
 1

 DMA and ADC

The use of ADC and the transfer of results from the microcontroller to the PC was demonstrated in

experiment 14. The microcontroller was connected to a PC; the PC sent a command to start the

acquisition, then the microcontroller took 32768 samples at two ADC channels simultaneously; the

acquisition was controlled by timer, and ADC interrupts were used to move results from ADCs into the

memory of the microcontroller. The time interval between consecutive samples was 100 us. The next

command issued from the PC initiated the transfer of the acquired results from the microcontroller to

the PC, again using serial connection and USART_TX interrupts.

Using interrupts as in experiment 14 is too slow if one wants to sample analog signals at full speed

available at STM32F407 ADCs (about 2 MHz); the interrupt routine to move acquisition results from

ADCs to memory is the bottleneck. In this experiment we are going to use DMA block to move the

acquisition results from ADC into memory, and (since we already know how to do it from experiment

29) later to move them from memory to serial communication block. Basically, the interrupt activity

will be replaced by DMA activity, the sampling can be significantly faster but still simultaneous for two

ADCs.

30.1 The theory

The same theory as described in experiment 29 about the DMA transfers applies for this experiment

as well. The only difference is that appropriate DMA unit, stream and channel should be selected for

the transfer of acquisition results from both ADCs to the memory.

30.2 The outline of the program

Consider the following scenario for this experiment (the microcontroller is configured once in

advance):

- A PC issues a command ‘s’ to start the acquisition, the command is sent using a serial

communication to the microcontroller, USART3.

- The serial communication block USART3 is configured to issue an interrupt on receipt of a

character (RXIE, RX interrupt enable), therefore any character received invokes an interrupt

routine at the microcontroller (as described in experiment 14).

- Within the interrupt routine the microcontroller checks the character received; if it is an ‘s’, it

initiates a set of ADC acquisitions by enabling DMA block for ADCs. The DMA block is now ready

to move data from both ADCs to the memory of the microcontroller immediately after ADCs

end a conversion. DMA block is pre-configured to move 4096 results, and then issue a DMA

interrupt.

- Still within the same interrupt routine a timer is started; this timer is used to trigger the start

of conversion at the ADC on overflow, as it was configured in experiment 14. Then the program

exits the interrupt routine for USART3 TX.

DMA and ADC 2

- Every overflow of the timer now sends a StartOfConversion signal to ADCs. Upon the

EndOfConversion signal from ADCs results from both ADCs are moved by the DMA block from

ADCs to memory.

- The above action repeats 4096 times, then the DMA block issues an interrupt signaling

“acquisition finished”.

- The DMA interrupt routine gets executed. Here the timer is stopped, and the DMA for ADCs is

disabled. Then, still within the same interrupt routine, another DMA block for serial transfer is

configured to transfer 2 x 2 x 4096 (2 ADCs, 2 bytes per result, 4096 results) bytes from the

memory of the microcontroller to USART3, TX register. This DMA block gets enabled at the end

of the interrupt routine, then the microcontroller leaves the interrupt routine.

- The complete set of measurement results gets transferred from the microcontroller to PC using

serial channel.

Note that the complete transfer of results from ADCs to memory and from memory to USART gets

handled by the DMA, not by interrupt routines. The interrupt routine is used once only to stop the

acquisition after sufficient number of samples are gathered and to commence the transfer to the PC;

the microcontroller CPU is free to perform other tasks during the acquisition and transfers, and the

acquisition is fully hardware supported, therefore the time intervals between consecutive samples are

exactly equal.

30.3 The software

The program commences with configuration routines for LED outputs, serial block USART3, DMA

blocks DMA1 and DMA2, and the timer. Next the program prepares the initial part of the string that is

to be sent from the microcontroller to a PC, and enters an endless empty loop.

 Main
The listing of the “main” part of the program is given below. Using a #define statement the name

‘MAXRAW’ is initialized; this represents the number of samples to acquire and transfer, 4096 for this

experiment. Next (line 02) an array for the samples acquired is declared. The array consists words (16

bits, “unsigned short”, the same as registers for results in ADCs), and has three sections:

- First four words of the array will be reserved for four constants; it is a good idea to mark the

beginning of the string with some special characters so that the PC (actually the software that

shall interpret bytes within the string) can recognize the commencement of the string. Since

our ADCs cannot produce results like 0xffff (we use 12-bit ADCs, therefore the highest result

can be 0x0fff) a pair of 0xffff words is adequate. Additionally, one might want to pass some

additional measurement parameters from the microcontroller to the PC, so additional two

words are reserved for this purpose; altogether four words.

- Next ‘MAXRAW’ words are reserved for results from ADC1, and

- last ‘MAXRAW’ words are reserved for results from ADC2.

The “main” routine commences with calls to configuration routines for peripherals used, lines 03

to 09. The names of routines clarify the peripherals in question. Note that the last configuration routine

for timer uses a parameter 83, which is the number of clock periods (actually 84 - 1) that cause the

overflow of this counter; this number defines the time interval between two overflows as 1 us.

The configuration part is finalized with the initialization of the first four words of the array, then the

program enters the infinite empty “while” loop. All action from this moment on is hidden mainly within

the hardware and partially within interrupt routines.

#define MAXRAW 4096 // 01

short unsigned volatile ADCraw[4 + MAXRAW + MAXRAW]; // 02

DMA and ADC 3

void main(void) {

 GPIOD_LEDS(); // 03

 USART3_init(921600); // 04

 DMA1forUSART3_init(); // 05

 ADCinit_T3_TRGO_DMA(); // 06

 DMA2forADC1_init(); // 07

 DMA2forADC2_init(); // 08

 TIM3init_ADCtrigger(83); // 1us intervals! // 09

 ADCraw[0] = 0xffff; ADCraw[1] = 0xffff; // 10

 ADCraw[2] = 0x0000; ADCraw[3] = 0x0100; // 11

 while (1) { }; // 12

}

 Configuration of LED outputs
Output pins for LEDs are configured first using a standard configuration procedure, the listing is

given below.

// initialize port LEDS: pins 12, 13, 14, 15, port D as outputs

void GPIOD_LEDS (void) {

GPIO_InitTypeDef GPIO_InitStructure;

 RCC_AHB1PeriphClockCmd(RCC_AHB1Periph_GPIOD, ENABLE);

 GPIO_InitStructure.GPIO_Pin = GPIO_Pin_12 | GPIO_Pin_13 | GPIO_Pin_14 | GPIO_Pin_15;

 GPIO_InitStructure.GPIO_Mode = GPIO_Mode_OUT;

 GPIO_InitStructure.GPIO_OType = GPIO_OType_PP;

 GPIO_InitStructure.GPIO_Speed = GPIO_Speed_100MHz;

 GPIO_InitStructure.GPIO_PuPd = GPIO_PuPd_NOPULL;

 GPIO_Init(GPIOD, &GPIO_InitStructure);

}

 Configuration of USART block
The configuration of the USART block is almost the same as for experiment 29. The only difference

is that this time the USART block should be able to call an interrupt routine for every character received

(and not transmitted), so the last three lines are added to enable interrupts in the listing below. Such

configuration was used in experiments on serial communication, chapter 14.

//USART3 initialization, GPIOD 8:9, TX&RX, IRQ on RX

void USART3_init(int BaudRate) {

USART_InitTypeDef USART_InitStructure;

GPIO_InitTypeDef GPIO_InitStructure;

 RCC_AHB1PeriphClockCmd(RCC_AHB1Periph_GPIOD, ENABLE);

 GPIO_InitStructure.GPIO_Pin = GPIO_Pin_8 | GPIO_Pin_9;

 GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF;

 GPIO_InitStructure.GPIO_PuPd = GPIO_PuPd_NOPULL;

 GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;

 GPIO_InitStructure.GPIO_OType = GPIO_OType_PP;

 GPIO_Init(GPIOD, &GPIO_InitStructure);

 GPIO_PinAFConfig(GPIOD, GPIO_PinSource8, GPIO_AF_USART3);

 GPIO_PinAFConfig(GPIOD, GPIO_PinSource9, GPIO_AF_USART3);

 RCC_APB1PeriphClockCmd(RCC_APB1Periph_USART3, ENABLE);

 USART_DeInit(USART3);

 USART_InitStructure.USART_BaudRate = BaudRate;

DMA and ADC 4

 USART_InitStructure.USART_HardwareFlowControl = USART_HardwareFlowControl_None;

 USART_InitStructure.USART_Mode = USART_Mode_Rx | USART_Mode_Tx;

 USART_InitStructure.USART_Parity = USART_Parity_No;

 USART_InitStructure.USART_StopBits = USART_StopBits_1;

 USART_InitStructure.USART_WordLength = USART_WordLength_8b;

 USART_Init(USART3, &USART_InitStructure);

 USART_ITConfig(USART3, USART_IT_RXNE, ENABLE); // enable IRQ on RX, disable on TX

 USART_Cmd(USART3, ENABLE);

 NVIC_EnableIRQ(USART3_IRQn); // Enable IRQ for USART3 in NVIC

}

 Configuration of DMA block for USART3
The configuration of the DMA block for USART3, transmit action, is the same as it was described in

experiment 29, the listing is given below. The complete array will be transferred byte by byte from the

memory of the microcontroller to the USART block. One might note that the conversion results within

the memory are stored as words, while the same are passed to USART block as bytes; this poses no

problem, only an appropriate number of transfers for the DMA block and correct addresses will have

to be stated initially. The correct pointer to the start of the array is given at line 01, and correct sizes

are provided at lines 02 and 03.

//DMA1 initialization, TX requests next character to send

void DMA1forUSART3_init(void) {

DMA_InitTypeDef DMA_InitStructure;

 RCC_AHB1PeriphClockCmd(RCC_AHB1Periph_DMA1, ENABLE);

 DMA_DeInit(DMA1_Stream3); /* Reset DMA Stream registers (for debug purpose) */

 /* Configure DMA Stream */

 DMA_InitStructure.DMA_Channel = DMA_Channel_4;

 DMA_InitStructure.DMA_PeripheralBaseAddr = (uint32_t)(&USART3->DR);

 DMA_InitStructure.DMA_Memory0BaseAddr = (uint32_t)(&ADCraw[0]); // 01

 DMA_InitStructure.DMA_DIR = DMA_DIR_MemoryToPeripheral;

 DMA_InitStructure.DMA_BufferSize = (uint32_t)8;

 DMA_InitStructure.DMA_PeripheralInc = DMA_PeripheralInc_Disable;

 DMA_InitStructure.DMA_MemoryInc = DMA_MemoryInc_Enable;

 DMA_InitStructure.DMA_PeripheralDataSize = DMA_PeripheralDataSize_Byte; // 02

 DMA_InitStructure.DMA_MemoryDataSize = DMA_MemoryDataSize_Byte; // 03

 DMA_InitStructure.DMA_Mode = DMA_Mode_Normal;

 DMA_InitStructure.DMA_Priority = DMA_Priority_High;

 DMA_InitStructure.DMA_FIFOMode = DMA_FIFOMode_Disable;

 DMA_InitStructure.DMA_FIFOThreshold = DMA_FIFOThreshold_Full;

 DMA_InitStructure.DMA_MemoryBurst = DMA_MemoryBurst_Single;

 DMA_InitStructure.DMA_PeripheralBurst = DMA_PeripheralBurst_Single;

 DMA_Init(DMA1_Stream3, &DMA_InitStructure);

}

 Configuration of the ADC
The configuration of the ADC follows the standard established procedure. First both ADC1 and ADC2

are turned on by enabling their respective clocks, then pins for inputting analog signals to these ADCs

are configured. Next, the common section for both ADCs is configured at lines 01 to 04. The un-familiar

configuration is given at line 01, where the DMA access mode is selected; the DMA block shall be used

to transfer conversion results from ADCs to a pre-declared array. There are various DMA modes

DMA and ADC 5

available, and they serve different number of ADCs; for this example “ADC_DMAAccessMode_2” is

appropriate. The details on the mode used are given in RM0009, section 13.9.

Line 05 selects timer TIM3, trigger output, as the source of the StartConversion signal. The rest of

this routine is the same as in previous examples on the use of ADCs.

// ADC init function

void ADCinit_T3_TRGO_DMA (void) {

ADC_InitTypeDef ADC_InitStructure;

GPIO_InitTypeDef GPIO_InitStructure;

ADC_CommonInitTypeDef ADC_CommonInitStructure;

 RCC_APB2PeriphClockCmd(RCC_APB2Periph_ADC1 | RCC_APB2Periph_ADC2, ENABLE);

 RCC_AHB1PeriphClockCmd(RCC_AHB1Periph_GPIOA | RCC_AHB1Periph_GPIOB, ENABLE);

 GPIO_InitStructure.GPIO_Pin = GPIO_Pin_1 | GPIO_Pin_2;

 GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AN;

 GPIO_InitStructure.GPIO_PuPd = GPIO_PuPd_NOPULL;

 GPIO_Init(GPIOA, &GPIO_InitStructure);

 ADC_CommonInitStructure.ADC_DMAAccessMode = ADC_DMAAccessMode_2; // 01

 ADC_CommonInitStructure.ADC_Mode = ADC_DualMode_RegSimult; // 02

 ADC_CommonInitStructure.ADC_Prescaler = ADC_Prescaler_Div2; // 03

 ADC_CommonInit(&ADC_CommonInitStructure); // 04

 ADC_InitStructure.ADC_Resolution = ADC_Resolution_12b;

 ADC_InitStructure.ADC_ScanConvMode = DISABLE;

 ADC_InitStructure.ADC_ContinuousConvMode = DISABLE;

 ADC_InitStructure.ADC_ExternalTrigConvEdge = ADC_ExternalTrigConvEdge_Rising;

 ADC_InitStructure.ADC_ExternalTrigConv = ADC_ExternalTrigConv_T3_TRGO; // 05

 ADC_InitStructure.ADC_DataAlign = ADC_DataAlign_Right;

 ADC_InitStructure.ADC_NbrOfConversion = 1;

 ADC_Init(ADC1, &ADC_InitStructure);

 ADC_RegularChannelConfig(ADC1, ADC_Channel_1, 1, ADC_SampleTime_3Cycles);

 ADC_Init(ADC2, &ADC_InitStructure);

 ADC_RegularChannelConfig(ADC2, ADC_Channel_2, 1, ADC_SampleTime_3Cycles);

 ADC_Cmd(ADC1, ENABLE); ADC_Cmd(ADC2, ENABLE);

}

 Configuration of the DMA for ADC
Conversion results shall be transferred from both ADCs to a predefined space in memory using the

DMA block. The EndOfConversion for each of the two ADCs should therefore raise a DMA request, and

two DMA channels need to be configured to accomplish both transfers. Let us start with DMA

configuration for ADC1.

First the correct stream and channel for ADC1 must be identified from the table at figure 30.1. We

might select Stream0/Channel0 or Stream4/Channel0, and will use the first option for no particular

reason. The complete configuration routine is given below.

//DMA2 configuration, ADC1

void DMA2forADC1_init(void) {

DMA_InitTypeDef DMA_InitStructure; // 00

 RCC_AHB1PeriphClockCmd(RCC_AHB1Periph_DMA2, ENABLE);

 DMA_DeInit(DMA2_Stream3); /* Reset DMA Stream registers (for debug purpose) */

 /* Configure DMA Stream */

DMA and ADC 6

 DMA_InitStructure.DMA_Channel = DMA_Channel_0; // 01

 DMA_InitStructure.DMA_PeripheralBaseAddr = (uint32_t)(&ADC1->DR); // 02

 DMA_InitStructure.DMA_Memory0BaseAddr = (uint32_t)(&ADCraw[4]); // 03

 DMA_InitStructure.DMA_DIR = DMA_DIR_PeripheralToMemory; // 04

 DMA_InitStructure.DMA_BufferSize = (uint32_t)MAXRAW; // 05

 DMA_InitStructure.DMA_PeripheralInc = DMA_PeripheralInc_Disable; // 06

 DMA_InitStructure.DMA_MemoryInc = DMA_MemoryInc_Enable; // 07

 DMA_InitStructure.DMA_PeripheralDataSize = DMA_PeripheralDataSize_HalfWord; // 08

 DMA_InitStructure.DMA_MemoryDataSize = DMA_MemoryDataSize_HalfWord; // 09

 DMA_InitStructure.DMA_Mode = DMA_Mode_Normal; // 10

 DMA_InitStructure.DMA_Priority = DMA_Priority_High; // 11

 DMA_InitStructure.DMA_FIFOMode = DMA_FIFOMode_Disable; // 12

 DMA_InitStructure.DMA_FIFOThreshold = DMA_FIFOThreshold_Full; // 13

 DMA_InitStructure.DMA_MemoryBurst = DMA_MemoryBurst_Single; // 14

 DMA_InitStructure.DMA_PeripheralBurst = DMA_PeripheralBurst_Single; // 15

 DMA_Init(DMA2_Stream0, &DMA_InitStructure); // 16

 DMA_ITConfig(DMA2_Stream0, DMA_IT_TC, ENABLE); // interrupt at the end of DMA transfer // 17

 NVIC_EnableIRQ(DMA2_Stream0_IRQn); // Enable IRQ for USART3 in NVIC // 18

}

The details regarding this DMA transfer will be considered next.

The configuration of the DMA follows the standard procedure. First a standard data structure is

declared (line 00), then this structure is stuffed with parameters (lines 01 to 15), and finally a routine

is called to distribute these parameters into corresponding registers (line 16). The parameters selected

deserve some explanation:

- We are dealing with Channel 0 (line 01), and are configuring DMA2, Stream 0 (line 16)

- The pointer to ADC data register as the source of word to be transferred is given at line 02

- The pointer to the destination, i.e. the array with conversion results, is given at line 03; note

that the first four words of this array are reserved, and that conversion results should be stored

at locations from [4] on.

- The number of consecutive transfers is given at line 05. The last transfer (MAXRAW) should

trigger an interrupt to stop the acquisition.

- The address to the source (the DAC data register) should not be incremented, while the address

of the destination should be, as given at lines 06 and 07.

- The size of the data to be transferred is provided at lines 08 and 09, ‘halfword’ equals 16 bits.

- We are not changing the default priorities (lines 10 and 11), we are not using DMA buffer (lines

12 and 13).

Figure 30.1: ADC1 and ADC2 can be served by DMA2, stream0/channel0 and stream2/channel1 for instance

DMA and ADC 7

- The DMA should transfer one word at a time, this means one word for one DMA request. This

is stated at lines 14 and 15.

The configuration concludes with enabling the interrupt at the end of DMA transfer, lines 17 and

18. The interrupt must be enabled in two consecutive commands. First the cause of the interrupt is

selected (the source is DMA2 block, Stream 0, and the interrupt should occur due to the

TransferComplete, TC flag), then the interrupt should be enabled at the NVIC level.

 Almost the same configuration can be used for ADC2 as well. The listing is provided bellow.

Different Channel/Stream is used here, and the pointer to the destination address is given as element

MAXRAW+4 within the array for conversion results.

//DMA2 configuration, ADC2

void DMA2forADC2_init(void) {

DMA_InitTypeDef DMA_InitStructure;

 RCC_AHB1PeriphClockCmd(RCC_AHB1Periph_DMA2, ENABLE);

 DMA_DeInit(DMA2_Stream3); /* Reset DMA Stream registers (for
debug purpose) */

 /* Configure DMA Stream */

 DMA_InitStructure.DMA_Channel = DMA_Channel_1;

 DMA_InitStructure.DMA_PeripheralBaseAddr = (uint32_t)(&ADC2->DR);

 DMA_InitStructure.DMA_Memory0BaseAddr = (uint32_t)(&ADCraw[MAXRAW+4]);

 DMA_InitStructure.DMA_DIR = DMA_DIR_PeripheralToMemory;

 DMA_InitStructure.DMA_BufferSize = (uint32_t)MAXRAW;

 DMA_InitStructure.DMA_PeripheralInc = DMA_PeripheralInc_Disable;

 DMA_InitStructure.DMA_MemoryInc = DMA_MemoryInc_Enable;

 DMA_InitStructure.DMA_PeripheralDataSize = DMA_PeripheralDataSize_HalfWord;

 DMA_InitStructure.DMA_MemoryDataSize = DMA_MemoryDataSize_HalfWord;

 DMA_InitStructure.DMA_Mode = DMA_Mode_Normal;

 DMA_InitStructure.DMA_Priority = DMA_Priority_High;

 DMA_InitStructure.DMA_FIFOMode = DMA_FIFOMode_Disable;

 DMA_InitStructure.DMA_FIFOThreshold = DMA_FIFOThreshold_Full;

 DMA_InitStructure.DMA_MemoryBurst = DMA_MemoryBurst_Single;

 DMA_InitStructure.DMA_PeripheralBurst = DMA_PeripheralBurst_Single;

 DMA_Init(DMA2_Stream2, &DMA_InitStructure);

 DMA_ITConfig(DMA2_Stream2, DMA_IT_TC, ENABLE); // interrupt at the end of DMA transfer

 NVIC_EnableIRQ(DMA2_Stream2_IRQn); // Enable IRQ for USART3 in NVIC

}

 Configuration for timer
Timer TIM3, trigger output TRGO, is selected to start conversion in this experiment. This option can

be selected within the ADC common structure using the lower right multiplexor from figure 44, chapter

13.3, RM0090. The complete configuration routine is given below.

// Timer 3 init function - time base

void TIM3init_ADCtrigger (int interval) {

TIM_TimeBaseInitTypeDef TIM_TimeBaseInitStructure; // 00

 RCC_APB1PeriphClockCmd(RCC_APB1Periph_TIM3, ENABLE); // 01

 TIM_TimeBaseInitStructure.TIM_ClockDivision = TIM_CKD_DIV1; // 02

 TIM_TimeBaseInitStructure.TIM_CounterMode = TIM_CounterMode_Up; // 03

 TIM_TimeBaseInitStructure.TIM_Period = interval; // 04

 TIM_TimeBaseInitStructure.TIM_Prescaler = 0; // 05

 TIM_TimeBaseInitStructure.TIM_RepetitionCounter = 0; // 06

 TIM_TimeBaseInit(TIM3, &TIM_TimeBaseInitStructure); // 07

DMA and ADC 8

 TIM_SelectOutputTrigger(TIM3, TIM_TRGOSource_Update); // SC (TRGO) on TIM3 update // 08

}

The data structure for the configuration os first declared at line 00, then the timer TIM3 is turned

on by enabling its clock at line 01. Next the data structure is stuffed with configuration parameters and

the routine to distribute these parameters throughout the timer TIM3 registers is called at line 07.

Finally, trigger output TRGO is configured to issue a pulse on timer overflow

(“TIM_TRGOSource_Update”).

This concludes the configuration part of the program.

 Sequence of events: interrupt routine for USART3
The listing of the USART3 interrupt routine is given below. Only the RX interrupts are served, since

only these were enabled within USART3 configuration routine. The status register of USART3 is

therefore checked if the receive flag caused the entrance to the interrupt routine at line 00; if this is

the case then the rest of the routine gets executed. The character received is fetched from the USART3

DataRegister into a character variable RXch, then this variable gets checked against predefined

constants. When ‘a’ the interrupt routine turns on the LED, and when ‘b’ it turns the same LED off. This

two commands are added to ease the verification of the serial communication between a PC and the

microcontroller. However, if the character received equals ‘s’ (line 01) the control registers CR2 for

ADC1 and ADC2 are modified (lines 02 and 03); DMA is first disabled, and enabled immediately

afterword. This operation is required and described in RM0090, chapter 13.8.1. The operation seems

un-necessary, but it clears some flags that cannot be cleared otherwise. Following this the DMA

streams for both ADCs are enabled at lines 04 and 05, and then the timer TIM3 is enabled at line 06.

The last thing is the LED that gets turned on at line 07 to signal the start of the acquisition. With this

the interrupt routine finishes and the execution returns to the empty “while” loop.

The timer TIM3 is now running and periodically starts a conversion at both ADCs. Once the

conversions are finished both results are transferred using two DMA streams from ADC data registers

to the memory of the microcontroller at appropriate addresses; the destination addresses get

incremented after every transfer. There are ‘MAXRAW’ transfers, then both DMA streams within

DMA2 block issue corresponding interrupts, and two interrupt routines get executed. This is described

in the following section.

// IRQ function for USART3

void USART3_IRQHandler(void) {

 // RX IRQ part

 if (USART3->SR & USART_SR_RXNE) { // if RXNE flag in SR is on then // 00

 int RXch = USART3->DR; // save received character & clear flag

 if (RXch == 'a') LED_BL_ON; // to show we are alive

 if (RXch == 'b') LED_BL_OFF; // to show we are alive

 if (RXch == 's') { // actual start of DMA supported sampling // 01

 ADC1->CR2 &= ~ADC_CR2_DMA; ADC1->CR2 |= ADC_CR2_DMA; // 02

 ADC2->CR2 &= ~ADC_CR2_DMA; ADC2->CR2 |= ADC_CR2_DMA; // 03

 DMA_Cmd(DMA2_Stream0, ENABLE); // 04

 DMA_Cmd(DMA2_Stream2, ENABLE); // 05

 TIM_Cmd(TIM3, ENABLE); // 06

 GPIOD->BSRRL = 0x8000; // 07

 };

 };

}

DMA and ADC 9

 Sequence of events: interrupt routine for DMA/DAC1 (Stream 0)
The listing of the interrupt routine is given below. First the timer TIM3 is stopped to prevent any

further Start Conversion pulses to the ADC block. Next, the DMA stream for ADC1 gets disabled, since

this was the last transfer within the sequence of MAXRAW transfers. Finally, some flags within the

DMA2, Stream 0 get cleared. These are flags that signal Transfer Complete status and Transfer Error

status; we will ignore these messages for this demonstration.

void DMA2_Stream0_IRQHandler(void) {

 TIM_Cmd(TIM3, DISABLE);

 DMA_Cmd(DMA2_Stream0, DISABLE);

 DMA_ClearFlag(DMA2_Stream0, DMA_FLAG_TCIF0 | DMA_FLAG_TEIF0);

}

 Sequence of events: interrupt routine for DMA/DAC2 (Stream 2)
The listing of this interrupt routine is given bellow. It is expected that this routine executed after

the above one since Stream 0 has higher priority than Stream 2.

void DMA2_Stream2_IRQHandler(void) {

 TIM_Cmd(TIM3, DISABLE);

 DMA_Cmd(DMA2_Stream2, DISABLE);

 DMA_ClearFlag(DMA2_Stream2, DMA_FLAG_TCIF2 | DMA_FLAG_TEIF2);

 GPIOD->BSRRH = 0x8000;

 TIM3->CNT = 0;

 DMA_SetCurrDataCounter(DMA1_Stream3, MAXRAW * 4 + 8); // 01

 USART_DMACmd(USART3, USART_DMAReq_Tx, ENABLE); // 02

 DMA_ClearFlag(DMA1_Stream3, DMA_FLAG_TCIF3 | DMA_FLAG_HTIF3 | DMA_FLAG_FEIF3); // 03

 DMA_Cmd(DMA1_Stream3, ENABLE); // note: USART3->SR.TXE requests DMA // 04

}

The routine commences with stopping the timer TIM3 (this might not be needed here since the

same timer was already disabled within the “DMA2_Stream0_IRQHandler”). Next, the DMA stream for

ADC2 gets disabled, and some flags for this stream get cleared. Since the acquisition is now done the

LED, signaling the acquisition, gets turned off, and the content of the timer TIM3 gets cleared and

prepared for next time.

It is now the time to transfer the acquired results from the memory of the microcontroller to PC

using the USART3, in particular the DMA 1, Stream 3. The DMA block was already configured for the

transfer, all it takes now is to refresh the required number of bytes to be sent in line 01 (there are

MAXRAW * 2 bytes * 2 channels + 8 bytes to be sent), then the USART3 DMA request should be

enabled. Some flags should again be cleared within the DMA1 block for this stream at line 03, and

finally this stream should be enabled. With this the transfer of bytes from the memory to USART3 data

register commences, and the next byte will be transferred without the intervention of the processor

under the control of the DMA1 block until all bytes are sent.

One might want to use another interrupt at the end of the transfer to signal the end of operation,

but this is not implemented in this example.

