3. Programming the STM32F4-Discovery

The programming environment including the settings for compiling and programming are described.

3.1. Hardware - The programming interface

A program for a microcontroller is prepared on a personal computer (PC) using a suitable set of
programes. First the source code of the program is written, than this code is translated into the machine
code for a particular microcontroller, the STM32F407VG in our case. The developer then loads the
code into the memory of the microcontroller. Several methods for loading are known. Most universal
programmers (devices that fit between a PC and the target microcontroller, and allow the transfer of
the code into the microcontroller) support JTAG method. The company ST introduced a method called
serial wire debug (SWD), which uses fewer wires than JTAG method. The method SWD is supported by
STM32F4DISCOVERY board, and the programmer that comes between a USB connector and the SWD
pins of the microcontroller is available on the Discovery board.

The STM32F4DISCOVERY board hosts additional connector for SWD signals and can also be used to
program external free standing microcontroller of the same family.

3.2. Software — The IAR EWB for ARM microcontrollers

The complete procedure of writing, compiling and testing the user program can be done in a set of
programs called the development suite. We are going to use the IAR (the name of the company)
Electronic Work Bench (EWB) for ARM microcontrollers. The current version is 6.7. All demo programs
will be prepared using the free version of the software; this version is size-limited, but our needs are
way below the limits of the suite. The current version IAR EWB and instructions for the installation can
be downloaded from IAR website.

The IAR EWB requires at least the following files to create the machine code for the microcontroller:

- The user program, a text file written in “C” language.

- The file “startup_stm32fdxx.s”, a text file written in assembly language; this file contains
instructions for the initial set-up of the microcontroller (stack, program counter, interrupt
vector table, initial system clock ...; the description of the file is given in its header).

- The file “system_stm32f4xx.c”, a text file written in “C”; this file contains functions for the

detailed microcontroller set-up (system clock, clock distribution ...; the description of this file is
given in its header).
In our case the file may have different names; since the file contains clock configuration
commands it is best to prepare several files in advance, each for a different configuration of the
clock and then simply include in the process of compiling the file that corresponds to the
current needs. We will run the microcontroller at its maximum speed, and the corresponding
file is named “system_stm32f4xx_CLK168 HSES8.c”.

Programming the STM32F4-Discovery 2

- The header file “stm32f4xx.h”; this file defines processor used, names the registers and bits
inside the STM32F4xx microcontroller, and defines some register structures. This is the only
file that must be included from the user program in the process of compilation. The file has
been modified from the original (obtained from the ST site):

o by uncommenting the line 68 (select the microcontroller STM32F40xx by default),
o by uncommenting the line 88 (allow the use of standard peripheral driver) and
o by changing the HSE frequency in line 100 (from 25000000 to 8000000, as used at the
STM32F4-Discovery board).
- The header file “system_stm32f4xx.h”; allows the definition of some stuff for the use of CMSIS.
- The header file “stm32F4xx_conf.h”; defines and includes some files mandatory for the project.

The peripherals included in microcontrollers STM32F4xx are complex, and their operation is
configured and monitored using several control registers for each individual peripheral, the details are
given in reference manual RM0090. Bits in control registers define the operation of peripherals, and
can be manipulated from the “C” language by simple writes into these registers. However, the
programmer must know the exact location and function of each individual bit, which may be an
overwhelming task for such a complex microcontroller. To overcome this problem a standard to ease
the use of control registers has been developed. It is

called ‘Cortex Microcontroller Standard Interface 4 || STM32F 4, DSP_StdPeriph_Lib_VL.L0
System’, or CMSIS for short. The standard defines a set of _htraresc

functions written in “C” language, each of them 4 [Libraries

manipulating exactly the bits to define the operation of a ‘ ”""SI?

peripheral. When using the CMSIS the programmer does “ De;ce

not need to know the exact location and function of bits, 4 1) STMI2Eds

he/she must only know what the peripheral is capable of Include

and call appropriate functions, which are located in CMSIS 4 Source

4 Templates

library; functions take care of setting bits in control
registers correctly. The standard covers several families of

arm

gee_rideT
microcontrollers, and also eases porting of software from iJar
one type of microcontroller to another. The complete TASKING
library for STM32F4xx series microcontrollers is available . Documerl;;'ifUDm
at ST site as “STM32F4xx_DSP_StdPeriph_Lib_V1.1.0” at B Core
the time of writing. The directory structure of the . 1 DsP
expanded library is given in Fig. 3.2. - |l General
The use of CMSIS standard is the reason that additional :l;h
files are mandatory during the process of compilation - DSP_Lib
beside the ones listed above. Two files are associated with Include
every peripheral in the microcontroller: bk
- The header file defines the data structures used in :.I[?b
accessing the peripheral and names the registers and 4 || STM32F 40 StdPeriph_Driver
constants (“stm32f4xx_5$555.h”). inc
- The source file contains the actual functions to access ‘ pmjs::t S —
the registers responsible for the behavior of 1 STM32Fdec SedPeriph_Bamples
peripherals (“stm32f4xx_5$55S5.c”). - STI‘-;132F4:-::-c_‘3tcll3eriph_TempIates@

Here “$$$$” stands for the name of the peripheral. tilties

The compiler must know the location of all header and Fig. 3.2: The directory structure of the

CMSIS library

Programming the STM32F4-Discovery 3

include files used, and this must be specified in the compiler setup before the compilation process.

All files mentioned are available in the CMSIS library, see Fig. 3.2 for the expanded directory
structure of the library. The files “system_stm32fdxx.h” and “stm32fdxx.h” are located in directory
“Include”, upper black arrow. The programming environment dependent file “startup_stm32f40x.s” is
located in directory “IAR”, lower black arrow. Please note that these files are original, unmodified ones,
and it is most convenient to store the modified versions to a separate directory and call them from
there. CMSIS header (*.h) and source (*.c) files describing peripherals are located in directories “inc”
and “src” respectively, both red arrows. Some examples on the use of CMSIS library are given in
directory “STM32F4xx_StdPeriph_Examples”, and templates for different compilers are given in
“STM32F4xx_StdPeriph_Templates”, blue arrow.

The process of downloading the compiled program into the microcontroller requires one additional
file with the description of downloading procedure and the destination memory for the program, this
file is called linker configuration file. There are three options to choose from as far as the destination
memory is concerned: the file may be programmed into the flash memory, the file may be downloaded
into the random access memory inside the microcontroller or the program may be loaded into an
external RAM. All three configuration files have the extension “.icf”, and can be found in
“STM32F4xx_StdPeriph_templates\EWARM”. Since we want to make programming permanent we will
only use the file named “stm32f4xx_flash.icf”.

Two additional files were prepared for these experiments, “LCD2x16.c” and “dd.h”. The first
contains functions to display character strings and numbers at the alphanumerical LCD display, the
second one defines some constants and interfacing pins. Both files should be made available during
the compilation process.

3.4. Creating of a new workspace and a project within

Programs for microcontroller are prepared in a workspace, an imaginary working environment
containing all the user supplied stuff to compose the final machine code. The workspace is associated
with a folder on a computer disk. The workspace contains projects;

each project holds a complete set of files (or references to files 4 | Workspacel
common to several projects) that constitute one user program. Prajectl
Typically all files needed for a project are stored in a designated sub- Project?
folder within a folder for the workspace to avoid the naming Project3

confusion of individual files within the workspace.)
Figure 3.3: Folders created

The procedure for creating a new workspace and a project within to host the workspace and

will be described step-by-step. The directory structure to hold the

three projects
workspace and projects is created first using the Windows Explorer,

Mame . Date modified Type Size

L dd 2.12.2013 13:57 H File KB
[LCD2x16 3.12.2013 8:50 CFile 5 KB
| 7| startup_stm32f 4 10.1.2013 11:54 SFile 25 KB
L strnd2fdex 17.12.2013 9:17 H File S533KE
|| stm32fde conf 5.12.2013 9:15 H File 4B
|| stm32fde flash.icf 28.3.2013 9:09 ICF File KB
| system_stm32fdux 10.1.2013 11:54 H File 3 KB
|| system_stm32f e CLKLGE_HSES 442013 11:03 File 21 ER

Figure 3.4: The mandatory files are copied into the project directory

Programming the STM32F4-Discovery 4

the directory structure is given in Fig. 3.3, for hosting three projects (Project1, Project2 and Project3)
within a workspace called Workspacel. Additional directories can be added later to host more projects
in the same workspace. A set of files as listed in Fig. 3.4. is copied into each of the project directories
for easy access and inclusion into the user program. Note that some of these files are modified versions
of the originals given in the CMSIS library.

3.4.1. Create a workspace

Initially the “IAR Embedded Workbench” is opened resulting in an empty space in the center of the
program window and empty workspace in the left part of the window, Fig. 3.5. This state can be
achieved also by clicking the “File” option from the menu, followed by “New” and “Workspace”.

File Edit View Project Tools Window Help

DaHd@ & iBRlv o YR ePdERh BNRE|LL

Waorkspace x | - X

[-

Files L

Figure 3.5: A newly opened »IAR Embedded Workbench« with an empty workspace on the left

3.4.2. Create a project

- Click “Project” option in the menu, and then click “Create New Project ...” to get a window
as shown in Fig. 3.6.

Tool chain: | &RM -

Project templates:

+ Emphy project

B asm

-- C++

W e

‘. Extemnally built executable

Description:

Creates an empty praject.

[Ok] ’ Cancel]

Figure 3.6: A window to create a new project

Programming the STM32F4-Discovery 5

- Select “Empty project” and click “OK” to get a window “Save As”. Navigate to the folder
where the project is to be saved (The “Workspacel\Projectl” in our case). Under “File
name:” type in the name of new project, like “MyFirstProject”, and click “OK”. The skeleton
of the new project will be created in the stated directory, and the Workspace window (Fig.
3.5, left part of the window) of IAW EWB will contain the name of the newly created project.

- Save the newly created workspace by clicking “File” option in the menu and then clicking
“Save Workspace”, navigate to the appropriate folder for the workspace (“Workspacel” in
our case), state the name (“MyFirstWorkspace” for instance) of the newly created
workspace in “File name:” and confirm saving by clicking “Save”.

3.4.3. Add files to project

Every project must contain at least files listed in the Fig. 3.4. Some of them are included from the
user program, some are specified at the time of compilation, and some must be added in the project
itself. The last are “startup_stm32f4xx.s”, “system_stm32f4xx_CLK168 HSE8.c” and the “C” file
containing the user program.

- The first two files are added to a project by right-clicking the name of the project in the
workspace window and selecting option “Add” -> “Add Files” from a drop-down menu. This
opens a window where appropriate files can be selected (from the “Workspace1\Project1”
folder in our case).

- Additionally, a new file with the user program must be created. A new file is created by
clicking the leftmost icon in the toolbar (a symbol for empty pages). An empty page appears
in the right IAR window, and the user can write new text onto the page. The user program
must start with the line “#include “stm32f4xx.h”” to allow the use of predefined names for
register in the microcontroller. The file must include at least the function “void main (void)”.
The file should be saved in the folder of the choice (“Workspacel\Project1” in our case) and
can have any name, like “MyFirstFile.c”. This file must also be added to the project using the
same procedure as stated previously.

The result is the IAR EWB window shown in Fig. 3.7.

& IAR Embedded Workbench ID| b=k
File Edit View Project Simulator Tools Window Help

DA = | | - WHL(2D
e X | MyFirstFile | fO - %
Debug hd #include "stu3Zfdx.h” =

Files foo E

= - roid main (woid) !

=l |MyFirstProject - Debug * E %)

by FirstFile.c .

fshstartup_stm32f4 0o s .

system_stm32ido_CLK168_HSER.c -

3 Cutput

MyFirztProject A ol 3

D MyPraducts)\ STM32F S Warkspace I'Project ' MyFirstProject.ewp

Figure 3.7: A fully defined minimal project within a workspace

Programming the STM32F4-Discovery 6

3.4.4.

The process of altering the user provided source code into machine code consists of compiling and
linking. The IAR Embedded Workbench does both, but needs additional information for the process.
This information can be supplied by clicking the option “Project” in the menu and then “Options..”.
This brings out a window where options for the operation of the compiler and linker can be configured.

Define options for a project

- The IAR Embedded Workbench needs to know the microcontroller to compile for. Under “General
Options” click “Device” and select the appropriate ST microcontroller (STM32F407VG) as shown in
Fig. 3.8.

l

Options for node "

Categary:
/i ++ Campiler /

Assembler
Target | Qutput | Library Configuration | Library Options | MISBA-C:200) 4 | &

Oubput Converter
Custor Build
Build Actions B .
| Linker Tocessor vanant
Diebugger) Core Corteshdd
I Simulatar
I Angel @ Devic
CMSIS DAP
GDE Server

IAR ROM-monitor

T-jeki 1T AGjet
J-Linkf3-Trace
TI Stellaris
Macraigor

FFU

WFPyva -

Endian mode
@ Little
Big
BE32

PE micro

RDI

ST-LIME
Third-Party Driver
T1 #DS1004200

@ BES

[Ok] [Cancel

Figure 3.8: Select the microcontroller

- Enable the CMSIS standard and libraries by ticking the appropriate tick box, Fig. 3.9.

Options for node "N X

Category:

General Options
CIC++ Compiler

Assembler . . .
Oukput Converter Target | Output | Library Configuration | Library Options | MISF&-C:200 4| ¢
Custorm Build . L
Build Actions Librany: Drescription:
Linker Use the normal configuration of the C/AC++
Debugger runtime library. Mo locale interface, C locale, no
. 93 file descriptar support, no multibytes in print and
Simulator scanf, and na hex floats in striod.
angel
(ZM3IS DaP
GDB Server $TOOLKIT_DIR$AMCNCADLb_Config_Maormal h

IAR RCM-monikar
-t/ ITAG]EE
J-Linkf3-Trace

[] Enable thread suppart in bran

Library low-level interface implementation

TI Stellaris) Mane stdaut/stderr ueeisis
Macraigor @ Semihosted @ ‘ia semihosting)

FE micro . o [O5P library
RO 1&F breakpoint 0 Wia Swid

ST-LIMK

Third-Party Driver
TI xD5100/200

[Ok] ’ Catcel

Figure 3.9: Enable the use of CMSIS standard

Programming the STM32F4-Discovery

Set the level of optimization for compiler, Fig. 3.10. The default is “Low”, but we can safely select

“Medium” to speed-up the execution of the program. Selecting the option “High” enables the
compiler to actually modify the user program in order to speed-up the execution, and is to be used

with caution.

Options for node "

|

Categorny:

General Options
CJC++ Compiler
Assembler
Output Converker
Custom Build
Build Actions
Linker
Debugger

Simulakar

Angel

CMSIS DAR

GCE Server

IAR ROM-monitar
I-jet/ITAGjEt
J-Link/3-Trace

TI Stellaris
Macraigar

PE micro

RDI

ST-LIMK
Third-Party Driver
TI ¥DS1007200

Factory Settings

[Multifile Campilation

Discard Unused Publics \

| Language 1 | Language 2| Cods | Optirnizations Dutputl Ligt | Flita] &

Lewel Enabled transformations:
(2 Nane Comman subexpression elimination
[[Loop unraling
‘w [EFunction inlining
. Code matian
hg [F] Type-based alias analysis
Balanced Static clustering
N size constraints [FInstruction scheduling

[Ok] ’ Cancel

Figure 3.10: Enable optimization, level “Medium”

The IAR Embedded Workbench needs to know the location of header and include files conforming
to CMSIS standard to handle the peripherals, Fig. 3.11. The folders for these files are specified

relatively to the directory where the project is located (variable SPROJ_DIRS). From this directory

Cateqgony:

General Options
C/C++ Compiler
Assembler
Output Converker
Custam Build
Build Actions
Linker
Debugger

Sirnulator

Angel

CMSIS DAP

GCE Server

IAR RCM-monitor
I-jet{ITAGiet
J-Link{3-Trace

TI Stellaris
Macraigor

PE micro

RDI

ST-LIME
Third-Party Driver
TI ¥D5100/200

—Opﬁons for node "

<f

N 3PROJ_DIR$,. A NS TM3ZF 4us_DSP_StdPeriph_Lib_1.1.05i

[bulti-File Compilation
Dizzard Unused Publics

\Factory Settings

| Language 2 I Code | Dptimizationsl Output | Lizt | Preprocessor || 4 -

[1gnare =

dditional include directaries: (one per ling]
$PROJ_DIR$S. W NS TM32F 4wy DSP_StdPeriph_Lib_%1.1.00ikr »

Preinclude file:

(-]

Defined symbols: [one per line]
I [Preproceszor output ta file
Preserse comments
Generate Hline directives

[Ok J[Cancel]

Figure 3.11: State the location of CMSIS header and include files

Programming the STM32F4-Discovery

the relative path leads two levels up (“\..\..”) and then downwards to directory named
“\STM32F4xx_DSP_StdPeriph_Lib_V1.1.0\Libraries\STM32F4xx_StdPeriph_Driver\inc”
“\STM32F4xx_DSP_StdPeriph_Lib_V1.1.0\Libraries\STM32F4xx_StdPeriph_Driver\src”, see Fig.

3.2 for reference.

The machine code can be prepared to run from flash memory, from RAM or from external RAM,
but the linker must know the desired destination for the code. We define if by selecting the

appropriate linker configuration file “stm32f4xx_flash.icf” as shown in Fig. 3.12.

—Opﬁons for node "

Cateqgony:

General Options
C/C++ Compiler
Assembler

/

Factory Settings

Output Converker

Config | Library | Inpuit I Optimizations I Advanced | Output I List

|<r

Custam Build
Build Actions

Debugger

rdgr configuratian file
21T Lk

| Sirnulator

$PROJ_DIR $strn32f4xs_flash.ick

Angel

CMSIS DAP

GCE Server

IAR RCM-monitor
T-jet{ITAGIEE
J-Link{3-Trace

| TI Stellaris

| Macraigor

| PE micro

| RDI

ST-LIME
Third-Party Driver

Edit...

Configuration file symbal definitions: [one per ling)

TI¥D5100/200

[o

J[Cancel]

Figure 3.12: The machine code will be downloaded into the flash memory, and it must be linked accordingly

Options for node "

Categorny:

General Options
C/C++ Compiler
fssembler

/

Output Converker

Setup | Dawnload | Images | Eutra Optiohs | F'Iugins|

Factory Settings

Custom Build
Build Actions
Linker

Debugger

| Simulator
Angel

CMSIS DAR
GDE Server
IAR ROM-monitor
T-jet{ITAGIEt
J-Link{1-Trace
TI Stellaris
Macraigar

PE micro

RLI

ST-LIME

[Use maca filefs)

Device description file
[Dwerride default
$TOOLKIT_DIR$ACOMFIG debugger STAS TM 32F 407 G, ddf

[¥]Runta

main

Third-Party Driver

T1 051007200

[ok

J[Catcel]

Figure 3.13: ST-LINK / 2 programmer is used for downloading and debugging

and

Programming the STM32F4-Discovery 9

We will use the ST-LINK / 2 programmer embedded onto the STM32F4-Discovery board to
download and debug the machine code, so we need to tell the IAR EWB about our selection, see
Fig. 3.13.

Since we want to load the machine code into the flash memory the programmer must use the
appropriate protocol for the download, namely the flash loader, see Fig. 3.14.

Cptions for node *

General Options
CfC++ Compiler
Assemblar
Output Corwerter Setup | Download | Images I Extra Optionz I F'Iugins|
Cuskorn Build
Build Actions
Lirker [verify download
Debugger

| Sirnulakor

Angel

CMSIS DAP

GDE Server $TOOLKIT_DIR$hconfighflashinadsr S T4FlashS T3

IAR, ROM-monitor

I-jet{ ITAGjEt Edit...

J-Linkf3-Trace

TI Stellaris

| Macraigor

PE micro

| RDI

ST-LIMK

Third-Party Driver

TI xD5100/200

Categony: / Factory S ettings

[sthach ta rumning target

LS uppress download

..
P

Overide default .board file

flazh loader(z]

[Ok J[Carncel]

Figure 3.14: The programmer should load the machine code into flash memory

The target microcontroller is connected using a ST-LINK and SWD protocol, Fig. 3.15.

Options for node "

General Options
C/C++ Compiler

Categarn: / Factory Settings

Assembler
Output Converber ST-LINK
Custom Build Reset
Build Actions
Linker ’ Marmal -
Debugger
| Simulakar Interface Clock setup
Angel
CMSIS DAP) JTAG CPU clock: 720 MHz

GDE Server
IAR ROM-manitor @ S clock: (] Auto
T-jek{ITAGIst 2000 KH2

| J-Link/]1-Trace
| TI Skellaris

| Macraigor

PE rricra

| RDI

ST-LIMKE

Third-Party Driver
TI xD5100{200

[Ok][Cancel]

Figure 3.15: Use SWD as the preferred protocol for downloading the code

Programming the STM32F4-Discovery 10

3.5. Compiling and debugging a project

Once the user program is typed-in and saved, and all the above settings are in place, one can run
the compiler and linker to convert the user program into the machine code.

e The compilation and linking can be initiated either from the menu (“Project” -> “Compile”) or
simply by pressing F7. There is also an icon on the toolbar to initiate the compilation (Fig. 3.7,
fifth icon from the right on the toolbar).

e The compilation, linking and download to the target processor can be initiated by simply
clicking the second icon on the right from the toolbar. If either compiler or linker finds errors
during the process, they issue warning and/or error messages and stop the process.

The debugging of the program can be either pure simulation in software of the personal computer
or running in real hardware.

e When the first is desired, the step described in Fig. 3.13 must be different: the “Simulator”
must be selected instead of “ST-LINK”. The machine code will not be sent to the
microcontroller, but kept inside the personal computer instead. The personal computer will
read the machine code step by step and simulate the behavior of real microcontroller. This
mode is essential for testing algorithms for all possible values of input variables, but cannot
simulate the real hardware (interrupt requests, timers/counters, ADCs, DACs, ...).

- When the second is desired, the real hardware with the microcontroller is mandatory. In this
case the program and hardware can be fully tested in real life situation, as we are going to do.

The download of the program is initiated by pressing the button with the green triangle pointing
right, or can be initiated using the menu. The suite then enters the debug mode, and Fig. 3.16 gives a
sample of the debug session in progress.

The execution of the program is started by clicking the “Run” button, the one with three arrows to
the right, just left to the button with the red “X”. Clicking the button with a hand stops the execution,
and clicking the button with a single arrow pointing to the left resets the microcontroller. Various
options for single-stepping are available, the currently executed line is marked with a green arrow left
of the listing. The simulation/emulation stops when the user clicks the button with the red “X”.

The execution of the running program can be stopped at a certain line of the program using
breakpoints. A breakpoint can be set onto a specific line of code using the double click in front of the
line, which brings a red dot beside the line with the breakpoint. Please note that the compiler optimizes
the user supplied source code, and some lines of the user program can be omitted and embedded in
nearby lines. Breakpoints cannot be placed onto the missing lines, and in such case the suite places a
breakpoint to the nearest existing line of the user program.

The content of all registers is available for inspection and alteration when the program is stopped
either manually or after a breakpoint. One needs to click option “View” in the main menu and then
“Registers” in the drop-down menu. This opens a new window inside the IAR EWB window with the
content of the CPU registers, see Fig. 3.16, right. The user can select to inspect or modify registers
belonging to peripherals by clicking the drop-down box at the top of this window and selecting the
desired peripheral. Initially, the content of registers is shown in hex notation, but can be broken down
to bits by clicking the + sign in front of the register name.

The value of variables used in program can be shown by clicking the “Watch” option in the “View”
menu. This opens a new window, and the user can write the name of the desired variable into an

Programming the STM32F4-Discovery 11

empty slot. The value of the variable is returned to the right of the name when the program is stopped.
It is shown in hex notation initially, but can be converted to decimal, ASCII or binary on demand. Due
to optimization during the compiling of the program some variables might not be available for
watching. In such case the value will not be returned, but a message will be displayed instead. Variables
can be also inspected or modified when “View” -> “Quick View” is selected, but with different options.

Figure 3.16 gives an example of the IAR Embedded Workbench in the debug mode showing the
project window (where green arrow is used to point to the line to be executed when simulation is
started) and register window (showing the content of register associated with port A in hex notation.

File Edit View Project Debug Disassembly ST-LINK Tools Window Help

Dedd S| - SnuEe oo | By 38

2 L2220 o

=]
Watkspace x
[Debug v]

- x FReqister
— [GPRIDA ~|
-

[+|GPI0A MODER

MyFirstFile | fi)
#include "stm3IZfdwx.h™

Files o B OxAS000000

B (G MyFirstProj... «
by FirstFile.c
Az startup_st...
system_st..

(3 Output

MyFirstProject

void main (woid)
W7

GPIOA OTYPER
GFIODA OSFEEDE
GPIOA PUPDR
GFIOA IDR
GPIOA ODR
GFIOA BSRR
GPIOA LCER

GPIOA AFRH

OxAz00O0000
OxAS000000
OxAzOO0000
OxAS000000
OxAzOO0000
OxAS000000
OxAzOO0000
OxAS000000

=
hMessages

=

Building configuration: MyFirstProject - Debug
Updating build tree...

Configuration is up-to-date.

2 Debuglog Buid

Ready

Errars 0, Warnings 0

Figure 3.16: An example of a debug session in progress

Ln2 Cal L

