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17. Serial communication - I2C  

Two typical serial busses will be discussed and their use will be demonstrated in this and next 

chapter, these are I2C (Inter Integrated Circuit, IIC or I2C) and SPI (Serial Peripheral Bus). Only a simple 

variant of busses without the error checking will be implemented. The experiment requires a sensor 

that can communicate using the bus, and suitable accelerometers / gyroscopes will be used in our 

laboratory.  

17.1. The I2C protocol - hardware 

Sometimes sensors are distant to the microcontroller. In such case it might be unreasonable to send 

analog signal from sensor to a distant microcontroller containing an ADC due to the possible 

degradation of analog signal along the line. In would be better to include an ADC into the sensor, and 

pass the digital result of the conversion to the microcontroller. Digital signals are far less prone to 

degradation, and ADCs are simple and cheap to include into sensors. Such sensors are quite frequent 

at the present state of technology. 

Digital signals coming from an ADC are 8 or 16 bits wide, and ADC chip alone needs additional 

control and status signals. When one considers the number of required wires and pins at the 

microcontroller to accommodate all these signals, one recognizes the need for a more efficient transfer 

of data into a microcontroller. Serial busses were invented to avoid these problems. They use 

considerably less wires to transfer the same information, and several devices can be connected to the 

same bus. The information is conveyed serially bit by bit in accurately defined time slots. To avoid 

problems with time slots and synchronization, a common clock signal is used by all devices connected 

to the same serial bus. The price one has to pay to use fewer wires is the prolonged time to transfer 

the same information and a rather complex set of rules to be obeyed when transferring information 

or devices connected to the common bus might rebel and refuse to transfer. 

The I2C is the name of the bus that requires three 

wires between devices: a common ground and two 

wires for clock signal (SCL, Serial CLock) and data 

signal (SDA, Serial DAta). Several units may be 

connected to the same bus as shown in Fig. 17.1, but 

only one of the devices controls the dataflow; this 

device is called a master, others are called slaves. All 

devices have a so called “open collector” (“open 

drain”) outputs meaning that they can only pull a 

signal low, but never force it to go high. This is the 

task of two pull-up resistors, one for each wire to pull 

the line to logic high. Therefore, if no device requests 

the line to be low, the line remains high due to the 

pull-up resistor. If any or many devices turn on their 

outputs pulling the line low, the line becomes logic 

low. The value of a pull-up resistor depends on the 

 
Figure 17.1: The I2C bus can be used to transfer 

data between the MASTER and one of the SLAVE 

devices 

+VCC

MASTER SLAVE

SLAVE

A

Z

SCL

SDA



Serial communication – I2C  2 

required speed, and is typically few k. The logic levels are defined by the power supply +VCC of the 

devices connected to the bus and their technology; in our case the power supply is close to 3.3V. 

The procedure to transfer the data over I2C bus is described in I2C protocol. There are four typical 

combinations of signals SCL and SDA: 

a) Start combination. Both signals SDA and SCL are initially high. First signal SDA goes low, next 

signal SCL goes low, as in Fig. 17.2a, left. The important part is that signal SDA changes from 

high to low when signal SCL is high. The start combination defines the beginning of the 

transmission over the bus. 

b) Stop combination. Both signals SDA and SCL are initially low. First SCL goes high, and then signal 

SDA goes high, as in Fig. 17.2b, right. The important part is that the signal SDA changes from 

low to high when signal SCL is high. The stop combination defines the end of transmission over 

the bus. 

c) Bit transfer combination. Signal SDA (serial data) can be either low or high, and the signal SCL 

changes from low to high and then to low again forming one clock pulse on the SCL line. This 

combination clocks one data bit into the destination device, Fig. 17.2c. A string of eight (ten in 

special cases) bits is used to send the complete byte. The signal SDA must not change during 

the time signal SCL in high. 

d) Acknowledge combination. The destination device is expected to confirm safe receipt of a byte. 

A string of eight data bits is followed by an acknowledge combination, where the originating 

device releases the SDA line, and the master device issues one clock pulse at the SCL line. The 

receiving device is supposed to pull the SDA line low during the clock pulse if it managed to 

receive eight bits successfully, Fig. 17.2d. 

There can be more than one slave device on the bus, and the master device can communicate with 

one slave device at a time. The protocol defines the addressing procedure to activate one of the slave 

devices. The I2C standard allows the use of either 7-bit addressing or 10-bit addressing; we will 

demonstrate the use of 7-bit version. 

Consider the situation where the master is writing into the slave, Fig. 17.3, top. The master first 

sends a start combination, followed by eight bits; here master defines consecutive values at the SDA 

line and issues eight clock pulses on the SCL line. Out of these eight bits first seven represent the 

address of the slave, and the 8th bit is low signaling the writing into the slave. If a slave with the address 

specified is connected to the bus, then the slave confirms its presence by the acknowledge 

combination; the master sends the 9th clock pulse and the slave pulls the SDA line low during the time 

of this pulse. From now on the master can send as many bytes to the selected slave as desired. Each 

byte is followed by the acknowledge combination, where the slave pulls the SDA line low telling the 

master that it is still able to receive bytes. When the transmission is complete, the master issues the 

“stop” combination releasing the slave. The address of the slave in this example is 0x37, and the data 

written is 0x57. 

 
Figure 17.2: The signals on the I2C bus 
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Similarly the reading from the slave into the master is started by a “start” combination and the 

addressing byte, Fig. 17.3, bottom; out of this first seven bits represent the address, and the 8th bit is 

high signaling the reading from the slave. If a slave with the address specified is connected to the bus, 

then the slave confirms its presence by the acknowledge combination; the master sends the 9th clock 

pulse and the slave pulls the SDA line low during the time of the pulse. From now on the master can 

read as many bytes from the slave as desired by issuing a pack of eight clock pulses for every byte read. 

Each byte is followed by the acknowledge combination, where the master pulls the SDA line low telling 

the slave that it has received the byte and that the slave is expected to continue sending bytes. The 

transmission is terminated by the master not acknowledging the receipt of the last byte and issuing 

the “stop” combination. The address of the slave is again 0x37, and it returns 0x39. 

Three blocks named I2C1 to I2C3 intended for I2C communication are built into the microcontroller. 

These blocks are identical and a simplified diagram for one of them is given in Fig. 17.4. Two pins at 

the microcontroller are required for lines SDA and SCL, and certain pins can be configured for alternate 

functions SDA and SCL. The I2C block includes two data related registers: 

 the ‘Data Register DR’; the processor writes data to or reads data from this register, the register 

serves as an buffer between the processor and the actual hardware of the I2C block, and  

 the ‘Data Shift Register DSR’; the data is transmitted serially, and this register is used to shift 

the data byte bit-by-bit out-of or in-to the block.  

The content of the register DR can be accessed by reading from or writing to register ‘I2Cx->DR’. 

When sending data the processor writes data into the register DR, and the content of this register is 

copied into the register DSR once the register DSR is free to accept data.  

  
Figure 17.3: I2C bus signals during the writing into the slave (top), and reading from the slave (bottom) 
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Figure 17.4: A simplified block diagram of an I2C block 
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The speed of transmission is defined by control bits in register CCR (Clock Control Register), 

connected to the Clock Control block. The information of clock pulses, status of SDA and SCL lines, the 

status of the data register and alike is available to the Control Logic, and can be read-out through status 

registers SR and SR2. The operation of the control logic is defined by bits in control registers CR1 and 

CR2. The control logic can issue events and interrupt requests to call assistance to the block. In order 

to configure these registers efficiently a CMSIS library includes several functions, and they are available 

in the source file “stm32f4xx_I2c.c”. Brief instructions on the use of functions are included in the file. 

These CMSIS functions require the use of data structures and definitions that are declared in the 

header file “stm32f4xx_i2c.h”. 

17.2. The I2C protocol – sequence of events, writing 

The protocol I2C requires interaction of the I2C block with the processor. After every major step in 

communication the processor must instruct the block on successive action, and all major states of the 

block are signaled by events. The procedure is as follows: the processor first configures the I2C block, 

and then requests a certain action. It takes some time for the block to complete the action, and the 

processor must wait for the competition which is signaled by an event. Put into hardware: an event 

toggles a bit in status register SR; when set, the event has happened. The event can be used to trigger 

an interrupt, or the processor can simply waste time executing an empty loop waiting for the event 

(the bit to be set). This second option is not very effective, but will be used here for simplicity. 

A slave unit commonly houses more than one byte for data, so the master should tell where inside 

the slave the data should be written to. This is resolved by master sending three bytes; the first byte 

represents the address of the slave, the second byte represents the address of the register within the 

slave, and the third byte is the actual data to be written into the selected register within the slave. The 

procedure for sending a byte from processor into the peripheral using I2C bus can be dissected into: 

1. start the transmission (S),  

2. wait for the start condition on the I2C bus (this is called EV5 in CMSIS for STM32F4xx processors), 

3. send the address of the slave (Address) to register DR, 

4. wait for the acknowledge signal from the slave (EV6),  

5. send the address within the slave (Data1) to register DR, 

6. wait for the register DR to become empty (EV8),  

7. send the actual data (Data2) to register DR, 

8. wait for the acknowledge signal from the slave(EV8_2, here the transmission has finished), 

9. stop the transmission (P).  

These steps are depicted in Fig. 17.5, a copy from the RM0090, page 826, figure 243 for actions and 

events during the writing a byte from master to slave, 7 bit addressing.  

 

Figure 17.5: Commands and events during the transmission of a byte from master to slave 
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As stated above: events are connected with bits in status register SR. Waiting for the event EV5, for 

instance, means waiting for a certain combination of bits in register SR, or, put into the CMSIS terms, 

waiting for ‘I2C_EVENT_MASTER_MODE_SELECT’. Similarly, waiting for event EV6 becomes waiting for 

‘I2C_EVENT_MASTER_TRANSMITTER_MODE_SELECTED’, and waiting for event EV8 equals waiting for 

‘I2C_EVENT_MASTER_BYTE_TRANSMITTING’. Finally, waiting for event EV8_2 is the same as waiting 

for’I2C_EVENT_MASTER_BYTE_TRANSMITTED’, see the include file “stm32f4xx_i2c.h”, lines 320 to 

407, for the justification of terms. 

All passing of data and checking of events is also translated into CMSIS terms, and the function 

“I2C_Write1Byte” to send one byte of data into the slave to a given address is presented next. 

char I2C_Write1Byte(char SlaveAddr, char addr, char byte1)   { 

  while(I2C_GetFlagStatus(I2C1, I2C_FLAG_BUSY));                     // wait if I2C1 is busy // 2 

  I2C_GenerateSTART(I2C1, ENABLE);                             // generate START  // 3 

  while(!I2C_CheckEvent(I2C1, I2C_EVENT_MASTER_MODE_SELECT));        // wait for EV5  // 4 

  I2C_Send7bitAddress(I2C1, (SlaveAddr << 1), I2C_Direction_Transmitter); // send slave addr // 5 

  while(!I2C_CheckEvent(I2C1, I2C_EVENT_MASTER_TRANSMITTER_MODE_SELECTED)); // wait for EV6 // 6 

  I2C_SendData(I2C1, addr);                                          // addr within slave // 7 

  while(!I2C_CheckEvent(I2C1, I2C_EVENT_MASTER_BYTE_TRANSMITTING));  // wait for EV8  // 8 

  I2C_SendData(I2C1, byte1);                                         // send data to slave // 9 

  while(!I2C_CheckEvent(I2C1, I2C_EVENT_MASTER_BYTE_TRANSMITTED));   // wait for EV8_2  // 10 

  I2C_GenerateSTOP(I2C1, ENABLE);                                    // generate STOP  // 11 

  return (0); 

}  

The function receives three arguments for defining the address of the slave (‘SlaveAddr’), selecting 

the register within the slave (‘addr’) and the data to be sent to this register (‘byte1’); all arguments are 

8 bits wide and declared as characters. The rest of the function strictly follows what was written in the 

paragraph above, but in CMSIS terms. 

The availability of the I2C block is tested first in line 2. If the block is busy then the processor waits. 

The actual procedure starts in line 3 where a processor requests a “start” condition on the I2C bus, a 

CMSIS function “I2C_GenerateSTART()” is used. The processor must then wait for the actual “start” 

condition to be established, and this is done in line 4, where the processor periodically checks the 

status register against the state ‘I2C_EVENT_MASTER_MODE_SELECT’ (EV5). The CMSIS function 

“I2C_CheckEvent()” is used to do the checking. 

Once the condition is confirmed the processor proceeds with writing the address of the slave into 

the register DR, and this is performed by a call to next CMSIS function “I2C_Send7bitAddress()” in line 

5. The arguments of the function are the slave address as it should show in the timing diagram from 

Fig. 17.3 top, followed by a bit to define the read/write option (‘I2C_Direction_Transmitter’ in this 

case). The processor must wait for event EV6 now, and this is done in line 6, where the status register 

is periodically checked against status ‘I2C_EVENT_MASTER_TRANSMITTER_MODE_SELECTED’. Once 

this status is confirmed it is also true that the slave device responded, and that the processor can 

continue by sending the address within the slave. 

The address within the slave is sent in line 7, and a CMSIS function “I2C_SendData()” is used. The 

argument is the address within the slave, and the processor must now wait until the register DR is 

ready to receive next byte; the processor must wait for event EV8. This is performed in line 8 of the 

function, where the content of the status register is periodically checked against status 

‘I2C_EVENT_MASTER_BYTE_TRANSMITTING’. Once this status is detected, the processor proceeds to 

line 9 to send the actual data to the slave. 

The data is sent to the slave by the same CMSIS function call, this time the argument is the byte to 

be sent. This terminates the transmission, and the “stop” condition should be re-established to release 

the I2C bus, but not immediately. The processor must wait for all bits to be safely transmitted to the 
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slave and for slave to confirm the receipt; the processor must wait for event EV8_2, in CMSIS terms 

‘I2C_EVENT_MASTER_BYTE_TRANSMITTED’. This is performed in line 10, then the “stop” condition is 

requested in line 11, and the transmission is terminated. 

If more than one byte is to be sent to the slave, then commands from lines 8 and 9 should be 

repeated for each additional byte to be sent, and these bytes are written to consecutive locations 

within the slave. 

17.3. The I2C protocol – sequence of events, reading 

A typical reading from slave is performed in two major steps due to properties of most of the slaves. 

The first major step A is used to send the address within the slave from where the master is supposed 

to read. The second major step B is used to actually read data from the slave. The procedure for reading 

a byte from slave to the master using I2C bus can be dissected into: 

A1. start the transmission (S), 

A2. wait for the start condition on the I2C bus (EV5), 

A3. send the address of the slave (Address) to register DR, select writing 

A4. wait for the acknowledge signal from the slave (EV6),  

A5. send the address within the slave (Data1) to register DR, 

A6. wait for the acknowledge signal (EV8_2) from the slave telling that the transmission has ended, 

B1. start the transmission once again (S), 

B2. wait for the start condition on the I2C bus (EV5), 

B3. send the address of the slave (Address) to register DR once more, but select reading, 

B4. wait for the acknowledge signal from the slave (EV6), 

B5. configure the I2C block not to acknowledge the byte received, the reading automatically starts, 

B6. wait for one byte to accumulate in the data register (EV7), 

B8. retrieve the byte read from the slave by reading it from data register DR, 

B9. stop the transmission (P).  

Steps under A are the same as for writing and are taken from the previous figure. Steps for B are 

depicted in Fig. 17.5, a copy from the RM0090, page 828, figure 244 for actions and events during 

reading a byte from slave to master, 7 bit addressing. Note that reading of a byte in step B5 starts 

automatically after the configuration of the acknowledge action. 

Events are again associated with some predefined names in CMSIS library: waiting for the event 

EV7 means waiting for ‘I2C_EVENT_MASTER_BYTE_RECEIVED’. 

Figure 17.5: Commands and events during the reading of a byte from slave to master 
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All passing of data and checking of events is translated into CMSIS terms, and the function 

“I2C_Read1Byte” to read one byte of data from slave is presented next. 

char I2C_Read1Byte(char SlaveAddr, char addr)     { 

  while(I2C_GetFlagStatus(I2C1, I2C_FLAG_BUSY));                     // wait if I2C1 is busy // 2 

  I2C_GenerateSTART(I2C1, ENABLE);                             // generate START  // 3 

  while(!I2C_CheckEvent(I2C1, I2C_EVENT_MASTER_MODE_SELECT));        // wait EV5  // 4 

  I2C_Send7bitAddress(I2C1, (SlaveAddr << 1), I2C_Direction_Transmitter);  // send device addr // 5 

  while(!I2C_CheckEvent(I2C1, I2C_EVENT_MASTER_TRANSMITTER_MODE_SELECTED)); // wait EV6  // 6 

  I2C_SendData(I2C1, addr);                                          // addr within device // 7 

  while(!I2C_CheckEvent(I2C1, I2C_EVENT_MASTER_BYTE_TRANSMITTED));   // wait for EV8_2  // 8 

   

  I2C_GenerateSTART(I2C1, ENABLE);                             // generate START  // 10 

  while(!I2C_CheckEvent(I2C1, I2C_EVENT_MASTER_MODE_SELECT));        // wait EV5  // 11 

  I2C_Send7bitAddress(I2C1, (SlaveAddr << 1), I2C_Direction_Receiver);  // send device addr // 12 

  while(!I2C_CheckEvent(I2C1, I2C_EVENT_MASTER_RECEIVER_MODE_SELECTED)); // wait EV6  // 13 

  I2C_AcknowledgeConfig(I2C1, DISABLE);                              // do not acknowledge // 14 

  while( !I2C_CheckEvent(I2C1, I2C_EVENT_MASTER_BYTE_RECEIVED) );    // wait EV7  // 15 

  char byte1 = I2C_ReceiveData(I2C1);                                // retrieve byte  // 16 

  I2C_GenerateSTOP(I2C1, ENABLE);                                    // generate STOP  // 17 

  return (byte1);          // 18 

}  

The function receives two arguments for defining the address of the slave (‘SlaveAddr’), and 

selecting the register within the slave (‘addr’); both arguments are 8 bits wide and declared as 

characters. The rest of the function strictly follows what was written in the paragraph above, but in 

CMSIS terms. The function returns a byte retrieved from the slave. 

Lines 2 to 7 are the same as used for writing of a byte to the slave, and will not be discussed here 

again. Line 8 differs, since the processor must wait until a complete address is safely transferred into 

the slave (EV8_2) before proceeding with steps for reading. 

Reading starts in line 10, where the processor requests the “start” condition once again. It must 

wait for this condition to be implemented, this is done in line 11. Line 12 re-sends the address of the 

slave, this time the direction is reversed from before. The processor must wait for this address to reach 

the slave and the slave to acknowledge the receipt of the address, in CMSIS terms it must wait for 

condition ‘I2C_EVENT_MASTER_RECEIVER_MODE_SELECTED’. 

The processor then proceeds to initiate the actual reading. This is done by configuring the action of 

the master whether to acknowledge the receipt of the byte read from the slave or not in line 14. In out 

example we are reading one byte only, and we should not confirm the receipt in order for the slave to 

stop sending after one byte. Once the byte is safely stored in the register DR, the condition 

‘I2C_EVENT_MASTER_BYTE_RECEIVED’ can be detected in line 15, and the processor can read the 

content of the register DR in line 16. Since this is the last byte to be read, the operation is terminated 

by requesting a “stop” condition in line 17 and returning the byte read in line 18. 

If more than one byte is to be read from the slave, then the last part of the function following line 

13 should be replaced by the listing below. 
  I2C_AcknowledgeConfig(I2C1, ENABLE);                               // acknowledge 1st byte // 14 

  while( !I2C_CheckEvent(I2C1, I2C_EVENT_MASTER_BYTE_RECEIVED) );    // wait EV7  // 15 

  char byte1 = I2C_ReceiveData(I2C1);                                // retrieve byte  // 16 

  I2C_AcknowledgeConfig(I2C1, DISABLE);                              // do not acknowledge 2nd byte 

  while( !I2C_CheckEvent(I2C1, I2C_EVENT_MASTER_BYTE_RECEIVED) );    // wait EV7  // 18 

  char byte2 = I2C_ReceiveData(I2C1);                                // retrieve byte  // 19 

  I2C_GenerateSTOP(I2C1, ENABLE);                                    // generate STOP  // 20 

  return ((byte2 << 8) + byte1);        // 21 
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The master should acknowledge the receipt of the first byte from the slave, and not acknowledge 

the receipt of the second byte. Both bytes are combined into a 16 bit short integer and returned; this 

requires a redefinition of the function as well from ‘char’ to ‘short’. 

17.4. The program to read data from sensor LIS3LV02DQ using I2C bus 

The program to initialize and read the value from the accelerator chip is listed next. 
#include "stm32f4xx_rcc.c" 

#include "stm32f4xx_gpio.c" 

#include "stm32f4xx_i2c.c" 

#include "LCD2x16.c"  

#include "dd.h" 

 

#define LIS_chip_I2C_address 0x1d 

 

int main ()  { 

  I2C1init();                                   // I2C1 init 

  LCD_init();                                   // Init LCD 

  LCD_string("I2C demo Z", 0);                  // write title 

  LCD_string("X        Y", 0x40);               // write title 

   

  I2C_Write1Byte (LIS_chip_I2C_address, 0x20,0xc7);      // 15 

   

  while (1) { 

    LCD_sInt3DG(I2C_Read2Byte (LIS_chip_I2C_address, 0x28), 0x41, 0x01);      // show acc x 

    LCD_sInt4DG(I2C_Read2Byte (LIS_chip_I2C_address, 0x2a), 0x4a, 0x01);      // show acc y 

    LCD_sInt4DG(I2C_Read2Byte (LIS_chip_I2C_address, 0x2c), 0x0a, 0x01);      // show acc z 

    for (int i = 0; i < 10000000; i++)   {};    // waste time 

  }; 

} 

The listing starts with inclusion of necessary files, and defines the address of the slave chip as 0x1d, 

as specified in the datasheet of the chip LIS3LV02DQ, the accelerometer. The processor starts the 

execution at “main”, where it first calls the configuration function “I2C1init()”, to be discussed still. The 

execution continues with a call to configuration function for LCD screen and two introductory writes 

to the screen. 

The call in line 15 configures (turns on for all three axes) the accelerometer chip, as described in its 

datasheets, by writing a value 0xc7 into location 0x20. 

The execution of the program then enters the infinite loop where three 16 bit numbers (the 

acceleration in all three axes) are retrieved from the accelerometer chip and displayed at the LCD.  

The last thing to discuss is the configuration of the microcontroller and the I2C block. We are going 

to use I2C block I2C1, its connections are available at port B, pins 6 and 7. The configuration includes 

mapping of port pins to the I2C block, and the configuration of I2C block itself. The function is listed 

below. 

void I2C1init(void) {         

GPIO_InitTypeDef       GPIO_InitStructure; 

I2C_InitTypeDef    I2C_InitStructure; 

 

  RCC_AHB1PeriphClockCmd(RCC_AHB1Periph_GPIOB, ENABLE);      // 5 

  RCC_APB1PeriphClockCmd(RCC_APB1Periph_I2C1,  ENABLE);      // 6 

 

  GPIOB->BSRRL = BIT_6 | BIT_7;                            // SDA, SCL -> hi   // 8 

  GPIO_InitStructure.GPIO_Pin   = GPIO_Pin_6 | GPIO_Pin_7; // SDA, SCL def   // 9 

  GPIO_InitStructure.GPIO_Mode  = GPIO_Mode_AF;            // alternate function  // 10 
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  GPIO_InitStructure.GPIO_PuPd  = GPIO_PuPd_NOPULL;      // 11 

  GPIO_InitStructure.GPIO_OType = GPIO_OType_OD;           // use open drain !   // 12 

  GPIO_InitStructure.GPIO_Speed = GPIO_Speed_25MHz;      // 13 

  GPIO_Init(GPIOB, &GPIO_InitStructure);          // 14 

 

  GPIO_PinAFConfig(GPIOB, GPIO_PinSource6, GPIO_AF_I2C1);  // PB6:I2C1_SCL   // 16 

  GPIO_PinAFConfig(GPIOB, GPIO_PinSource7, GPIO_AF_I2C1);  // PB7:I2C1_SDA   // 17 

   

  I2C_InitStructure.I2C_ClockSpeed      = 100000;      // 19 

  I2C_InitStructure.I2C_Mode            = I2C_Mode_I2C;      // 20 

  I2C_InitStructure.I2C_DutyCycle       = I2C_DutyCycle_16_9;     // 21 

  I2C_InitStructure.I2C_OwnAddress1     = 0;       // 22 

  I2C_InitStructure.I2C_Ack             = I2C_Ack_Disable;     // 23 

  I2C_InitStructure.I2C_AcknowledgedAddress = I2C_AcknowledgedAddress_7bit;   // 24 

  I2C_Init(I2C1, &I2C_InitStructure);        // 25 

  I2C_Cmd(I2C1, ENABLE);         // 26 

} 

Two data structures are required by CMSIS functions for configuration, those are declared first. 

Next clock signals for port B and I2C1 blocks are enabled in lines 5 and 6. 

The configuration of port B is given in lines 8 to 17. Pins 6 and 7 are to be dealt with, those are 

indicated in line 9. Both pins should implement alternate function, have no terminating resistors, and 

use open drain configuration of the output, as stated in lines 10 to 12. The speed of operation is not 

critical and selected as 25MHz here. The configuration function for port “GPIO_Init()” is called in line 

14 utilizing the pointer to the initialized data structure ‘GPIO_InitStructure’. 

The alternate function is selected next for those two pins in lines 16 and 17. 

Lines 19 to 26 are used to initialize and configure the I2C1 block. A brief description of the 

configuration procedure is given in the source file “stm32F4xx_I2C.c”. The data structure 

‘I2C_InitStructure’ is described in the header file “stm32f4xx_i2c.h”, lines 54 to 73, and is initialized as 

follows: 

- The member ‘.I2C_ClockSpeed’ specifies the clock frequency for the data transfer, it must be 

less than 400000 [Hz]. 

- The member ‘.I2C_Mode’ specifies the mode of operation for the I2C block; the block can 

implement either I2C protocol or SM bus protocol. In our example the I2C protocol is required, 

and the member is initialized accordingly. 

- The member ‘.I2C_DutyCycle’ specifies the ratio of clock pulse width versus the pause between 

pulses; the possibilities are listed in the header file in lines 114 and 115, and are of no 

importance here; an arbitrary one of the available is selected. 

- The member ‘.I2COwnAddress1’ specifies the first device own address, in our case 0. 

- The member ‘.I2C_Ack’ enables or disables the acknowledgement step in general; we will 

disable it here, and enable it when needed by appropriate CMSIS function call. 

- The last member ‘.I2C_AckknowledgeAddress’ specifies the expected length of the address; it 

can be either 7 or 10 bit, and is initialized to 7 bit in our example. 

The function call in line 25 uses this data structure to configure the I2C1 block, and the last function 

call in line 26 enables the I2C1 block. 


