
 1

22. PLL and frequency demodulation

The PLL (Phase Locked Loop) describes the common way for generating a signal with a frequency

which is in a fixed relation with the frequency of the reference signal (like multiple). It can also be used

for measuring of frequency and the frequency demodulation. The example demonstrates the

implementation of such block in software. The digital input signal fin is connected to port E, pin 15, and

the microcontroller generates a sine wave signal with the same frequency and phase DAC1 output. The

output from DAC2 is used as a frequency demodulated output.

22.1. The theory of PLL

A Phase Locked Loop (PLL) is another commonly used block in digital electronics. The PLL block is

capable of generating a signal fVCO with a frequency which is the same as the frequency of the input

signal fIN; it is given in Fig. 22.1 in its basic form. By adding two dividers (one in series with each of the

input signals to the phase comparator) the block generates a signal fVCO which is the ratio of the two

division factors multiplied by the frequency of the input signal fIN. The same block can be used for

frequency demodulation of the input signal fIN; the signal TP is proportional to the frequency of the

input signal fIN.

In the following example we will program the PLL into the microcontroller and obtain a frequency

meter and frequency demodulator at the same time. For those with experience in digital electronics:

there are basically two types of phase comparators, XOR gate and a memory circuit (referred as Type

I and Type II in typical PLL chip CD4046); we will implement the memory circuit in this example since it

prevents PLL to lock on harmonics of the input signal.

The frequency of the local oscillator (VCO, DDS GENERATOR) fVCO depends on the control signal Tp,

and can be the same as the frequency of the input signal fIN, for a certain value of control signal Tp, as

shown in Fig. 22.2. In this case the PLL block is locked to the input signal in frequency and phase, and

no further action is needed; signal Tp does not need to be adjusted. Arrows indicate moments of

sampling of the two signals, and numbers their current value.

When phases (and frequencies) of the two signals differ, two scenarios are possible. The local signal

fVCO can be delayed compared to the input signal fIN, as shown in Fig. 22.3, left; in this case the

frequency of the local signal fVCO must be increased to align the edges, therefore the control signal Tp

Figure 22.1: Graphical representation of the PLL block

PHASE

COMPARATOR

INf

DDS
GENERATOR

VCO

VCOf

LP FILTER

TP

INTEGRATOR

PLL and frequency demodulation 2

must be increased. Alternatively, the local signal fVCO can come ahead of the input signal fIN as shown

in the same figure, right; in this case the frequency of the local signal must be decreased (and Tp as

well) to match the edges.

From Fig. 22.3, left, we can deduce to increase the frequency (therefore control signal Tp) while the

input signal fIN is high and the local signal fVCO is low, and also while the input signal fIN is low and the

local signal fVCO is high. The same can be deduced for decreasing the frequency from Fig. 22.3, right.

What to do, then?

Consider the current and past samples of the input signal. The consecutive samples can be arranged

to form an array of bits having value of either zero or one. Such array, when short, can comprise an

integer variable; bit 0 (LSB) of the variable belongs to the current sample of the input signal, bit 1

belongs to the previous sample, bit 2 to the pre-previous sample... , like 001111110000 for the Fig.

22.3, left, top. When two digital signals (for fIN and fVCO) are sampled simultaneously, consecutive

samples can be arranged in a common integer variable in such a way that odd bits (bit 1, bit 3,…) of

the integer variable represent signal fIN, and even bits (bit 0, bit 2,…) signal fVCO. Additionally, let the

least significant two bits represent the current values of both signals, and adjacent two more significant

bits past values of the same signals, Fig. 22.4. Only four bits are important; for instance, at time c (the

third sample, Fig. 22.3, left) the corresponding integer number reads 0010b.

Using this construct we can now identify the following situations:

- When signal fIN and fVCO have equal values we should not change the frequency of the VCO since

we have no significant information on the relation of two frequencies (control signal Tp). The

relation is hidden in the position of the edges of both signals, and we should concentrate on

those.

Figure 22.3: Two possible scenarios: left => frequency of signal fVCO must be increased to match the phase;

right => frequency of the signal fVCO must be decreased to match the phase

0 0 0 0 1 1 1 1 1 1 00

00 11 11 11 00 0 0

f IN

VCOf

1 0

1

0IN

1

1 0

1

1

0f 1

1f

0

1

0 1

0

0VCO

0 1

1 0

0

0

a b c ed f j kg ih l ifd kc h j la geb

Figure 22.2: PLL block is locked to the input signal;

fVCO is equal to fIN in frequency and phase, no adjustments of Tp are needed

0

0VCO 0

1

10

1

01

1

0

0 1IN

1

0

0

1

1

1

f

0

1

f

1

00

Figure 22.4: The arrangement of bits in variable InPat for the phase detection

VCOf k[]
IN kf []f k-1k-1 []VCO[]INf

BIT0BIT1BIT2BIT3

PLL and frequency demodulation 3

- When signals have different values, we should change frequency of the VCO:

o The frequency should start increasing when the constructed integer InPat becomes 0010b,

and keep increasing until both signals become equal. This situation means that the leading

edge at fIN came earlier than the leading edge at fVCO, so the frequency of fVCO should be

increased (Tp increased).

o The frequency should also start increasing when the constructed integer InPat becomes

1101b, and keep increasing until both signals become equal. This situation means that the

falling edge at fIN came earlier than the falling edge at fVCO, so the frequency of fVCO should

be increased (Tp increased).

o The frequency should start decreasing when the constructed integer InPat becomes 0001b,

and should keep decreasing until both signals become equal. This situation means that the

leading edge at fVCO came earlier than the falling edge at fIN, so the frequency of fVCO is too

big and should be decreased (Tp decreased).

o The frequency should also start decreasing when the constructed integer InPat becomes

1110b, and should keep decreasing until both signals become equal. This situation means

that the falling edge at fVCO came earlier than the falling edge at fIN, so the frequency of fVCO

is too high and should be decreased (Tp decreased).

The unit performing this functions (constructing the integer value and calculating the required value

of Tp) replaces both the phase comparator and the LP filter / integrator in the block diagram in Fig.

22.1.

22.2. The implementation of the PLL

The program to implement for PLL unit is based on the program for the DDS, chapter 16. The

structure of the program is the same: the timer TIM5 is used to trigger periodic interrupts every 10 s.

All PLL processing is performed within the interrupt function for timer TIM5. The main program is used

only to display current frequency of the DDS generator which is the same as the frequency of the input

signal, when PLL is locked.

The interrupt function is presented in the listing bellow.
void TIM5_IRQHandler(void) // PLL takes approx 600 ns of CPU time!

{

 GPIOE->BSRRL = BIT_8; //

 TIM_ClearITPendingBit(TIM5, TIM_IT_Update); // clear interrupt flag // 4

 PortE = GPIOE->IDR & BIT_15; // read input signal // 5

 f_VCO = ptrTable & 0x8000; // this is locally generated signal // 6

 InPat = (InPat << 2) & 0x0c; // construct pattern for phase detector // 7

 if (PortE) InPat += 2; // // 8

 if (f_VCO) InPat += 1; // // 9

 if (PortE == f_VCO) dTp = 0; // if equal signals (frequencies) // 10

 else { if (InPat == 0x02) dTp = 1; // if frequency too low // 11

 if (InPat == 0x0d) dTp = 1; // // 12

 if (InPat == 0x01) dTp = -1; // if frequency too high // 13

 if (InPat == 0x0e) dTp = -1; // // 14

 };

 Tp += dTp; // correct time interval // 16

 if (Tp > 0x8000) Tp = 0x8000; // but not too much // 17

 if (Tp < 0x0080) Tp = 0x0080; // // 18

 ptrTable = (ptrTable + Tp + (dTp << 8)) & 0xffff; // update pointer to table // 19

 GPIOE->ODR = (GPIOE->ODR & ~BIT_10) | (f_VCO >> 5);// digital out - f_VCO // 20

 DAC->DHR12R1 = (Table[ptrTable >> 4]) + 2048; // analog signal -> DAC // 21

PLL and frequency demodulation 4

 DAC->DHR12R2 = K >> 2; // frequency -> DAC // 22

 GPIOE->BSRRH = BIT_8; //

}

As already discussed the line 4 is used to clear the flag for the pending interrupt request in timer

TIM5. The input signal fIN is connected to port E, pin 15, the most significant bit of the short integer

read into the processor by command in line 5; the AND function is used to remove the presence of any

other bits and retain the result as PortE. Note that the pointer into the table ptrTable as used in the

example on DDS generation in chapter 16 is also a short integer, and consecutive values of its most

significant bit form a square wave signal with a frequency that equals the frequency of the generated

sine wave. The digital signal f_VCO representing the sine wave from the DDS is constructed in line 6

using the AND function from the MSB of the table pointer.

The integer InPat is constructed in lines 7 to 9. Current value of the integer InPat is shifted left for

two places, and only the least significant four bits are retained. The least significant two bits are then

modified following the values of both input signal PortE and the locally generated signal f_VCO.

Once the variable InPat is constructed the software decides what to do with the frequency of the

DDS generator in lines 10 to 14. If both signals f_VCO and PortE are the same the variable dTp (delta

Tp, for this amount the frequency should change) is set to zero. However, when signals are different,

all four possibilities from the former bulleted list are checked and the variable dTp is set accordingly.

The variable dTp is next used to update the control variable Tp (line 16) which define the frequency

of the signal fVCO. It might happen that the update pushes control variable Tp out of the acceptable

range, so Tp is checked and bound in lines 17 and 18.

The next statement in line 19 updates the pointer ptrTable to table with samples of the output

signal. The last term in the sum needs to be added to ensure the stability of the PLL loop (check the

theory). The last three statements take care of generating the actual signals at pins of the

microcontroller. The digital signal fVCO is generated at port E, bit 10, and the analog version is generated

at the DAC1. The second DAC2 is used to output the control variable Tp, therefore the analog voltage

representing the frequency of the locally generated signal fVCO. When a frequency-modulated signal is

used ad fIN, the output of the DAC2 is the demodulated version of the input signal.

The listing of the rest of the program is given below.

#include "stm32f4xx.h"

#include "stm32f4xx_rcc.c"

#include "stm32f4xx_gpio.c"

#include "stm32f4xx_tim.c"

#include "stm32f4xx_dac.c"

#include "LCD2x16.c"

#include "math.h"

#include "dd.h"

int Table[4096], ptrTable, Tp = 655, dTp = 0;

char InPat = 0;

int PortE, f_VCO;

int main () {

 // Table init for analog output

 for (ptrTable = 0; ptrTable <= 4095; ptrTable++)

 Table[ptrTable] = (int)(1850.0 * sin((float)ptrTable / 2048.0 * 3.141592653));

 LCD_init(); LCD_string("Fin=", 0x01); LCD_string("Hz", 13);

 GPIOEinit_8to11();

PLL and frequency demodulation 5

 DACinit();

 TIM5init_TimeBase_ReloadIRQ(840); // 840 == 10us == 100kHz

 while (1) {

 LCD_uInt16((int)(Tp * 100000 / 65536),0x07,1); // display frequency

 for (int i = 0; i < 5000000; i++) {}; // waste time

 };

}

This listing starts with the inclusion of CMSIS files and the declaration of the variables used. The

function “main()” starts with the initialization of the table to generate analog signal from as already

explained in chapter 16, and continues to the configuration functions for LCD, port E, DAC and timer

TIM5. Note the function for the configuration of port E, which is the modified version of the function

given in chapter 4. Only pins 8, 9, 10, and 11 are configured as outputs, other pins are inputs. The

endless while loop is used only to output the current frequency of the DDS generator to the LCD

display.

