#include "stm32f4xx.h" #include "stm32f4xx_rcc.c" #include "stm32f4xx_adc.c" #include "stm32f4xx_dac.c" #include "stm32f4xx_gpio.c" #include "stm32f4xx_tim.c" #include "dd.h" #include "math.h" short int X1[64], X2[64], k = 0; float Y0[64], Y90[64], FY0[64], FY90[64]; //, Div[64]; int Table[4096], ptrTable; //int Result, kk = 12000; // declare and init IIR weights: 4th order, Chebishew, Low Pass, reference [1] // +/- 0.5%, -3dB at 0.025 (2500Hz) of sampling frequency float a[5] = {1.504626e-5, 6.018503e-5, 9.027754e-5, 6.018503e-5, 1.504626e-5}; float b[5] = {0 , 3.725385e0, -5.226004e0 , 3.270902e0, -7.705239e-1}; void SWITCHinit (void) { GPIO_InitTypeDef GPIO_InitStructure; RCC_AHB1PeriphClockCmd(RCC_AHB1Periph_GPIOE, ENABLE); GPIO_InitStructure.GPIO_Pin = GPIO_Pin_3 | GPIO_Pin_4 | GPIO_Pin_5 | GPIO_Pin_6; GPIO_InitStructure.GPIO_Mode = GPIO_Mode_IN; GPIO_InitStructure.GPIO_OType = GPIO_OType_PP; GPIO_InitStructure.GPIO_Speed = GPIO_Speed_100MHz; GPIO_InitStructure.GPIO_PuPd = GPIO_PuPd_DOWN; GPIO_Init(GPIOE, &GPIO_InitStructure); } // ADC init function void ADCinit_T5_CC1_IRQ (void) { ADC_InitTypeDef ADC_InitStructure; GPIO_InitTypeDef GPIO_InitStructure; ADC_CommonInitTypeDef ADC_CommonInitStructure; RCC_APB2PeriphClockCmd(RCC_APB2Periph_ADC1 | RCC_APB2Periph_ADC2, ENABLE); RCC_AHB1PeriphClockCmd(RCC_AHB1Periph_GPIOA | RCC_AHB1Periph_GPIOB, ENABLE); GPIO_InitStructure.GPIO_Pin = GPIO_Pin_1 | GPIO_Pin_2; GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AN; GPIO_InitStructure.GPIO_PuPd = GPIO_PuPd_NOPULL; GPIO_Init(GPIOA, &GPIO_InitStructure); ADC_CommonInitStructure.ADC_DMAAccessMode = ADC_DMAAccessMode_Disabled; ADC_CommonInitStructure.ADC_Mode = ADC_DualMode_RegSimult; ADC_CommonInitStructure.ADC_Prescaler = ADC_Prescaler_Div2; ADC_CommonInit(&ADC_CommonInitStructure); ADC_InitStructure.ADC_Resolution = ADC_Resolution_12b; ADC_InitStructure.ADC_ScanConvMode = DISABLE; ADC_InitStructure.ADC_ContinuousConvMode = DISABLE; ADC_InitStructure.ADC_ExternalTrigConvEdge = ADC_ExternalTrigConvEdge_Rising; ADC_InitStructure.ADC_ExternalTrigConv = ADC_ExternalTrigConv_T5_CC1; ADC_InitStructure.ADC_DataAlign = ADC_DataAlign_Right; ADC_InitStructure.ADC_NbrOfConversion = 1; ADC_Init(ADC1, &ADC_InitStructure); ADC_RegularChannelConfig(ADC1, ADC_Channel_1, 1, ADC_SampleTime_3Cycles); ADC_Init(ADC2, &ADC_InitStructure); ADC_RegularChannelConfig(ADC2, ADC_Channel_2, 1, ADC_SampleTime_3Cycles); ADC_Cmd(ADC1, ENABLE); ADC_Cmd(ADC2, ENABLE); NVIC_EnableIRQ(ADC_IRQn); // Enable IRQ for ADC in NVIC ADC_ITConfig(ADC1, ADC_IT_EOC, ENABLE); // Enable IRQ generation in ADC } // DAC init function void DACinit (void) { DAC_InitTypeDef DAC_InitStructure; GPIO_InitTypeDef GPIO_InitStructure; RCC_AHB1PeriphClockCmd(RCC_AHB1Periph_GPIOA, ENABLE); GPIO_InitStructure.GPIO_Pin = GPIO_Pin_4 | GPIO_Pin_5; GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AN; GPIO_InitStructure.GPIO_PuPd = GPIO_PuPd_NOPULL; GPIO_Init(GPIOA, &GPIO_InitStructure); RCC_APB1PeriphClockCmd(RCC_APB1Periph_DAC, ENABLE); DAC_InitStructure.DAC_OutputBuffer = DAC_OutputBuffer_Enable; DAC_InitStructure.DAC_Trigger = DAC_Trigger_None; DAC_InitStructure.DAC_WaveGeneration = DAC_WaveGeneration_None; DAC_Init(DAC_Channel_1, &DAC_InitStructure); DAC_Init(DAC_Channel_2, &DAC_InitStructure); DAC_Cmd(DAC_Channel_1, ENABLE); DAC_Cmd(DAC_Channel_2, ENABLE); } // Timer 5 init function - time base void TIM5init_TimeBase_CC1 (int interval) { TIM_TimeBaseInitTypeDef TIM_TimeBaseInitStructure; TIM_OCInitTypeDef TIM_OCInitStructure; RCC_APB1PeriphClockCmd(RCC_APB1Periph_TIM5, ENABLE); TIM_TimeBaseInitStructure.TIM_ClockDivision = TIM_CKD_DIV1; TIM_TimeBaseInitStructure.TIM_CounterMode = TIM_CounterMode_Up; TIM_TimeBaseInitStructure.TIM_Period = interval; TIM_TimeBaseInitStructure.TIM_Prescaler = 0; TIM_TimeBaseInitStructure.TIM_RepetitionCounter = 0; TIM_TimeBaseInit(TIM5, &TIM_TimeBaseInitStructure); TIM_OCInitStructure.TIM_OCMode = TIM_OCMode_PWM1; TIM_OCInitStructure.TIM_OutputState = TIM_OutputState_Enable; TIM_OCInitStructure.TIM_OutputNState = TIM_OutputState_Disable; TIM_OCInitStructure.TIM_Pulse = 1; TIM_OCInitStructure.TIM_OCPolarity = TIM_OCPolarity_High; TIM_OCInitStructure.TIM_OCNPolarity = TIM_OCNPolarity_Low; TIM_OCInitStructure.TIM_OCIdleState = TIM_OCIdleState_Reset; TIM_OCInitStructure.TIM_OCNIdleState = TIM_OCIdleState_Set; TIM_OC1Init(TIM5, &TIM_OCInitStructure); TIM_Cmd(TIM5, ENABLE); } // initialize port E, Gpio_Pin_8 to GPIO_Pin_15 as outputs void GPIOEinit (void) { GPIO_InitTypeDef GPIO_InitStructure; RCC_AHB1PeriphClockCmd(RCC_AHB1Periph_GPIOE, ENABLE); GPIO_InitStructure.GPIO_Pin = GPIO_Pin_8 | GPIO_Pin_9 | GPIO_Pin_10 | GPIO_Pin_11; GPIO_InitStructure.GPIO_Pin |= GPIO_Pin_12 | GPIO_Pin_13 | GPIO_Pin_14 | GPIO_Pin_15; GPIO_InitStructure.GPIO_Mode = GPIO_Mode_OUT; GPIO_InitStructure.GPIO_OType = GPIO_OType_PP; GPIO_InitStructure.GPIO_Speed = GPIO_Speed_100MHz; GPIO_InitStructure.GPIO_PuPd = GPIO_PuPd_NOPULL; GPIO_Init(GPIOE, &GPIO_InitStructure); } #define pi 3.14159 int main () { for (ptrTable = 0; ptrTable <= 4095; ptrTable++) Table[ptrTable] = (int)(1850.0 * sin((float)ptrTable / 2048.0 * 3.14159265)); GPIOEinit (); //SWITCHinit (); ADCinit_T5_CC1_IRQ(); DACinit(); TIM5init_TimeBase_CC1(840); // 840 == 10us == 100kHz while (1) { // endless loop }; } // IRQ function for ADC void ADC_IRQHandler(void) { GPIOE->BSRRL = BIT_8; // about 8 us int Spare = ADC1->DR; // to clear ADC IRQ flag X1[k] = (ADC2->DR & 0xfff); // acquire X2[k] = X1[k] - X1[(k-1) & 63]; // remove DC component Y0[k] = X2[k] * Table[ ptrTable >> 4 ]; // multiply with sin Y90[k] = X2[k] * Table[((ptrTable >> 4) + 1024) & 4095]; // multiply with cos float conv = 0; // LP filter (sin) for (int m = 0; m<5; m++) conv += a[m] * Y0[(k - m) & 63]; for (int n = 1; n<5; n++) conv += b[n] * FY0[(k - n) & 63]; FY0[k] = conv; conv = 0; // LP filter (cos) for (int m = 0; m<5; m++) conv += a[m] * Y90[(k - m) & 63]; for (int n = 1; n<5; n++) conv += b[n] * FY90[(k - n) & 63]; FY90[k] = conv; float Res = FY0[k] * FY0[k] + FY90[k] * FY90[k]; // add geometrically float ResRes = (float)(sqrt((double)Res)); // sqrt takes about 4 us ! DAC->DHR12R1 = Table[ptrTable >> 4] + 2048; // local oscillator DAC->DHR12R2 = (int)(ResRes / 64 + 128.0); // demodulated out ptrTable = (ptrTable + 12000) & 0xffff; // next excitation k++; k &= 63; GPIOE->BSRRH = BIT_8; }