#include "stm32f4xx.h" #include "stm32f4xx_rcc.c" #include "stm32f4xx_adc.c" #include "stm32f4xx_dac.c" #include "stm32f4xx_gpio.c" #include "stm32f4xx_tim.c" #include "dd.h" #include "LCD2x16.c" #define pi 3.141592653589 int Ref[64], X[64], k; // declare circular buffers float Kp = 1.0, Ki = 0.0, Kd = 0.0; // declare & init params int Error[64]; // declare error vector int Reg[64]; // declare past output vector float Prop, Dif, Int = 0; // declare (& init) vars float Ts = 0.0001; // defined by constant 8400 in TIM2->arr; // ADC init function void ADCinit_T5_CC1_IRQ (void) { ADC_InitTypeDef ADC_InitStructure; GPIO_InitTypeDef GPIO_InitStructure; ADC_CommonInitTypeDef ADC_CommonInitStructure; RCC_APB2PeriphClockCmd(RCC_APB2Periph_ADC1 | RCC_APB2Periph_ADC2, ENABLE); RCC_AHB1PeriphClockCmd(RCC_AHB1Periph_GPIOA | RCC_AHB1Periph_GPIOB, ENABLE); GPIO_InitStructure.GPIO_Pin = GPIO_Pin_1 | GPIO_Pin_2; GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AN; GPIO_InitStructure.GPIO_PuPd = GPIO_PuPd_NOPULL; GPIO_Init(GPIOA, &GPIO_InitStructure); ADC_CommonInitStructure.ADC_DMAAccessMode = ADC_DMAAccessMode_Disabled; ADC_CommonInitStructure.ADC_Mode = ADC_DualMode_RegSimult; ADC_CommonInitStructure.ADC_Prescaler = ADC_Prescaler_Div2; ADC_CommonInit(&ADC_CommonInitStructure); ADC_InitStructure.ADC_Resolution = ADC_Resolution_12b; ADC_InitStructure.ADC_ScanConvMode = DISABLE; ADC_InitStructure.ADC_ContinuousConvMode = DISABLE; ADC_InitStructure.ADC_ExternalTrigConvEdge = ADC_ExternalTrigConvEdge_Rising; ADC_InitStructure.ADC_ExternalTrigConv = ADC_ExternalTrigConv_T5_CC1; ADC_InitStructure.ADC_DataAlign = ADC_DataAlign_Right; ADC_InitStructure.ADC_NbrOfConversion = 1; ADC_Init(ADC1, &ADC_InitStructure); ADC_RegularChannelConfig(ADC1, ADC_Channel_1, 1, ADC_SampleTime_3Cycles); ADC_Init(ADC2, &ADC_InitStructure); ADC_RegularChannelConfig(ADC2, ADC_Channel_2, 1, ADC_SampleTime_3Cycles); ADC_Cmd(ADC1, ENABLE); ADC_Cmd(ADC2, ENABLE); NVIC_EnableIRQ(ADC_IRQn); // Enable IRQ for ADC in NVIC ADC_ITConfig(ADC1, ADC_IT_EOC, ENABLE); // Enable IRQ generation in ADC } // DAC init function void DACinit (void) { DAC_InitTypeDef DAC_InitStructure; GPIO_InitTypeDef GPIO_InitStructure; RCC_AHB1PeriphClockCmd(RCC_AHB1Periph_GPIOA, ENABLE); GPIO_InitStructure.GPIO_Pin = GPIO_Pin_4 | GPIO_Pin_5; GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AN; GPIO_InitStructure.GPIO_PuPd = GPIO_PuPd_NOPULL; GPIO_Init(GPIOA, &GPIO_InitStructure); RCC_APB1PeriphClockCmd(RCC_APB1Periph_DAC, ENABLE); DAC_InitStructure.DAC_OutputBuffer = DAC_OutputBuffer_Enable; DAC_InitStructure.DAC_Trigger = DAC_Trigger_None; DAC_InitStructure.DAC_WaveGeneration = DAC_WaveGeneration_None; DAC_Init(DAC_Channel_1, &DAC_InitStructure); DAC_Init(DAC_Channel_2, &DAC_InitStructure); DAC_Cmd(DAC_Channel_1, ENABLE); DAC_Cmd(DAC_Channel_2, ENABLE); } // Timer 5 init function - time base void TIM5init_TimeBase_CC1 (int interval) { TIM_TimeBaseInitTypeDef TIM_TimeBaseInitStructure; TIM_OCInitTypeDef TIM_OCInitStructure; RCC_APB1PeriphClockCmd(RCC_APB1Periph_TIM5, ENABLE); TIM_TimeBaseInitStructure.TIM_ClockDivision = TIM_CKD_DIV1; TIM_TimeBaseInitStructure.TIM_CounterMode = TIM_CounterMode_Up; TIM_TimeBaseInitStructure.TIM_Period = interval; TIM_TimeBaseInitStructure.TIM_Prescaler = 0; TIM_TimeBaseInitStructure.TIM_RepetitionCounter = 0; TIM_TimeBaseInit(TIM5, &TIM_TimeBaseInitStructure); TIM_OCInitStructure.TIM_OCMode = TIM_OCMode_PWM1; TIM_OCInitStructure.TIM_OutputState = TIM_OutputState_Enable; TIM_OCInitStructure.TIM_OutputNState = TIM_OutputState_Disable; TIM_OCInitStructure.TIM_Pulse = 1; TIM_OCInitStructure.TIM_OCPolarity = TIM_OCPolarity_High; TIM_OCInitStructure.TIM_OCNPolarity = TIM_OCNPolarity_Low; TIM_OCInitStructure.TIM_OCIdleState = TIM_OCIdleState_Reset; TIM_OCInitStructure.TIM_OCNIdleState = TIM_OCIdleState_Set; TIM_OC1Init(TIM5, &TIM_OCInitStructure); TIM_Cmd(TIM5, ENABLE); } // initialize port E, Gpio_Pin_8 to GPIO_Pin_15 as outputs void GPIOEinit (void) { GPIO_InitTypeDef GPIO_InitStructure; RCC_AHB1PeriphClockCmd(RCC_AHB1Periph_GPIOE, ENABLE); GPIO_InitStructure.GPIO_Pin = GPIO_Pin_8 | GPIO_Pin_9 | GPIO_Pin_10 | GPIO_Pin_11; GPIO_InitStructure.GPIO_Pin |= GPIO_Pin_12 | GPIO_Pin_13 | GPIO_Pin_14 | GPIO_Pin_15; GPIO_InitStructure.GPIO_Mode = GPIO_Mode_OUT; GPIO_InitStructure.GPIO_OType = GPIO_OType_PP; GPIO_InitStructure.GPIO_Speed = GPIO_Speed_100MHz; GPIO_InitStructure.GPIO_PuPd = GPIO_PuPd_NOPULL; GPIO_Init(GPIOE, &GPIO_InitStructure); } void SWITCHinit (void) { GPIO_InitTypeDef GPIO_InitStructure; RCC_AHB1PeriphClockCmd(RCC_AHB1Periph_GPIOE, ENABLE); GPIO_InitStructure.GPIO_Pin = GPIO_Pin_3 | GPIO_Pin_4 | GPIO_Pin_5 | GPIO_Pin_6; GPIO_InitStructure.GPIO_Mode = GPIO_Mode_IN; GPIO_InitStructure.GPIO_OType = GPIO_OType_PP; GPIO_InitStructure.GPIO_Speed = GPIO_Speed_100MHz; GPIO_InitStructure.GPIO_PuPd = GPIO_PuPd_DOWN; GPIO_Init(GPIOE, &GPIO_InitStructure); } int main () { int sw; GPIOEinit (); SWITCHinit(); ADCinit_T5_CC1_IRQ(); DACinit(); TIM5init_TimeBase_CC1(8400); // 8400 == 100us == 10kHz LCD_init(); LCD_string("Kp:", 0x00); LCD_string("Kd:", 0x09); LCD_string("Ki:", 0x49); // set gains & waste time - indefinite loop while (1) { sw = GPIOE->IDR; if ((sw & S370) && !(sw & S372) && !(sw & S373)) Kp--; // manually set Kp if ((sw & S371) && !(sw & S372) && !(sw & S373)) Kp++; if (Kp<0) Kp = 0; if (Kp > 1000) Kp = 1000; if ((sw & S370) && (sw & S372) && !(sw & S373)) Kd -= 0.001; // manually set Kd if ((sw & S371) && (sw & S372) && !(sw & S373)) Kd += 0.001; if (Kd < 0) Kd = 0; if (Kd > 1) Kd = 1; if ((sw & S370) && !(sw & S372) && (sw & S373)) Ki -= 0.0001; // manually set Ki if ((sw & S371) && !(sw & S372) && (sw & S373)) Ki += 0.0001; if (Ki < 0) Ki = 0; if (Ki > 1) Ki = 1; LCD_sInt3DG((int)Kp,0x03,1); // write Kp LCD_sInt3DG((int)(Kd*1000),0x0c,1); // write Kd LCD_sInt3DG((int)(Ki*10000),0x4c,1); // write Ki for (int i = 0; i < 5000000; i++) {}; // waste time }; } // IRQ function void ADC_IRQHandler(void) // this takes approx 6us of CPU time! { GPIOE->ODR |= 0x0100; // PE08 up Ref[k] = ADC2->DR; // pass ADC -> circular buffer Ref X[k] = ADC1->DR; // pass ADC -> circular buffer X // PID calculation start Error[k] = Ref[k] - X[k]; // calculate error Prop = Kp * (float)Error[k]; // proportional part Dif = Kd * (float)(Error[k] - Error[(k-1) & 63]) / Ts; // differential part Int += Ki * (float)Error[k]; // integral part Reg[k] = (int)(Prop + Dif + Int); // summ all three // PID calculation stop if (Reg[k] > 4095) DAC->DHR12R1 = 4095; // limit output due to the DAC else if (Reg[k] < 0) DAC->DHR12R1 = 0; else DAC->DHR12R1 = (int)Reg[k]; // regulator output -> DAC DAC->DHR12R2 = Error[k] + 2048; // Error -> DAC k = (k + 1) & 63; // increment pointer to circular buffer GPIOE->ODR &= ~0x0100; // PE08 down }