 2.1 7.6 7.7AE 5.0 2.1 4.4 2.2DK 8.6 3.3 3.3 1.6n = 100LB 4.5 1.9 6.8 43.6AE 3.9 1.6 3.4 8.4DK 6.8 2.5 2.5 4.5n = 200LB 4.5 2.1 7.6 178.5AE 3.4 1.4 2.9 27.3DK 5.8 2.3 2.3 13.0n = 300LB 3.9 1.6 5.8 365.6AE 3.0 1.2 2.5 54.2DK 4.6 1.6 1.6 19.9Durand{Kerner's method is faster than polyeig(K,C,M) forn � 100. For example, polyeig(K,C,M) requires 39.6s forn = 200.As the dimension of the matri
es in
reases, the eigenvaluesof Q0(�) better approximate eigenvalues of Q(�) and themethods require fewer steps in the �nal divide and 
onquerphase. Department of Mathemati
sUniversity of Ljubljana 18



Con
lusions
Three eigensolvers for tridiagonal hyperboli
 QEPs.Generalizations:� All methods 
an be easily parallelized.� Similar approa
h might be generalized to:{ nonsymmetri
 and non hyperboli
 tridiagonal quadrati
polynomial problems{ tridiagonal polynomial problemsFuture work:� handling of multiple eigenvalues� more numeri
al tests� stable 
omputation of f; f 0 and f 00.� 
an 
ontinuation and path following be as eÆ
ient as otherthree methods
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Continuation method
A 
ontinuation method has been su

essfully applied to thesymmetri
 and nonsymmetri
 eigenvalue problem, to the ge-neralized eigenvalue problem and other eigenproblems. Chu,Li and Sauer (1988) presented a 
ontinuation method for ageneral �-matrix problem that does not exploit the propertiesof an overdamped QEP as the following method.Let M0; C0 and K0 be diagonal matri
es and letQ(�; t) = (1� t)Q0(�) + tQ1(�);where Q0(�) = �2M0 + �C0 +K0;Q1(�) = �2M + �C +K:We 
onstru
t a homotopy H : Rn � R � [0; 1℄! Rn � RH(x; �; t) = � Q(�; t)x12(xTx� 1) � :
The solution of H(x; �; 1) = 0 
orresponds to the eigenpairsof Q. The solution of H(x; �; 0) = 0 is trivial and we 
hoosethe initial matri
es M0; C0, and K0 in su
h a way that alleigenvalues of Q0(�) are algebrai
ally simple.Department of Mathemati
sUniversity of Ljubljana 20



We follow the set H�1(0) from the known solution ofH(x; �; 0) = 0 at t = 0 to the solution of Q at t = 1.Theorem: Let M0; C0, and K0 be diagonal matri
es su
hthat0 � (M0)ii < �min(M); �max(C) � (C0)ii;(K0)ii � �min(K)for i = 1; : : : ; n. Then Q(�; t) is a hyperboli
 QEP fort 2 [0; 1℄.Remark: If the QEP is hyperboli
 but not overdamped, thenwe 
an not apply the above theorem. However, using anappropriate shift it is possible to transform ea
h hyperboli
QEP into an overdamped QEP.Theorem: There exists a subset S of Rn with fullmeasure su
h that if (k1; : : : ; kn) 2 S and K0 =diag(k1; : : : ; kn), then all eigenvalues of Q(�; t) arealgebrai
ally simple for t 2 [0; 1).We have 2n disjoint smooth 
urves in Rn � R , ea
h leadsfrom an eigenpair of Q0(�) to the eigenpair of Q1(�). Thehomotopy has the order-preserving property.
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Following the eigen
urves
We may follow the eigen
urve through (x; �; t) by thepredi
tor-
orre
tion s
heme. We have� _x_� � = �Q(�; t) Q0(�; t)xxT 0 ��1 ��(Q1(�)�Q0(�))x0 � ;
_� = �xT��2(A�A0) + �(B �B0) + (C � C0)�xxT�2�A(t) +B(t)�x :

Let us assume that the step size h was determined. Then wea) use Hermite interpolation to predi
t �(0)(ti+1) from�(ti�1), �0(ti�1), �(ti), and �0(ti).b) use one step of the inverse power method to predi
t theeigenve
tor: Q(�(0)(ti+1); ti+1)y = x0);x(1) = ykyk:
) use a modi�ed Rayleigh quotient method with the initialapproximation (�(0); x(0))
Department of Mathemati
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De
e
tions
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Eigenvalue 
urves do not 
ross ea
h other but do 
ome very
lose.
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