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24. Phase measurement 

When one is interested in the phase relation between two signals REF and X, and these signals are 

not generated by the measurement system, one can use a derivative of the lock-in detection technique 

already described in chapter 23. In previous chapter the microcontroller generated the signal REF and 

is was simple to generate also the quadrature version of this signal (the 90-degree shifted version). 

Now, such signal must be derived from the REF signal using the Hilbert transform. The rest of the system 

remains the same. 

24.1. The theory 

The block diagram of the system to determine the phase  between two harmonic signals is given 

in Fig. 24.1. Two harmonic signals XR and XP are available and the task of the measurement system is 

to determine the phase between them; both signals have the same frequency  and adequate 

amplitudes AR and AP to be sampled by the ADC in the microcontroller. 

𝑋𝑅 = 𝐴𝑅 sin 𝜔𝑡                    𝑋𝑃 = 𝐴𝑃 sin(𝜔𝑡 + 𝜑) 

 The block diagram introduces three new blocks compared to the diagram given in chapter 23, these 

are the “Remove DC” and the “Hilbert transform” blocks. 

The ADC samples the input signals, and the result is between 0 and 4095 for 12 bit ADC; it is always 

a positive number. The sampled signal therefore rides on a steady DC component of roughly 2048, 

depending on the DC offset of the ADC. In this example we will strip the DC component off from the 

sampled signal by a simple DC-removal filter (the “Remove DC” blocks) to demonstrate the process. 

This operation is not mandatory or essential for the determination of the phase angle, we will simply 

introduce it here as it looks like a reasonable thing to do in many data processing applications. 

Intuitively, the differential equation to strip the DC component off can be written simply as:  

𝑦𝑘 = 𝑥𝑘 − 𝑥𝑘−1 

The yk is the current output sample, and the xk and xk-1 are the current input and previous input 

samples. The AC component is proportional to the change in the input value; with the fixed time 

 

Figure 24.1: The phase measurement: block diagram 
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interval between samples the above equation returns an 

approximation of the derivative of the input signal which, 

of course, is the weighted AC component. 

The same difference equation can be derived using 

knowledge about the z-transform and the influence of 

poles and zeroes in the z-plane. If we place a zero at the 

position where 𝜔 = 0 in the z-plane, then the system 

implementing the corresponding transfer function will not 

let the DC component pass. The position of the zero is 

illustrated in Fig. 24.2. From here we can write the transfer 

function H(z) and the corresponding difference equation as 

(note a pole is added in the center of the z-plane; this does not affect the frequency characteristics):  

𝐻(𝑧) =  
𝑧 − 1

𝑧
=

1 − 𝑧−1

1
                     →                     𝑦𝑘 = 𝑥𝑘 − 𝑥𝑘−1 

The output of this DC-removal filter depends strongly on the frequency of the incoming signal, the 

amplitude and phase plots are given in Fig. 24.3, and can be calculated using: 

𝐴𝑀𝑃𝐿𝐼𝑇𝑈𝐷𝐸 =  | 𝐻(𝑧)| 𝑧=𝑒𝑖𝜔𝑡  |                    and                   𝑃𝐻𝐴𝑆𝐸 =  tan−1   
𝐼𝑀(𝐻(𝑧))

𝑅𝐸(𝐻(𝑧))
  |

 𝑧=𝑒𝑖𝜔𝑡

 

In our experiment the phase characteristic of 

the filter has no influence on the measurement 

since equal filters are inserted in both XR and XP 

signals and affect both equally. The reduction of 

the amplitude at low frequencies might be more 

of a problem, and can be avoided by modifying a 

pole-zero diagram. When a pole is inserted close 

to a zero but inside the unity circle (Fig. 24.4) at a 

distance r from the center the transfer function 

and the difference equation change to: 

𝐻(𝑧) =  
𝑧 − 1

𝑧 − 𝑟
=

1 − 𝑧−1

1 − 𝑟𝑧−1
           →            𝑦𝑘 = 𝑟𝑦𝑘−1 + 𝑥𝑘 − 𝑥𝑘−1 

This changes the amplitude and phase plots to the ones given in Fig. 24.5. Note the gain 

characteristics which is mostly flat now. Both versions of difference equations are simple to 

implement. In this case the first, the simpler version of differential equation, suffices and will be 

implemented in software.  

 

Figure 24.2: The position of a zero in z-

plane for a simple DC-removal filter 
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Figure 24.3: Amplitude and phase characteristics of a simple DC-removal filter;  

horizontal: normalized frequency f/fs, vertical: gain / phase (degrees) 

 

Figure 24.4: The position of a zero and a pole in z-

plane for a better DC-removal filter 

Re(z)
0

Im(z)

pole (r,0)

1

zero (1,0)



Phase measurement  3 

The implementation of the Hilbert transform in a FIR filter was discussed in chapter 19. It was stated 

that the coefficients of the filter core for a Hilbert transform are given as: 

ℎ𝑚 =
−1 + (−1)𝑚

𝜋𝑚
 

Due to the limited time available between two neighboring samples to calculate the convolution 

for FIR filter, the number of coefficients in filter core is always restricted, and this affects the frequency 

characteristics of such a filter; the characteristics can be determined by calculating a Fourier transform 

of the filter core, and the result for |𝑚| ≤ 32 is given in Fig. 24.6, blue line. The characteristics is not 

ideal:  

- the amplitude of the filter response changes 

a lot with the frequency, and  

- the amplitude of the response approaches 

zero at DC and at 0.5 of the sampling 

frequency. 

The first obstacle can be significantly reduced by 

implementing a windowing function, as already 

mentioned in chapter 19; the effect of windowing is 

shown by the red line in the same figure.  

The second obstacle can be reduced by 

increasing the number of coefficients in the filter 

core (you do not want to do this since this increases the time to calculate the convolution) or by 

carefully selecting the sampling frequency. Suppose the sampling frequency is four times the 

frequency of the input signals, then we are working at 0.25 ∙ 𝑓𝑠, and the amplitude characteristics (the 

red one, windowed coefficients) from Fig. 24.6 is flat in the region. Actually, there is a broad range of 

frequencies we can use to sample the incoming signal; we must only stay within the flat region of the 

amplitude characteristics (red) from Fig. 24.6. We could even reduce the number of coefficients in the 

filter core for the Hilbert transform, get flat response of the filter in smaller central region, and select 

the sampling frequency to work within this flat region. 

It would not be wise to select the sampling frequency that is exactly four times the frequency of 

the input signals though. The result of multiplication of two signals with the same frequency is 

composed of two components: one is a DC signal, the other is a signal with a double frequency; fs/2 in 

this case. According to the Nyquist criteria a signal with frequency of fs/2 behaves like a DC signal, and 

this comes straight through the low-pass filter! This is not what we want! The same is true also for 

input signals with frequencies between 0.25 and 0.30 times the sampling frequency; the product 

contains a component that comes through the low-pass filter and corrupts the measurement. 

                           

Figure 24.5: Amplitude and phase characteristics of a better DC-removal filter;  

horizontal: normalized frequency f/fs, vertical: gain / phase (degrees) 

 

Figure 24.6: Amplitude characteristics for a Hilbert 

transform with m=32; vertical: normalized 

amplitude, horizontal: normalized frequency f/fs 
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We have learned that the sampling frequency should be matched to the frequency of the input 

signal; not precisely, a wide range of sampling frequencies is acceptable for this experiment, but there 

are also combinations to be avoided. 

The rest of the theory was already described in chapter 23 and will not be repeated here. 

24.2. The implementation of the lock-in detection  

The phase measurement as described above will be tested using an external sine-wave generator 

and a simple RC passive network to shift the sine-wave. The schematic diagram is given in Fig. 24.7. 

The signal from the function generator, being a sine-wave, is connected to the network and also to the 

ADC input ADC_IN2 at the microcontroller. The values of components in the network are calculated to 

give a phase shift of about 45 degrees for sinusoidal signals with a frequency of 1500 Hz. The phase 

shift can be altered by the rotation of the potentiometer.  

 The program is a modified version of the program from the previous chapter. It is implemented as 

an interrupt routine, which is driven by timer TIM5, the time interval between successive interrupts is 

fixed to 100 s, giving the sampling frequency which is about 6 times the frequency of the input signal. 

The sampling of the input signal is implemented the same way as described in chapters 12 and 13. 

The timer overflow triggers the ADC to start the conversion, and the end-of-conversion signal from the 

ADC is used to interrupt the microcontroller and start the interrupt routine ADC_IRQhandler. 

As in the previous chapter the calculation of a complex function (the arc tangent) is not 

implemented within the interrupt routine. Instead, the consecutive results are accumulated and then 

the sum of 128 consecutive results is passed to the main program, where the calculation is performed. 

The filter implemented could be the same as used in the previous chapter, but here the IIR version 

is used, as described in chapter 20. The same filter coefficients are used. 

The ADC interrupt function for the lock-in detection is presented in the listing below. 
void ADC_IRQHandler(void)       { 

  GPIOE->BSRRL = BIT_8;                  // signal start, execution time is about 6 us ! // 2 

 

  XR[k] = ADC1->DR;                      // to clear ADC IRQ flag    // 4 

  XP[k] = (ADC2->DR & 0xfff);            // acquire      // 5 

  XRAC[k] = XR[k] - XR[(k-1) & 127];    // remove DC component     // 6 

  XPAC[k] = XP[k] - XP[(k-1) & 127];    // remove DC component     // 7 

   

  // derive cos component using Hilbert transform 

  float conv = (float)XRAC[(k - 32) & 127] * w[0];      // 10 

  for (short m = 1; m < 32; m += 2)        // 11 

    conv += w[m] *(XRAC[(k - 32 + m) & 127] - XRAC[(k - 32 - m) & 127]);   // 12 

  R0[k] = (float)XRAC[(k - 32) & 127];        // 13 

  R90[k] = conv;          // 14 

   

 

Figure 24.7: The external circuit to the BaseBoard for the phase measurement experiment 
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  M0[k]  = (float)XPAC[(k - 32) & 127] * R0[k];    // multiply with sin    // 16 

  M90[k] = (float)XPAC[(k - 32) & 127] * R90[k];   // multiply with cos    // 17 

   

  // IIR low-pass filter for sine component 

  conv = 0;           // 20 

  for (short m = 0; m<5; m++)   conv += a[m] * M0[(k - m) & 127];    // 21 

  for (short n = 1; n<5; n++)   conv += b[n] * FM0[(k - n) & 127];    // 22 

  FM0[k] = conv;   FM0acc += conv;        // 23 

   

  // IIR low-pass filter for cosine component 

  conv = 0;           // 26 

  for (short m = 0; m<5; m++)   conv += a[m] * M90[(k - m) & 127];    // 27 

  for (short n = 1; n<5; n++)   conv += b[n] * FM90[(k - n) & 127];    // 28 

  FM90[k] = conv;   FM90acc += conv;        // 29 

   

  // average and report result every 128-th time 

  if (k == 0)   {          // 32 

    FM0ave  = FM0acc;  FM0acc  = 0;        // 33 

    FM90ave = FM90acc; FM90acc = 0;        // 34 

    PhaseDisplay = 1;          // 35 

  };            // 36 

   

  k++; k &= 127;          // 38 

  GPIOE->BSRRH = BIT_8;   // signal end      // 39 

} 

The function commences with setting pin 8, port E, high to signal the start of execution, line 2; the 

same pin is reset when the function ends, line 39.  

Next the result is read from the two ADCs in lines 4 and 5. This returns signals XR and XP, which are 

placed into two circular buffers at position k. The position pointer k increments on every execution of 

the interrupt routine, line 38. This circular buffer has 128 elements. 

The AC-removal filter is implemented in lines 6 and 7 for each signal separately. A simpler version 

of the filter is used, and results are stored in two circular buffers XRAC and XPAC. 

Next the 90-degree delayed signal is derived out of the signal XRAC. The derivation is based on the 

Hilbert transform filter. The convolution is calculated in lines 10 to 12, and the original version of the 

signal XRAC and its 90 degree delayed version are then stored in circular buffers named R0 and R90 in 

lines 13 and 14. 

The multiplication of the phase shifted signal XPAC with the reference is given in lines 16 and 17 to 

obtain signals M0 and M90. These are then filtered using the IIR version of the filter in lines 20 to 23 

and 26 to 29. Finally, lines 32 to 36 implement the passing of the accumulated results to the main part 

of the program. 

 

The listing of the rest of the program is given below. 

short int XR[128], XP[128], XRAC[128], XPAC[128], k = 0; 

float w[32]; 

float R0[128], R90[128], M0[128], M90[128], FM0[128], FM90[128]; 

float FM0ave, FM90ave, FM0acc, FM90acc; 

short PhaseDisplay = 0; 

 

// declare and init IIR weights: 4th order, Chebishew, Low Pass, reference [1] 

// +/- 0.5%, -3dB at 0.025 (250Hz) of sampling frequency (10kHz) 

float a[5] = {1.504626e-5, 6.018503e-5, 9.027754e-5, 6.018503e-5, 1.504626e-5}; 

float b[5] = {0          , 3.725385e0, -5.226004e0 , 3.270902e0, -7.705239e-1}; 
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int main ()  {                           // 12 

 

  // calculate Hilbert core for FIR filter 

  w[0] = 0;                    // central weight: 2 x fc / fs   // 15 

  for (short m = 1; m < 32; m++)               // 16 

    w[m] = (-1.0 + cos(pi * m)) / (pi * m);    // other weights    // 17 

  for (short m = 1; m < 32; m++)               // 18 

    w[m] = w[m] * cos(pi / 2 * m / 31.0);       // windowing     // 19 

 

  LCD_init ();  LCD_string("Phase=", 0x40);      // 21 

 

  GPIOEinit (); ADCinit_T5_CC1_IRQ();  DACinit();    // 23 

  TIM5init_TimeBase_CC1(8400);           // 8400 == 100us == 10kHz    // 24 

 

  while (1) {                            // endless loop     // 26 

    if (PhaseDisplay) {         // 27 

      PhaseDisplay = 0;         // 28 

      float Phase = (atan (FM90ave / FM0ave)) / 3.14159 * 180;     // 29 

      if (Phase < 0)    {LCD_string("-", 0x47);    Phase = -Phase; }    // 30 

      else              {LCD_string(" ", 0x47);                    };    // 31 

      short PhaseInt = (int)(Phase);        // 32 

      short PhaseFrc = (int)((Phase - PhaseInt) * 10);      // 33 

      LCD_sInt3DG((int)PhaseInt, 0x48, 1);        // 34 

      LCD_char('.');    LCD_char(PhaseFrc + '0'); LCD_char(0xdf);    // 35 

      for (int j = 0; j<2000000; j++){};      // waste some time    // 36 

    };            // 37 

  };            // 38 

}            // 39 

This listing starts with the inclusion of CMSIS files (not shown) and the declaration of the variables 

used. The function “main()” starts in line 12 with the initialization of the filter coefficients for the 

Hilbert transform; the initialization is copied from Chapter 19, the FIR filtering. The program continues 

to the configuration functions for LCD, port E, ADC, DAC and timer TIM5; all configuration functions 

were already described in previous chapters. 

The endless while loop, lines 26 to 38, is used to calculate the phase angle between signals XP and 

XR from results passed by the ADC interrupt routine, and to display the calculated value at the LCD 

display. The value of a global variable PhaseDisplay signals the availability of a new result. When one, 

the calculation commences. 

The phase is represented by a floating point number. This must be converted to integer and 

fractional component as in previous chapter, and then displayed. The program is given in lines 29 to 

35. Some delay is added in line 36 to reduce the number of screen updates. 


