13. The use of circular buffer

A circular buffer is a reserved part of memory which serves as a temporary buffer for data. It is
organized in a special manner: the incoming data fills the buffer until it is completely full, and then
starts to fill the buffer again from the beginning overwriting the previous content. It is the task of the
software to make use of the stored data before it gets overwritten by new data.

It is customary to build a circular buffer using an array and a pointer into this array. However, the
pointer must be bound to point into the array and never outside of it since accessing the area outside
of the array might have disastrous effects to the execution of the program. For instance the
operation of writing into the circular buffer using a pointer, where the pointer points outside of the
array, might corrupt the content of important memory locations, like registers or system variables.
This must be prevented.

Consider the use of an array with the length of 2", where N is a natural number. For the purpose
of this example N equals 3, and we are dealing with an array with eight elements. Their indexes are
from 0 to 7 in decimal notation, or from 000 to 111 in binary. If we take any integer number named
Ptr written in binary, and use only the least significant three bits of this number as a pointer, these
three bits point to one of the elements within the array. Therefore any integer number can be used
as a valid pointer once we strip away all but the least significant three bits, and this can be done by a
simple AND operation, where one of the arguments of the AND operation is the integer itself, and
the other is the last available index within the array, 7 (111 binary) in our case.

Now consider incrementing the number Ptr by one, starting from 0, and its behavior as a pointer
in the array. The pointer derived by AND-ing the number Ptr by 7 initially points to element 0 of the
array, then element 1, then.... then element 7, and then element 0 again. The indexed elements form
a circle, element O follows the element 7.

Consider also decrementing the number Ptr by one, starting from 2, and use 8-bit binary notation
to ease the understanding. The number decrements from 00000010b to 0000001b, then to
00000000b, followed by 11111111b, 11111110b, and 11111101b... Recall that numbers are written
in two’s complement when written as signed integers! The number 11111111b represents -1,o, and
11111110b represents -24,. Taking the least significant three bits of the number Ptr again keeps the
derived pointer within the bounds of the array, and uses elements 2, 1, 0, 7, 6, ... as before, the use
of element 0 is followed by the use of element 7, then 6..., and the indexed elements again form a
circle, hence the array used in this way can be called a circular buffer.

The trick relies on a simple AND logic function, and is effective for circular buffers with the length
of 2" elements. Other lengths need more complex bounding of the pointer, and are best avoided.



Playing with STM32F407 test board — The use of circular buffer

We implement a circular buffer in this example to delay the generation of a signal in one of the
DACs. The program is based on the one last one derived in previous chapter, and the initialization of
the hardware is identical and will not be re-commented here. One of the ADCs is used to periodically
sample the input signal (actually both ADCs are initialized and run, but result from one of them is
used), and these samples are stored in a circular buffer named Result. One of the DACs is filled
directly with the ADC result, and the other is filled with whatever the result were 100 sampling
intervals before. The complete listing is given in Fig. 1.

#include "'stm32f4xx.h"
int Result[1024], Ptr = O;

void main ) {
// GPIO clock enable, digital pin definitions
RCC->AHB1ENR |= 0x00000001; // Enable clock for GPIOA
RCC->AHB1ENR |= 0x00000010; // Enable clock for GPIOE
GP10E->MODER |= 0x00010000; // output pin PEO8: time mark
GP10A->MODER |]= 0x00001000; // output pin PAO6: LED D390

// DAC set-up
RCC->APB1ENR
DAC->CR

GPI10A->MODER

0x20000000; // Enable clock for DAC
0x00010001 ; // DAC control reg, both channels ON
0x00000f00; // PAO4, PAO5 are analog outputs

// ADC set-up
RCC->APB2ENR
RCC->APB2ENR

0x00000100; // clock for ADC1
0x00000200; // clock for ADC2

ADC->CCR = 0x00000006; // Regular simultaneous mode only
ADC1->CR2 = 0x00000001; // ADC1 ON

ADC1->SQR3 = 0x00000002; // use PAO2 as input

ADC2->CR2 = 0x00000001; // ADC1 ON

ADC2->SQR3 = 0x00000003; // use PAO3 as input

GPI0A->MODER |= 0x000000f0; // PAO2, PAO3 are analog inputs

ADC1->CR2 |]= 0x06000000; // use TIM2, TRGO as SC source
ADC1->CR2 |= 0x10000000; // Enable external SC, rising edge
ADC1->CR1 |]= 0x00000020; // Enable ADC Interrupt for EOC
// NVIC IRQ enable
NVIC_EnablelRQCADC_IRQN); // Enable IRQ for ADC in NVIC
// Timer 2 set-up
RCC->APB1ENR ]= 0x0001; // Enable clock for Timer 2
TIM2->ARR = 8400; // Auto Reload value: 8400 == 100us
TIM2->CR2 |= 0x0020; // select TRGO to be update event (UE)
TIM2->CR1 |= 0x0001; // Enable Counting
// waste time - indefinite
while (1) {
if (GPIOE->IDR & 0x0001) GPIOA->0DR |= 0x0040; // LED on
else GPIOA->0DR &= ~0x0040; // else LED off
}:
}
// IRQ function
void ADC_IRQHandler(void) // PASS takes approx 400ns of CPU time!
{
GPI0OE->0DR |= 0x0100; // PEO8 up
Ptr = (Ptr + 1) & 1023; // Increment pointer and limit its value
Result[Ptr] = ADC1->DR; // save ADC in circular buffer & clear EOC flag
DAC->DHR12R1 = Result[Ptr]; // pass current buffer -> DAC
DAC->DHR12R2 = Result[(Ptr - 100) & 1023]; // pass past buffer -> DAC
GPIOE->0DR &= ~0x0100; // PEO8 down
}

Figure 1: A listing of the program to periodically sample input signals and pass them to the DAC



Playing with STM32F407 test board — The use of circular buffer

The changes in the program are:

An array named Result is declared as global, it consists of 1024 elements, their indexes
ranging from 0 to 1023. A pointer named Ptr is declared as global and initialized to 0. Both
must be declared global since they are used in the interrupt function.

The complete initialization section is the same as before.

The interrupt function starts with a statement to calculate new value of the pointer in array.
Variable Ptr is first incremented, and then bound to stay within the range from 0 to 1023
forming a current pointer. The result is stored into the array at current pointer. The content of
this element of the array is copied into the first DAC. The content of the element which was
renewed 100 sampling time intervals is copied into the second DAC. The pointer to the
corresponding element of the array is calculated by subtracting 100 from a current pointer
and bounding the value of the derived pointer by AND-ing it with the index of the last valid
element (1023).



