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Physical virology
W. H. Roos1*, R. Bruinsma2 and G. J. L. Wuite1*

Viruses are nanosized, genome-filled protein containers with remarkable thermodynamic and mechanical properties. They
form by spontaneous self-assembly inside the crowded, heterogeneous cytoplasm of infected cells. Self-assembly of viruses
seems to obey the principles of thermodynamically reversible self-assembly but assembled shells (‘capsids’) strongly resist
disassembly. Following assembly, some viral shells pass through a sequence of coordinated maturation steps that progressively
strengthen the capsid. Nanoindentation measurements by atomic force microscopy enable tests of the strength of individual
viral capsids. They show that concepts borrowed from macroscopic materials science are surprisingly relevant to viral shells.
For example, viral shells exhibit ‘materials fatigue’ and the theory of thin-shell elasticity can account — in part — for
atomic-force-microscopy-measured force–deformation curves. Viral shells have effective Young’s moduli ranging from that
of polyethylene to that of plexiglas. Some of them can withstand internal osmotic pressures that are tens of atmospheres.
Comparisons with thin-shell theory also shed light on nonlinear irreversible processes such as plastic deformation and failure.
Finally, atomic force microscopy experiments can quantify the mechanical effects of genome encapsidation and capsid protein
mutations on viral shells, providing virological insight and suggesting new biotechnological applications.

The impact of viruses on our daily lives is dominated by
their role as infectious agents of, often serious, diseases.
However, viruses are now increasingly employed in more

positive roles1,2. Examples include viruses and viral shells that
are used in batteries and memory devices3,4, as nanoscaffolds
or nanoreactors for transport and catalysis5,6, and in cancer
treatment7. In the context of gene therapy, they are used as vectors
for gene delivery8, and the ‘phage’ viruses that infect bacteria have
been used as antibacterial agents9. Supporting these applications
is the burgeoning research field of physical virology dedicated to
the study of the physical properties of viruses10. It encompasses
domains such as viral self-assembly11,12, virus genome packaging
and releasemechanisms13–15, and structural andmechanistic studies
of viral particles14,16,17. The rapid growth of this field is, on the
one hand, fuelled by the development of physics-based techniques
such as cryo-electron microscopy, X-ray crystallography, optical
tweezers and atomic force microscopy and, on the other hand, by
the increasing interest in viral particles as ‘smart’ building blocks
of larger-scale structures. In this brief review we shall focus on just
two aspects of physical virology: first what physics has to tell us
about the assembly of viral shells, and second what the mechanical
properties of assembled viral shells are: how we can experimentally
probemechanical properties of viral shells, howwe should interpret
them and howwe can apply the insights these studies provide.

Viral self-assembly
Viruses do not carry out metabolic activity and rely entirely on
host-cell molecular machinery for reproduction. This absence of
metabolic and reproductive activity suggests that, unlike cells,
the assembly of viruses could perhaps be understood on the
basis of equilibrium thermodynamics. An elegant confirmation
of this idea was the discovery in 1955 by Fraenkel-Conrat and
Williams18,19 that under in vitro conditions the rod-like tobacco
mosaic virus (TMV) self-assembles spontaneously and unassisted
into fully infectious viral particles from solutions containing the
molecular components of this virus: the TMV capsid proteins (or
‘subunits’) and the single-stranded (ss) RNA genome molecules
of TMV. In 1967, Bancroft, Hills and Markham20 showed that

1Natuur- en Sterrenkunde & Laser Centrum, VU University, De Boelelaan 1081, 1081 HV Amsterdam, The Netherlands, 2Department of Physics, University
of California, Los Angeles, California 90095-1537, USA. *e-mail: wroos@few.vu.nl; gwuite@nat.vu.nl.

small sphere-like plant viruses with icosahedral symmetry also
can be produced by in vitro self-assembly (Box 1 summarizes the
general classification of viruses with icosahedral viral symmetry).
The connection between equilibrium thermodynamics and viral
self-assembly was further strengthened by the work of Klug21,
who determined the thermodynamic phase diagram of solutions
of TMV subunits in terms of acidity and salinity. Capsid
proteins, or ‘subunits’, interact mainly through a combination
of electrostatic repulsion, hydrophobic attraction and specific
contacts between certain pairs of amino acids (known as ‘Caspar
pairs’22). Varying the acidity and salinity conditions (or the
concentration of Ca2+ ions) adjusts the relative balance between
these competing interactions, thereby favouring assembly or
disassembly23 of protein aggregates. For TMV subunits in ambient
conditions of acidity–salinity–temperature the most stable subunit
aggregates are ‘double-disc’ and ‘double-ring’ protein clusters
held together by hydrophobic attractive interactions. Electrostatic
repulsion between the positively charged discs/rings prevents
disc aggregation. The addition of the oppositely charged ssRNA
genome molecules drives the self-assembly process to completion
by combining the protein discs into rod-like cylinders with the
RNA molecule running along the central axis, like beads on
a string21. Self-assembly of most infectious sphere-like ssRNA
viruses under ambient conditions requires the presence of the viral
RNA genome molecules. Viral RNA molecules act in part as a
non-specific ‘electrostatic glue’ that links together the oppositely
charged capsid proteins24, and particular ‘stem-loop’ side branches
of the RNA molecules have specific affinity for the capsid proteins.
In some cases, the encapsidated ssRNA molecules condense as
double-stranded (ds) helical segments along a dodecahedral cage
of edges of the icosahedral shell25. Self-assembly of empty capsids
in the absence of RNA may be possible as well for certain viruses,
for instance under non-ambient pH or salinity levels. On the
other hand, self-assembly of viral shells of most ds genomes,
such as the tailed dsDNA ‘bacteriophage’ viruses (that is, viruses
that prey on bacteria), does not require the presence of genome
molecules. The much larger bending rigidity of dsDNA molecules
presumably prevents them from acting as ‘electrostatic glue’.
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Box 1 | Viral shapes.

Viral particles come in many shapes, of which sphere-like and
rod-like particles are the most common, but spherocylinders,
cones and other shell shapes are seen as well. About half of all
viral families share icosahedral symmetry, even when the viral
genomes share little homology92. Examples include the plant
virus CCMV, the animal virus HBV and bacteriophage viruses
discussed in this review. Caspar and Klug (CK) developed a
classification system for icosahedral viruses, illustrated in Fig. B1,
based on the ‘T number’ defined as T =m2

+ n2+mn. Here,
m and n indicate the number of steps along the crystallographic
directions of a hexagonal lattice connecting two adjacent vertices
on the icosahedron93,94. A CK icosahedral shell consists of 12
pentamers located at equidistant sites on the icosahedral vertices
with a further 10(T − 1) hexamers — with T = 1,3,4,7, ...
— located in between the pentamers. Following earlier work
by Crick and Watson95, CK argued that this type of icosahedral
shell minimizes the geometrically unavoidable elastic strains of
identical proteins placed on a closed shell (‘quasi-equivalence’).
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Figure B1 | Caspar and Klug construction of icosahedral viral shells.
a, Template — consisting of equilateral triangles — of which an
icosahedron can be folded. The lattice vector A=ma1+na2 of a
hexagonal lattice with basis vectors a1 and a2 forms an index for the
triangles. b, An example for m= 3 and n= 1. c, Result of folding a
template with this lattice vector into an icosahedron. It has a
T=m2

+n2
+mn= 13 structure with 10(T− 1)= 120 hexamers in total.

Reproduced with permission from ref. 48, © 2005 APS.

In these cases, the genome is usually inserted, after capsid assembly
has been completed, by the action of a rotary molecular motor
imbedded in the capsid15.

Assembly studies by the group of Zlotnick of the assembly of
two icosahedral viruses — cowpea chlorotic mottle virus (CCMV;
ref. 26) and hepatitis B virus (HBV; ref. 27) — were an important
milestone for the application of equilibrium thermodynamics. They
measured the concentrations of subunit clusters of different sizes
as a function of the total protein concentration and encountered a
double-peaked population composed of, respectively, small clusters
(for example, dimers or pentamers) and fully formed capsids. The
surprise was that the ratio of the concentrations of free subunits
and fully formed capsids seemed to obey quantitatively the law
of mass action (LMA). The LMA would demand that for a viral

shell composed of N subunits the concentration of assembled
capsids should be proportional to φN , with φ the concentration of
free subunits, which must be distinguished from the total protein
concentration φT. An important consequence of the LMA is the fact
that, as a function of φT, the fraction f (φT) of proteins incorporated
into capsids rises sharply at a quasi-critical concentration φcrit with
f (φT)∼ 1−φcrit/φT for φT > φcrit. As, according to the LMA, the
value of φcrit∝ exp(β1G0/N ) is determined by the ‘standard Gibbs
free energy’1G0 of the assembly reaction, that is, the assembly free
energy of the capsid, important thermodynamic information can be
obtained by measuring φcrit. This form for f (φT) fits very well the
equilibrium self-assembly curves of, for example, micelles (‘critical
micelle concentration’)28. It describes quite well the self-assembly
of CCMV and HBV with a φcrit typically in the µM range. Under
biological conditions, inside infected cells, the concentration of
capsid proteins produced by transcription would thus have to
exceed φcrit before viral self-assembly could start. Fitted values for
1G0 were in the reasonable range of about 10 kBT per subunit, so in
total about 103 kBT for small viral shells. The measured dependence
of the fitted 1G0 on pH and salinity was also consistent with
simple models for the interactions between subunits23. The LMA
is a direct consequence of the minimization of the Gibbs free
energy: it requires that capsid proteins in solution have the same
chemical potential as the proteins incorporated in a shell. However,
when the total concentration of capsid proteins is reduced back
down below φcrit after the assembly has reached completion, then
capsids should disassemble spontaneously according to the LMA.
In actuality this either does not happen at all, or happens only after
a very long period of time, or after quite substantial changes in pH,
salinity or other solution conditions29. This ‘excess’ thermodynamic
stability of assembled viral shells when compared with conventional
equilibrium self-assembly is, from a biological viewpoint, of course
a prime ‘survival’ feature, as viral shells need to remain intact in
‘hostile’ environments that contain no free capsid proteins at all,
such as the host bloodstream, stomach or tissue. This means that
viral self-assembly really should not be viewed as an equilibrium
process. Analytical and numerical studies30 of simple models of
capsid assembly kinetics31 indicate that provided most assembly
steps are reversible, with one or a few assembly steps irreversible, an
LMA-type double-peaked distribution obeying f (φT)∼ 1−φcrit/φT
will still develop under certain conditions. However, the ‘1G0’
extracted from this φcrit in general is considerably smaller than the
actual standard free energy of the capsid, and reflects the assembly
free energy of reversible intermediate structures.

Kinetic studies of viral self-assembly would be necessary to probe
this limited form of irreversibility but, unlike the case of the rod-like
TMV, it has turned out to be very challenging to identify exper-
imentally the assembly intermediates of spherical viruses. Kinetic
studies of viral assembly by electron microscopy carried out in the
1980s on brome mosaic virus (BMV) assembly reported partially
formed shells32. In 1993, the group of Prevelige studied the kinetics
of scaffold-based assembly of the phage P22 using light scattering33.
Capsid assembly was shown to be preceded by a lag time after initi-
ation followed by a more rapid sigmoidal growth curve, indicating
that the capsid-assembly rate is determined by nucleation. A critical
protein concentration is required below which assembly does not
take place. The initial formation rate depended on the protein
concentration to the fifth power, which suggests that in this case
pentamers are the critical nuclei. RNA genomemolecules have been
shown to catalyse the assembly process by assisting the formation
of the critical nucleus of BMV (ref. 34). Subsequent capsid growth
seems to be sequential, resembling a polymerization reaction.
Studies of the assembly kinetics of a number of viruses have reported
similar scenarios, with lag times in the seconds–minutes range35.
Particularly detailed was a multi-angle light-scattering study by
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Casini et al.36 of the assembly kinetics of human papilloma virus;
they again found that the rate-limiting step of the assembly process
was the formation of protein oligomers.

Numerical simulations of viral assembly kinetics could com-
plement assembly-kinetics experiments. However, simulations on
the relevant timescale of seconds to minutes that account for
the internal degrees of freedom of capsid proteins interacting
through realistic potentials are, for currently available computa-
tional resources, not practical. Instead, rigid geometrical models
of the capsid proteins (or capsomeres) and other coarse-grained
representations are used, with the model proteins/capsomeres in-
teracting through some model pair potential37–42. In the simplest
case, capsid proteins or capsomeres could even be represented
as point particles. A Newtonian-dynamics study by Hagan and
Chandler41 of such a model reported that the choice of this pair
potential sensitively determined whether ‘kinetic traps’ prevented
proper assembly of small shells. Hicks and Henley42 used an elastic
model, with the proteins now represented as deformable triangles,
and found that the probability for successful assembly of larger
shells rapidly decreased when the elastic rigidity was increased.
An example of an assembly error could be a five-fold-symmetric
capsomere inserted at a location that is not appropriate for an
icosahedral shell (see Box 1). More recently, molecular dynamics
(MD) simulations of viral assembly have been carried out where the
capsomeres/proteins were represented bymore realistic geometrical
shapes. MD simulations by Nguyen, Reddy and Brooks43 were able
to reproduce the self-assembly of smaller T = 1 and T = 3 shells.
They found though that proper assembly was accompanied by
the production of significant numbers of non-icosahedral ‘aber-
rant’ particles associated with assembly errors and kinetic traps,
in particular when temperature and protein concentrations were
not optimally chosen. Next, Rapaport44 included explicit solvent
molecules and succeeded in assembling T = 1 particles with a high
level of fidelity and sigmoidal assembly kinetics. The high levels of
assembly fidelity in this case seemed to be characterized by high
levels of assembly reversibility. Recall that high levels of assembly
reversibility were also required for the observed quasi-LMA. A
‘local-rule’ scheme has been proposed45, engineered to prevent the
assembly-error problem by assuming that viral proteins can adopt
T different internal configurations ‘coding’ for proper assembly of
an icosahedral shell with indexT (see Box 1). So far, no evidence has
been found for local-rule-based coding configurations.

If only the minimum-free-energy state of a shell is required then
viral shell assembly also can be studied byMonte Carlo simulations.
A ‘two-disc’ Monte Carlo simulation by Zandi et al., representing
pentamers and hexamers placed on a spherical support scaffold,
found that the Caspar and Klug (CK) T-number icosahedral
symmetry is indeed the minimum-free-energy structure provided
that the size ratio of the discs is fixed appropriately46. Chen,
Zhang and Glotzer47 investigated cluster formation of attractive
cone-shaped particles without support scaffold using Monte Carlo
simulation. By varying the cone angle they found that the cones
assembled into a sequence of convex shells characterized by ‘magic
numbers’ that included the icosahedral shells. Non-icosahedral
shell structures, like those of human immunodeficiency virus
(conical) and of phage 829 (prolate/spherocylinder), can be
obtained as minimum-energy structures for certain parameter
ranges in elastic-shell models48. Design principles of prolate phages
were reviewed by Moody49 in 1999. Monte Carlo simulations
of the packing of hard spheres on a prolate, spheroidal surface
identified the minimal requirements to form shells resembling
those of a few selected viruses50, and Monte Carlo simulations of
capsomere–capsomere interactions in prolate shells yielded optimal
structures for particles with icosahedral end caps connected by
cylinders of hexamers51. Finally, the capsids ofmany animal viruses,

such as human immunodeficiency virus (HIV), HBV and herpes
simplex virus, are surrounded by a lipid bilayer envelope, andZhang
and Nguyen studied the effect of this lipid bilayer on the nucleation
of the cone-shaped HIV shells52.

After the initial assembly of a virus, the capsid proteins are
often modified, a process known as maturation. For example, the
capsids of many tailed dsDNA bacteriophages undergo a whole
sequence of conformational changes and chemical reactions that
tend to strengthen the shell, which is necessary in part because of
the large internal pressure of phages, which is discussed later on. The
shell-maturation steps, which have been shown to be cooperative in
certain cases, resemble structural phase transitions in crystals. The
application of Ginzburg–Landau theory to describe the maturation
steps indicates that near a step we could expect to encounter the
same ‘soft modes’ as characterize structural transitions53. An ex-
ceptional case is the bacteriophage HK97, where, after an elaborate
sequence of steps, the shell ends up being armoured by a cross-
linkedmesh of amino-acid chains that has the topology of medieval
chain-mail54. Tama and Brooks55,56 carried out all-atom numerical
studies of some of the maturation steps of HK97 and found that the
conformational changes of the shell do indeed tend to follow the
trajectory of soft modes of the shell, associated with rotation of the
pentamers and hexamers. Widom et al. used the continuum elastic-
ity theory of thin shells to show that, even in the absence of internal
protein conformational degrees of freedom driving the maturation,
icosahedral shells should still exhibit soft modes near the buck-
ling transition between spherical and icosahedral shapes57. Finally,
Yang et al.58 showed that the same theory could account for the
low-frequencymodes of the shells of simple viruses such as BMV.

Mechanical virology
After a virus or an empty viral shell has assembled, we can inquire
how resilient it is in terms of its response to external force and other
perturbations. Capsids need to meet conflicting demands: they
should be sufficiently stable to protect their genome in the extra-
cellular environment, but sufficiently unstable that they can release
their genome molecules into host cells. Various bulk and single-
particle assays have been developed to measure the mechanical
properties of viruses, the budding field of mechanical virology.
Osmotic-shock experiments were used to study the stability of
bacteriophage viruses under pressure against rupture14,59 and the
mechanical properties of crystals and films composed of viruses
were analysed by Brillouin light scattering60,61. A disadvantage of
these multiparticle techniques is that (1) they represent an average
over large numbers of viruses and (2) they represent a rotational
average, so any directionality of the mechanical properties with
respect to the shell orientation is lost. The mechanics of single
particles and their directionality can however be probed with
the atomic force microscopy (AFM-) based nanoindentation
techniques summarized in Box 2.

The relation between the applied force and the resulting change
in shell diameter is called the force–deformation curve (FDC; see
Box 2). Depending on whether or not the capsid returns to its
original state after the probe force is removed (‘unloading’), we call
this a reversible, respectively irreversible, deformation. The force
measured by a nanoindentation probe results, at a fundamental
level, from the fact that the probe forces the viral shell away from
a state of minimum free energy. To interpret measured FDCs,
including irreversibility effects, we can compare them with the
deformation free energy obtained from the continuum elasticity
theory of thin elastic shells (‘thin-shell theory’ or TST) that we
have already mentioned. TST is used extensively by engineers
to predict the effects of external forces on thin-walled, hollow
macroscopic structures, such as aeroplanes or oil tanks. In the
simplest application of TST wemodel a viral shell as a thin spherical
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Box 2 | AFM nanoindentation.

The mechanical properties of various biological entities have
been characterized by AFM-based nanoindentation96, including
cells97,98, microtubules99,100, peptide nanotubes101 and viruses67,79.
Figure B2 shows a schematic diagram of a nanoindentation
experiment on a virus. The experiments can be carried out in air as
well as in liquid. The minimal radius of curvature of commercial
AFM tips is ∼2–20 nm, a value that is, respectively, a little lower
than or comparable to the size of small viruses. Before the start
of a nanoindentation experiment, the viral particle needs to be
imaged102,103 to check whether it has the correct shape and size
(Fig. B3a). Viral imaging under liquid conditions in combination
with mechanical probing has been carried out in tapping-mode104
and jumping-mode105 AFM, two relatively non-invasive imaging
modes, which is of importance for the imaging of fragile biological
structures such as icosahedral viruses. The more rigid, rod-like
viruses have been imaged in contact-mode AFMwithout inducing
visible damage69. Imaging is followed by indentation of the virus,
during which a force–distance curve (FZC) is recorded. This

FZC involves the bending of two springs in series, the cantilever
and the viral particle. For this reason, a calibration FZC of the
cantilever deflection on the solid substrate next to the virus must
be recorded. From these two FZCs the FDC of the virus can be
determined, showing the force as a function of the indentation
of the virus (Fig. B2b,d). The schematic FDC of Fig. B2d shows
an initially linear deformation regime with positive slope, for
forces up to 1.7 nN, that is fully reversible. The slope of a
linear, reversible indentation curve yields the particle’s ‘spring
constant’ and Young’s modulus, as discussed in the text. This
is followed by a deformation regime with negative slope, which
is usually irreversible. This drop in force can indicate buckling
of the shell or fracture of the shell (‘failure’). Figure B3 shows
a viral particle before and after a nanoindentation experiment.
A hole produced by shell failure is clearly visible. Note that
individual capsomeres are discernible. By comparing the image
before and after indentation, the capsomeres that were removed
by the indentation can be identified.
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Figure B2 | Schematic diagram of AFM nanoindentation. a,b, The piezo is extending in a, but the AFM tip has not yet touched the virus surface and
therefore the exerted force is zero (b). c,d, The AFM tip is indenting the virus and the cantilever bends (c); the change in signal on the quadrant
photodiode is a measure for the exerted force, plotted in d as a function of the indentation.
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Figure B3 | AFM images of a single viral particle before and after nanoindentation. a,b, Three-dimensional rendered AFM topography images of a
liquid-immersed HSV1 particle before (a) and after (b) indentation. The structural subunits (capsomeres) can be recognized on the viral shell. c, The
height profile, taken along the white arrows in a and b, shows the capsomeres on top of the particle before indentation and the hole left after
indentation. The indented profile most probably represents the tip shape and because of the finite width of the AFM tip it was not possible to image
inside the broken capsid. d,e, Numbering of the capsomeres before and after indentation reveals the removal of seven (denoted in red) central
capsomeres as a result of shell failure. Reproduced with permission from ref. 65, © 2009 NAS, USA.
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shell of uniform thickness and radius R. If the viral shell encloses
genome molecules, then an internal osmotic pressure Π must be
included, which can be as large as∼50 atm (refs 62,63). Let ζ (r) be
the indentation profile of the shell generated, for example, by a force
probe. Specifically, ζ (r) is defined as the radial inward displacement
of the surface of the sphere expressed in terms of a two-dimensional
coordinate system that covers the shell. In the limit of small ζ (r), the
TST deformation free energy1F is a simple functional of ζ (r) in the
form of an integral over the shell surface:

1F =
∫

dS

{
1
2
κ (1ζ)2+

1
2
τ (∇ζ )2+

1
2
Y
(
2ζ
R

)2
}

(1)

The first term of equation (1) describes the bending-energy cost of
the indentation — note that 1ζ is the shell curvature — where
the bending modulus κ has units of energy. The second term
represents the work by the probe against the genome osmotic
pressure Π with τ = ΠR/2 an effective surface tension. The
third term measures the stretching of the layer induced by the
force with the two-dimensional Young modulus Y of the layer.
A dimensionless number γ = YR2/κ — the Föppl–von Kármán
number — and a characteristic length scale lB =

√
κ/Y — the

buckling radius — can be constructed from the stretching and
bending moduli, which will play an important role. For example,
equation (1) is valid only if ζ 2� l2B. The FDC must be obtained
from the thermodynamic condition that the functional derivative
δ1F/δζ (r) of the deformation free energy with respect to ζ (r) is
equal to the radial force per unit area f (r) exerted by the probe. The
differential equation δ1F/δζ (r)= f (r) can be solved analytically
for the case of a point force f (r) = Fδ(r). The force creates a
dimple with a radius of order

√
RlB and the resulting FDC is

linear. In other words, for weak applied forces, the shell behaves
like a harmonic spring. For zero osmotic pressure, for example,
ζ (0)/R= F/8

√
κY , in which case the effective spring constant is

k = 8
√
κY /R. Alternatively, we can also apply three-dimensional

elasticity theory to compute the elastic response of an elastic shell
with a finite thickness h.We recover the TST result in the limit h�R
with a spring constant

k ∝ E3Dh2/R (2)

where E3D is the three-dimensional Young modulus. For larger
indentation forces equations (1) and (2) should not be used. The
calculation of the FDC of TST in the nonlinear regime requires the
solution of a pair of somewhat challenging nonlinear differential
equations, known as the Föppl–von Kármán (FvK) equations (they
resemble Einstein’s equations of general relativity). Instead of trying
to solve the FvK equations analytically or numerically, it is more
practical to numerically minimize the elastic energy directly using
finite-element modelling (FEM). The inset of Fig. 1b shows the
fully nonlinear FDC of a shell indented by a hemispherical tip as
computed by FEM. The initial state was a uniform sphere. The FDC
is plotted as a dimensionless relation between ζ (0)/R and F/

√
κY .

Note that the deformation of the sphere does not deviate much
from the linear harmonic spring for deformation ratios ζ (0)/R up
to 0.6. Then, for slightly larger values of ζ (0)/R, a discontinuous
drop takes place in the FDC. This is due to the fact that for
larger deformations the elastic energies of two different shapes of
the deformed shell cross each other. In the engineering literature,
singularities in the FDC of this type are known as ‘buckling’
transitions. They are identified with the well-known catastrophic
failures of hollow structures subject to external loads, that is, failures
without any visible precursor ‘warning’ in the FDC.

Comparison with the FDC of Box 2 suggests a relation between
the buckling instabilities of TST and the irreversible nonlinearities

of the FDCs of viral shells. However, mathematically, the buckling
discontinuities of TST are quite similar to first-order phase
transitions and, like first-order phase transitions, they could be
nucleated by local structural defects. This indicates that the elastic
response of the non-uniform icosahedral shells might differ from
that of uniform spherical shells, which must be discussed before we
can compare with experiment. The FDC of icosahedral shells was
obtained by starting from a perfect icosahedron as the initial trial
state. The sharp folds linking the 12 vertices of a perfect icosahedron
are not compatible with the bending-energy term in equation (1).
However, as long as the FvK parameter γ = YR2/κ exceeds a
threshold value of the order of 102, theminimum-free-energy shape
still remains icosahedrally facetted. For FvK numbers less than
this threshold, however, the shell adopts a nearly spherical shape64
(confusingly, this also is known as a buckling transition, but we
shall not use this terminology). The FvK number of a viral shell can
be estimated by comparing computed shapes of undeformed shells
with those measured, for example, by cryo-transmission electron
microscopy. Figure 1b itself shows the FDCs of icosahedral shells
for various γ values deformed by a spherical tip of the same size
as the shell. For lower values of γ , the FDC remains quite close
to the harmonic spring prediction. For larger values of γ , the
relation is increasingly nonlinear, and then develops the buckling
discontinuity. The size of the discontinuity increases with increasing
γ and the critical value of the indentation for the buckling
discontinuity decreases. Figure 1a shows the shape of a shell with
γ = 1,200 immediately after the buckling discontinuity. The stress
contours are indicated. One of the 12 conical five-fold-symmetry
sites of the icosahedral shell has buckled and inverted. In the buckled
state, the shell is detached from the tip at the centre, which is
not the case in the small-force regime. The five-fold-symmetry
sites thus indeed seem to act as structural defects that trigger
buckling. The discontinuity of the FDC of a spherical shell with
the same elastic moduli takes place at a much larger indentation
(see the inset of Fig. 1b).

How do the predictions of TST compare with the AFM
nanoindentation experiments? For small applied forces, the
measured FDC is indeed linear inmany cases. Comparing the three-
dimensional Young moduli (equation (2)) of various particles
shows that sphere-like viruses that package their genome into
preformed capsids, such as phage 829, phage λ, HSV1 (herpes
simplex virus type 1) and MVM (minute virus of mice) have a
Young modulus that is at least double that of sphere-like viruses
that self-assemble around their genome such as CCMV and HBV
(Table 1). The FvK numbers in Table 1 were, incidentally, not
obtained by comparing with measured shell shapes but, instead,
were estimated assuming the TST relation

γ = 12(1−ν2)
(
R
h

)2

(3)

with ν Poisson’s ratio. An interesting application is the use of TST
to explain measured differences in spring constants of ‘nuclear’
and ‘viral’ HSV1 capsids65,66. The latter are stiffer than the former
because they possess an extra protein layer, the inner tegument.
Using equation (2), and assuming that the E3D values for the capsid
and inner tegument are similar, it follows that this extra protein
layer should have a thickness of∼0.8 nm (ref. 65), a prediction that
is verifiable by electron microscopy.

For smaller viral particles, when the shell thickness h is not
negligible compared with the radius R, TST is no longer expected
to apply. The simplest extension is to use FEM to compute the
FDC of a homogeneous elastic shell with a finite thickness. The
elastic energy of a solid elastic sphere that is indented scales as
ζ 5/2, which is known as a ‘Hertzian’ response. The FDC of a
thick-walled shell is expected to show, as a function of h, scaling
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Figure 1 | FEM analysis of shell deformation. a, Shapes of icosahedral shells with γ = 100 and γ = 1,200. Undeformed shells (left) and shells that are
deformed to 35% of their radius (right) are shown. The deformed shells are shown in a cutaway view and the γ = 1,200 shell has buckled, leading to the
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Table 1 | Geometrical and mechanical properties of viral shells/tubes.

Radius*
(nm)

Thickness*
(nm)

Genome
(encapsidation)†

Young’s modulus (GPa) FvK number‡ T number

829 prohead 23.2 (ref. 70) 1.6 dsDNA (P) 1.8 (ref. 67)/4.5 (ref. 70) 2,100 Prolate
λ 29.5 (ref. 76) 1.8 dsDNA (P) 1.0 (ref. 76) 2,700 T= 7
HSV1 49.5 (ref. 65) 4 dsDNA (P) 1.0 (ref. 65) 1,500 T= 16
MVM 11.5 (ref. 68) 2 ssDNA (P) 1.25 (ref. 68) 350 T= 1
CCMV 11.8 (ref. 70) 2.8 ssRNA (S) 0.14 (ref. 71)/0.28 (ref. 70)/0.22 (ref. 72) 180 T= 3
HBV T3 11.9 (ref. 74) 2.4 ssRNA/DNA (S) 0.37 (ref. 74) / 0.26 (ref. 73) 250 T= 3
HBV T4 13.6 (ref. 74) 2.1 ssRNA/DNA (S) 0.36 (ref. 74) / 0.26 (ref. 73) 400 T=4
TMV 5.5 (ref. 69) 7 ssRNA (S) 0.9 /1.0 (ref. 69) Cylindrical Cylindrical

*Averaged shell radii (average of averaged outer and inner radius) and thicknesses are used. Phage8 29 has a prolate shell, but has been approximated as a sphere. The shell radius and thickness of HSV1
and HBV are taken without the respective protrusions and spikes on the capsid surface.
†ss: single stranded, ds: double stranded. HBV self-assembles around an ssRNA genome, which is then retrotranscribed into DNA that is partially ss and partially ds. Encapsidation mode: P, packaging of
genome into preformed capsids; S, self-assembly of capsid around genome.
‡The FvK number is calculated from equation (3), with ν=0.4 (ref. 70); rounded values are printed.

crossover from theTST result for larger applied forces to a nonlinear
Hertzian-type FDC for smaller applied forces. FEM studies of
the indentation of elastic shells by point forces67,68, as well as by
realistically shaped models for the AFM tip69–71, were carried out. It
was indeed observed that Hertzian nonlinearities occur at the onset
of deformation of thick-shelled particles69,71. The next step is to use
information on the heterogeneous geometry of the viral particles
available from X-ray diffraction and cryo-electron microscopy
studies, while still maintaining a uniform elastic modulus. Such
an approach was followed by Klug and co-workers to investigate
CCMV and HBV (refs 72,73). By comparison with the measured
FDC, a Young modulus of 0.22GPa was found for CCMV, which
happens to lie between the estimates obtained by the previous two
methods70,71. A comparable Young modulus, namely 0.26GPa, was
determined for HBV (ref. 73), which is a little lower than that
obtained by using a TST approximation74. Determining the Young
modulus thus depends to some extent on the model that is used
to analyse the FDC, as indicated in Table 1. Another example
was a detailed FEM study of MVM that predicted stabilizing
interactions between the encapsulated DNA and specific sites
at the capsid interior (Fig. 2), which was later experimentally
confirmed75. Furthermore, the orientation-dependent indentation

behaviour of HBV was determined by comparing experiments
with detailed FEM simulations73. Table 1 summarizes mechanical
and geometrical parameters of various viruses including the CK
triangulation number T .

Reversible versus irreversible deformation
Wenow turn to the question of how the irreversible deformations of
capsids can be described. The FDCs computed fromelasticity theory
are of course always reversible, though they may show hysteresis
near buckling instabilities, but could a buckling instability seen in
TST (or FEM) act as an indicator of fracture or some other form
of irreversibility? This is actually the case for the failure of hollow
macroscopic structures. First, recall that the critical deformation
for the buckling instability is controlled by the FvK number.
Buckling occurs at lower deformations for higher FvK numbers.
Table 1 summarizes the approximate FvK numbers of a number
of viruses. HSV1 capsids have an FvK number of ∼1,500 and the
empty capsids break at a relative deformation of ∼36% of the
radius65. Prohead 829 and the empty phage λ have FvK numbers
between 2,000 and 3,000. They should thus break at lower relative
deformations than HSV1 and this is indeed the case: fracture takes
place at a relative deformation that is 20–25% of the capsid radius76.
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This at least is consistent with the notion that TST-type ‘inversion’
buckling instabilitiesmark irreversible fracture of viral shells.

The study of the fracture of CCMV viruses provides a revealing
contrast between reversible and irreversible behaviour. At pH 5,
CCMV fails after passing a critical indentation level71. In terms of
TST, it behaves like a shell with an FvK number of ∼900 (ref. 77).
However, the same capsid at pH 6 exhibits a linear FDC all the way
until it is completely flattened77. The spring constant is significantly
reduced and the capsid could be described as a shell with an FvK
number of ∼100. Within TST, this can only be understood as a
pronounced softening of the Young modulus induced by the pH
change. This softening of the CCMV shell with increasing pHwould
make sense if a structural phase transition took place. In fact, a
swelling transition does take place but only around pH 7. The mor-
phologies ofCCMVshells at pH5 andpH6 cannot be distinguished.
Structural transitions of bulk systems are however often preceded by
pre-transitional softening, as discussed earlier, and this may explain
the softening of the CCMV shell for pH 5–6. Separately, these mea-
surements indicate that, at least for small, thick-walled viruses such
as CCMV, large changes in the elastic stiffness need not be reflected
in the shell morphology. This means that it may not be appropriate
to estimate the effective FvK number either by shape determination
or by equation (3). Interestingly, experimental and simulated FDCs
on the heavily structured shells of T = 3 and T = 4 HBV particles
show a reasonably good fit, indicating that equation (3) can be
used to estimate the FvK number of HBV capsids73. However, a
detailed analysis of the deformation behaviour of these particles also
reveals that the FvK thin-shell elasticity model has its limitations in
describingHBVcapsids, as it does not properly capture the observed
orientation dependence of indentation.

It seems likely that the irreversible failure of a shell is due to
changes induced by the AFM tip in the pattern of the non-covalent
chemical bonds that link the capsid proteins and that stabilize
their secondary and tertiary structure. In single-molecule force
spectroscopy, it is commonly observed that measured ‘fracture
forces’ of bonds in actuality depend on the loading rate with which
we probe the bond78. CCMV follows this trend: the breaking force
increases by ∼10% for an increase of two orders of magnitude
in loading rate, whereas it does not show a change in spring
constant over this range71. Most of the measurements discussed
in this review were made at loading rates of roughly 1 nN s−1.
Failure occurs normally over a relatively small range of relative
deformations, typically about 28±8% of the capsid radius65,79. The
average fracture force shows a larger range of values. In particular,
empty CCMV capsids break at force levels of the order of 0.6 nN
(ref. 71), empty phage λ particles at ∼0.8 nN (ref. 76), prohead
829 at ∼1.5 nN (ref. 76) and empty HSV-1 capsids at ∼6 nN
(ref. 65). Fracture is not the only form of irreversibility. For large
deformations, FDCs can be irreversible without fracture, as is
the case for HBV capsids80. The form of the FDC suggests that
in that case an effect akin to plastic deformation is taking place
on a molecular scale. HBV irreversible deformations start around
indentation levels of 60%of theHBV capsid radius74, amuch higher
deformation than the buckling/fracture point of the more brittle
capsids of phages829 and λ and of HSV1. The plastic deformation
of HBV capsids could be viewed as a form of ‘soft’ failure with a
continuous but nonlinear indentation response resembling FDCs
of particles with 100<γ <400 (Fig. 1b).

Irreversible deformations ofmicroscopic systems are fundamen-
tally interesting. Dissociation of a hydrogen molecule is reversible
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in the linear, reversible-indentation regime the shell breaks. Reproduced
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but the forced unfolding of a protein can be irreversible, and
materials scientists are deeply interested in ‘self-healing’ molecular
structures. MD simulations can be used to study the stability and
deformation of viral shells73,80–84. The plastic deformation of HBV
(refs 73,80) and the brittle failure of CCMV (ref. 84) have been stud-
ied byMD and compared with AFM nanoindentation experiments.
Unlike TST, MD simulations can capture irreversibility. In par-
ticular, MD simulations exhibit the differences between successive
indentation cycles that are observed experimentally80. Plastic defor-
mation of HBV was found to occur when highly deformed proteins
established new interactions that remained intact when the loadwas

removed, at least over the simulation timescale. However, owing to
the high computational demand of these simulations, the loading
rates that were used had to be orders of magnitude higher than
those used in experiment, even when coarse-grainingmethods were
used. Because of the rate-dependence of molecular bond-fracture
wementioned above, quantitative comparisons remain challenging.

Apart from the TST-like abrupt shell failure at high defor-
mations, it turns out that some particles will break on repetitive
small deformations while remaining in the reversible elastic regime.
This closely resembles the phenomenon of ‘fatigue’ that is familiar
from the materials science of metals, except that here of course
it occurs at the nanoscale level. It was, for example, shown that
procapsids of phage 829, mature phage λ capsids (Fig. 3c) and
MVM particles can bear repetitive, small deformations, but that
repeated deformations finally lead to shell failure67,68,70. The 829
proheads could be ‘gently tapped’ tens of times before the shell
broke, but the other two broke after only a few deformation
repetitions. In particular, damage to MVM occurred on average
after seven indentations with a maximum force of 0.9 nN. This
should be contrasted with the T = 3 and T = 4 shells of HBV that
were highly resilient against repetitive deformations. No sign of
fatigue was observed after pushing 35 times on the HBV capsids
with a force of∼0.8 nN (ref. 74). The phenomenon of capsid fatigue
is thus quite specific to the particular species of virus. This shows
that, despite the structural uniformity of spherical capsids, there is
a wide range of materials properties. For macroscopic structures,
fatigue is associated with the stress-induced growth of lines of
broken bonds (known as ‘Griffith cracks’)85. Simple models show
that crack formation is expected as well for viral shells when the
protein–protein bond strength is reduced86.

Influence of the genome on capsid mechanical properties
Until now we have mostly discussed the mechanical properties
of empty shells. Now we turn our attention to the changes in
the mechanical properties of viral shells that take place when
they enclose DNA or RNA genome molecules. The density of the
close-packed genome material inside the water-permeable shells
can be so high that it generates significant osmotic pressures (Π ),
in the range of tens of atmospheres. In turn, this pressure generates
a non-specific tension τ along the shell according to Laplace’s
law Π = 2τ/R (for a spherical shell), which increases the shell’s
spring constant (see equation (1)). According to TST, non-specific
stiffening should start to change the spring constant for pressures
in excess of Πc ∼ (lBY /R2). This is about an order of magnitude
larger than actual osmotic pressures — using our earlier estimates
for the two-dimensional Young modulus Y — so pressure-induced
stiffening is expected to be a modest effect53.

The impact of osmotic pressure on the non-specific shell
stiffening was investigated for phage λ. By comparing the
mechanical properties of empty and full particles with mutant
particles that had a shorter genome (78 and 94% of the wild-
type genome), it was observed that the presence of the dsDNA
in phage λ was indeed noticeable only at very high genome
densities76 (Fig. 3). Similar experiments were carried out on HSV1,
a dsDNAvirus that exhibits structural analogies to the tailed dsDNA
phages87. The stiffness measurement of full and empty HSV1
capsids showed no mechanical difference between the particles65.
Presumably the increased stiffness due to theDNA-induced osmotic
pressure even at the maximal packaging density in HSV1 is too
small compared with the intrinsic stiffness of the capsid shell.
Yet, in other cases, genome-induced shell stiffening effects are
surprisingly pronounced. A remarkable case is the stiffening of the
icosahedral capsids of MVM that takes place after the packaging
of the viral ssDNA (Fig. 2). The stiffening is anisotropic: the
empty MVM capsids have the same spring constants when the
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virus presents a two-fold, a three-fold or a five-fold symmetry site
to the probe. Packaging of the viral genome increases the spring
constant with∼40% along the three-fold axis and∼140% along the
two-fold axis68. The spring constant along the five-fold axis remains
nearly unaffected by the genome packaging. This symmetry-axis-
dependent reinforcement presumably is due to specific interactions
between the viral genome and portions of the inner capsid wall75
with different symmetry that locally increase the bending energy κ
of TST (see equation (1)). As the five-fold sites are likely to be the
ports of entry and exit of the genome, it would seem reasonable that
attractive interactions between genome and capsid are weaker at the
five-fold sites. Finally, CCMV capsids can assemble either empty
or with enclosed viral ssRNA. The spring constant and fracture
force increased by ∼30% when the genome was incorporated71
but there was no symmetry-specific reinforcement. The increased
stability and stiffness could be due to the generic affinity between
the positively charged N termini of CCMV capsid proteins and the
RNA, which increases the effective shell thickness.

Role of mechanical virology in biology and biotechnology
We have seen that viral self-assembly, stability and deformation
response can be usefully described by physical arguments based
on statistical mechanics and continuum elastic theory, and that
concepts borrowed from macroscopic materials science seem
to translate remarkably well to these nanoscale assemblies.
Now we would like to focus on the question of how we
can apply these experiments and descriptions to biology and
biotechnology. Nanoindentation experiments on the retroviruses
murine leukaemia virus and HIV show that the viral particles
soften during maturation88,89. This softening is striking — phages
for instance are expected to stiffen during maturation — but it
is clearly linked to viral infectivity. Soft, mature HIV particles
enter cells much more efficiently than stiff, immature particles.
Controls in which the viral envelope protein of the immature
HIV particles was truncated decreased the stiffness of the
immature particles to values similar to that of the mature
particles. As a result, the entry efficiency of the immature
particles was greatly increased. This shows a direct link between
mechanical properties and infectivity. Another example of a link
between mechanical virology and biology is provided by the
nanoindentation experiments on herpes particles (see Fig. B3).
On purification of HSV1 capsids from the nuclei of infected
cells, three different types of nucleocapsid are obtained: the
scaffold-containing B capsids, the empty A capsids and the
DNA-containing C capsids. All three capsid types have a mature
shell and, until recently, it was unclear whether there were
significant differences between the shells of these particles.
Nanoindentation measurements have shown that the A and C
capsids have mechanical properties that are indistinguishable,
but B capsids break at a much lower force than the other two
types65. Apparently, scaffold expulsion during particle maturation
and subsequent genome packaging trigger a stabilization of the
viral shell, in particular around the 12 icosahedral vertices.
This stabilization might be essential for virus survival during
microtubule-mediated transport shuttling the particle between the
nucleus and the cell membrane.

The example of the change in material properties of immature
HIV particles indicates that the mechanical properties of viral shells
can be altered dramatically by manipulating the viral proteins.
The interactions between the packaged DNA and the inner capsid
wall of MVM can be inhibited by removal of specific amino-acid
side chains of the MVM capsid protein75. This, in turn, reduces
the spring constant of the particle to the point that it becomes
indistinguishable from that of an empty capsid. The substitution
of even a single amino acid can affect the mechanical properties

of viral shells: a single point mutation of the capsid protein of
CCMV has been shown to significantly increase both the spring
constant and the fracture strength71. It is also possible to remove
specific structural subunits of the viral shell without disrupting
the overall capsid structure. An example of this is the removal
of the pentons of HSV1 capsids by treatment with 2.0M GuHCl
(ref. 90). The T = 16 capsid retains an icosahedral shape, but the
five-fold-symmetry sites are replaced by holes. Shells of this type,
which are called ‘whiffle balls’, are also encountered for HK97
mutants91. Simple elastic models of whiffle-ball shells show that
their effective FvK number is effectively lowered compared with the
fully closed shell and that they are much softer86. Nanoindentation
measurements have confirmed the remarkable material properties
of these particles. The spring constant and breaking force of empty
as well as DNA-filled HSV1 capsids were reduced by roughly 50%
on GuHCl treatment65.

In conclusion, physics provides a useful framework to describe
both viral self-assembly and the mechanics of viral shells. Recently
developed TST, FEM and MD methods are expected to provide
further insights into the ‘molecular mechanics’ of viruses and
support the development of functional viral nanoparticles for use
in technology and medicine.
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