
 1

25. AM radio receiver

The chapter describes the programming of a microcontroller to demodulate a signal from a local

radio station. To keep the circuit simple the signal from the local amplitude modulated radio station

should be strong, this is the case in the place where the author of this chapter lives. The local radio

station transmits at 918 kHz, and a simple LC tuning circuit and antenna suffice to get a signal that can

be sampled by the microcontroller. The demodulation is done in real time by the software, and the

demodulated signal is sent to an active speaker using a DAC.

25.1. The theory

The block diagram of the AM receiver is depicted in Fig. 25.1. The input signal for the receiver comes

from an antenna, but may also come from a suitable amplitude modulated function generator. The

input signal gets sampled into X1, then comes the block for the removal of a DC component to obtain

signal X2. Next is a multiplication of the signal X2 with two sinusoidal signals from a software local

oscillator (a DDS generator can be used here); the two output signals from the local oscillator are in

quadrature, i.e. their phases differ for 90 degrees. Two low pass filters strip away high frequency

components, and the final block calculates the current amplitude of the incoming signal X1.

Let the input amplitude modulated signal X1 be:

𝑋1 = 𝐴(𝑡) sin 𝜔𝑡

The frequency is the carrier frequency of the received signal, in our case 918 kHz. The amplitude

A(t) stands for the envelope of the input signal X1; since Y1 is amplitude modulated, the envelope

depends on time as emphasized by the part in brackets. The envelope represents the signal to be

transmitted by the radio, the speech of a narrator, or music. The frequency spectrum of the envelope

is limited by the radio transmitter to 4.5 kHz.

The Nyquist criteria states that a signal should be sampled at least twice per period, this would

require the sampling frequency of about 2 MHz.

The ADC in the microcontroller can sample at this speed; however, even the microcontroller as fast

as the STM32F407 cannot process signals this fast unless we use a trick that is based on an extension

of the Nyquist criteria, the trick is called “under-sampling”. The details are explained in [1], here we

just present a brief justification of the technique.

Figure 25.1: The AM receiver: block diagram

FILTER

FY

C
A

L
C

U
L
A

T
E

90

FILTER
MULTIPLY

FY

0

90

MULTIPLY

0

LOW-PASS
Y

YTUNING

X1

antenna

LOW-PASS

LOCAL

OSCILLATOR

0 deg

90 deg

AM modulated

signal

demodulated

signal

DC removal

X2

AM radio receiver 2

Consider a harmonic signal, sampled more than twice per period as the Nyquist criteria requires.

An example is given in Figure 25.2; the signal (green) has a frequency of 18 kHz, and the sampling rate

is 100 kHz. The green plot is the signal, and the blue dots represent the samples taken by the ADC.

Consider now the same sampling rate and a new input signal with frequency of 318 kHz, which is

clearly above the Nyquist requirement. This is shown in Figure 25.3 with the new input signal in red.

The sampled values are exactly the same as when sampling the green signal, and the observer is

deceived to sample the green signal as in Figure 25.2. There is no way to tell the frequency of the input

signal from samples obtained (the blue dots) unless we increase the sample rate.

Consider the same sampling rate and an input signal with frequency of 918 kHz, Figure 25.4. Again,

the sampled values are the same as when sampling a signal with frequency of 18 kHz!

This is why the Nyquist criteria requires to limit the frequency of the input signal to one half of the

sampling rate fs: to be able to determine the frequency of the input signal without any doubts. Also, if

there are multiple signals present, and some are above the Nyquist frequency, those appear as having

Figure 25.2: Sampling more often than Nyquist criteria requires;

horizontal scale in seconds, arbitrary vertical scale

Figure 25.3: Under-sampling: the input signal frequency is 318 kHz

Figure 25.4: Under-sampling: the input signal frequency is 918 kHz

AM radio receiver 3

a frequency in the range from zero to fs/2, and can deceivably change the result of processing.

However, if one is not interested in the frequency of the input signal, and one is capable of limiting the

range of input frequencies, then one can sample a signal less than twice per period. The signal X, which

has a frequency fX anywhere between fs and 3fs/2, will appear as having a frequency of fx-fs. Also, when

the frequency fX lies between 2fs and 5fs/2, the sampled version will appear to have a frequency of fx-

2fs, Figure 25.5.

We can therefore sample the 918 kHz input signal with a sampling frequency of 100 kHz, and the

sampled version of the input signal X1 will appear to have a frequency of 18 kHz!

There is only one detail still to be considered: the sampling time of the sample & hold (S&H) circuit

at the input of the ADC. This circuit is used to make a local copy of the input analog voltage and hold

is steady during the conversion. The circuit needs some time to make a local copy, this time is selected

by a parameters during the initialization of the ADC. The time to make a copy should be significantly

shorter than a period of the input signal, in our case about 1 s; if the sampling time is long then the

circuit is actually averaging the shape of the input signal during the sampling time, and this results in

reduced amplitude of the sampled signal. The sampling time of 100 ns is arbitrary the maximum we

can afford. In our case the initialization of the ADC uses ‘ADC_SampleTime_3Cycles’ parameter for

function call “ADC_RegularChannelConfig”. With the ADC clock set at 30 MHz, one ADC clock cycle

takes about 30 ns, and three clock cycles take about 90 ns, which is still sufficient not to reduce the

amplitude significantly.

The rest of the data processing is close to the one described in Chapter 23. The sampled input signal

X1 is first stripped of a DC to make X2. Since the frequency of the input signal is at 18 kHz, the “DC

removal” filter returns almost the same amplitude as the AC signal X1 has, see the diagram in Figure

24.3.

𝑋2 = 𝐴(𝑡) sin 𝜔𝑡

A local DDS generator provides two signals with frequency𝜔𝑙 = 2𝜋 ∙ 18 𝑘𝐻𝑧, these are phase

shifted for 90 degrees. Two multipliers provide signals Y0 and Y90.

𝑌0 = 𝐴(𝑡) sin 𝜔𝑡 ∙ sin 𝜔𝑙𝑡 =
𝐴(𝑡)

2
 [cos(𝜔 − 𝜔𝑙)𝑡 − cos(𝜔 + 𝜔𝑙)𝑡]

𝑌90 = 𝐴(𝑡) sin 𝜔𝑡 ∙ cos 𝜔𝑙𝑡 =
𝐴(𝑡)

2
 [sin(𝜔 − 𝜔𝑙)𝑡 + sin(𝜔 + 𝜔𝑙)𝑡]

Each of these intermediate signals is composed of two parts. Since the frequency of the local

oscillator is close to the frequency of the sampled signal, the frequency of the left component (𝜔 −

𝜔𝑙) is almost zero, while the frequency of the right component (𝜔 + 𝜔𝑙) is almost twice the frequency

of the local oscillator. Low-pass filters, as the next stage in signal processing, remove both high

frequency components.

Figure 25.5: Under-sampling regions:

input signal with frequency 𝑓𝑋 (𝑛𝑓𝑠 ≤ 𝑓𝑋 ≤ (𝑛 + 0.5)𝑓𝑠) translates as having frequency 𝑓𝑋
′ = 𝑓𝑋 − 𝑛𝑓𝑠,

input signal with frequency 𝑓𝑋 ((𝑛 + 0.5)𝑓𝑠 ≤ 𝑓𝑋 ≤ (𝑛 + 1)𝑓𝑠) as having a frequency 𝑓𝑋
′ = (𝑛 + 0.5)𝑓𝑠 − 𝑓𝑋,

f
X

0 50k 150k 250k 350k 450k100k 200k 300k 400k

[kHz]

AM radio receiver 4

A brief discussion is in place here. Actually, the left component is multiplied with the envelope signal

A(t) which spans up to 4.5 kHz; the product therefore spans up to 4.5 kHz + |𝜔 − 𝜔𝑙|. The low-pass

filter should have a corner frequency of at least 4.5 kHz to let the usable components pass. The

implemented version of a filter has a corner frequency of 2500 Hz, this affects the frequency spectrum

of the received signal, and the music sounds as having a “treble” setting on a regular receiver pushed

to a low setting to muffle the high tones. A different set of filter coefficients might be in order here.

The result of the filtering are then FY0 and FY90:

𝐹𝑌0 =
𝐴(𝑡)

2
 cos(𝜔 − 𝜔𝑙)𝑡 𝐹𝑌90 =

𝐴(𝑡)

2
 sin(𝜔 − 𝜔𝑙)𝑡

These two signals contain the information on the amplitude A(t) of the signal X, and we can

calculate the envelope using a simple mathematics:

√𝐹𝑌0
2 + 𝐹𝑌90

2 =
𝐴(𝑡)

2
 → 𝐴(𝑡) = 2 √𝐹𝑌0

2 + 𝐹𝑌90
2

Calculating the geometrical sum of signals FY0 and FY90 gives a weighted envelope of the detected

signal, this is then sent to an active loudspeaker for listening.

25.2. The implementation of the AM radio receiver

The AM radio receiver project requires an antenna and a

tuning circuit, the schematic diagram is given in Figure 25.6. A

signal from a function generator can be connected instead, and

the generator can be set to generate the AM signal. The output

of the tuning circuit is applied to the analog input of the

microcontroller, ADC_IN2, where it gets sampled into X1 and

then processed.

The program for signal processing is implemented as an

interrupt routine, which is driven by timer TIM5, the time

interval between successive interrupts is fixed to 10 s (100 kHz

sampling). The program generates signals for local oscillator

using the DDS technique, and processes the acquired signals.

The sampling of the input signal is implemented the same way as described in chapters 12 and 13.

The timer overflow triggers the ADC to start the conversion, and the end-of-conversion signal from the

ADC is used to interrupt the microcontroller and start the interrupt routine ADC_IRQhandler.

The theory behind the AM demodulation requires the calculation of a geometrical sum of two

signals. Squaring a variable is fast, but taking a square root of a variable is slow; this takes about 4 s

on the STM32f407 running at full speed. This is just sufficient to perform the complete data processing

between two successive samples.

The ADC interrupt function for the AM radio receiver is presented in the listing below.
void ADC_IRQHandler(void) {

 GPIOE->BSRRL = BIT_8; // about 8 us altogether // 2

 int Spare = ADC1->DR; // to clear ADC IRQ flag // 4

 X1[k] = (ADC2->DR & 0xfff); // acquire X1 // 5

 X2[k] = X1[k] - X1[(k-1) & 63]; // remove DC component // 6

 Y0[k] = X2[k] * Table[ptrTable >> 4]; // multiply with sin // 7

 Y90[k] = X2[k] * Table[((ptrTable >> 4) + 1024) & 4095]; // multiply with cos // 8

 float conv = 0; // LP filter (sin) // 10

Figure 25.6: The external circuit to the

BaseBoard for the AM radio receiver

experiment

60uH

1000pF max

antenna

ADC_IN2

AM radio receiver 5

 for (int m = 0; m<5; m++) conv += a[m] * Y0[(k - m) & 63]; // 11

 for (int n = 1; n<5; n++) conv += b[n] * FY0[(k - n) & 63]; // 12

 FY0[k] = conv; // 13

 conv = 0; // LP filter (cos) // 15

 for (int m = 0; m<5; m++) conv += a[m] * Y90[(k - m) & 63]; // 16

 for (int n = 1; n<5; n++) conv += b[n] * FY90[(k - n) & 63]; // 17

 FY90[k] = conv; // 18

 float Res = FY0[k] * FY0[k] + FY90[k] * FY90[k]; // add geometrically // 20

 float ResRes = (float)(sqrt((double)Res)); // sqrt takes about 4 us ! // 21

 DAC->DHR12R1 = Table[ptrTable >> 4] + 2048; // local oscillator out // 23

 DAC->DHR12R2 = (int)(ResRes / 64 + 128.0); // demodulated out // 24

 ptrTable = (ptrTable + 11796) & 0xffff; // next excitation // 26

 k++; k &= 63; // 28

 GPIOE->BSRRH = BIT_8; // 29

}

The function commences with setting pin 8, port E, high to signal the start of execution, line 2; the

same pin is reset when the function ends, line 29. Lines 4 and 5 read the result of conversion from both

ADCs and store one of them into circular buffer X1, which has 64 elements. The removal of the DC

component is performed in line 6, and the result is stored in a circular buffer named X2.

The following two lines 7 and 8 implement the multiplication with locally generated signals with

frequency of 18 kHz and different phases. The multiplication is followed by filtering for each

component separately in lines 10 to 13 and 15 to 18. Both filtered components FY0 and FY90 are added

geometrically in lines 20 and 21. The resultant envelope is sent to a speaker using a DAC2 in line 24,

for testing purposes the signal of local oscillator is available at DAC1.

The frequency of the local oscillator depends on incrementing of the pointer to the table. For

frequency of 18 kHz we need to use 11796 to increment the pointer, as implemented in line 26. In

practice, any value between 10500 and 13000 will do; values off the correct value only reduce the

amplitude of the detected envelope.

The listing of the rest of the program is given below.

int main () {

 for (ptrTable = 0; ptrTable <= 4095; ptrTable++) // 2

 Table[ptrTable] = (int)(1850.0 * sin((float)ptrTable / 2048.0 * 3.14159265)); // 3

 GPIOEinit (); ADCinit_T5_CC1_IRQ(); DACinit(); // 5

 TIM5init_TimeBase_CC1(840); // 840 == 10us == 100kHz // 6

 while (1) {}; // endless loop // 8

}

This listing starts with the inclusion of CMSIS files and the declaration of the variables used; this is

not shown in this listing. The function “main()” commences with the initialization of the table for the

DDS generator as already explained in chapter 16, and continues to the configuration functions for

port E, ADC, DAC and timer TIM5; all configuration functions were already described in previous

chapters.

The endless while loop, line 8, is empty; all data processing is performed in the interrupt routine.

AM radio receiver 6

[1] Richard G. Lyons: Understanding digital signal processing, second edition, chapter 2

