
1

19. FIR filtering, on-line

A digital filtering of analog signals in real time is easy to implement when one has an ADC, a
processor, and a DAC, Fig. 1. An example of FIR filtering will be given.

The FIR (Finite Impulse Response)
filtering uses a convolution of input
signal with predefined coefficients to
achieve filtering effect. The convolution
formula is given by ([1], chapter 6):

𝑦𝑘 = � ℎ𝑚𝑥𝑘−𝑚

𝑀−1

𝑚=0

The coefficients ℎ𝑚 define the properties of the filter, and are calculated as the inverse Fourier
transform of the desired frequency characteristics of the desired filter. Coefficients ℎ𝑚 calculated
using this method span for positive and negative indexes 𝑚, from –M to +M (and in theory M
approaches infinity). This effectively means that in order to calculate filter response at time 𝑘, one
should know samples 𝑥 from current time 𝑘, from past (𝑥𝑘−1, 𝑥𝑘−2, … , 𝑥𝑘−𝑚), and also from the
future (𝑥𝑘+1, 𝑥𝑘+2, … , 𝑥𝑘+𝑀). Since knowing of the future is not the privilege of ordinary people (or
processors), we cannot implement convolution formula directly, but have to resort to a delayed
calculation by modifying/rearranging the convolution formula:

𝑦𝑘 = � ℎ𝑚𝑥𝑘−𝑚−𝑀

𝑀

𝑚=−𝑀

This is graphically presented in Fig. 2. Input samples x are stored in a (circular) buffer one per box
in the drawing, and samples from the past with indexes from 𝑘 − 2𝑀 to 𝑘 are used to calculate
convolution. The result 𝑦𝑘 used as current output from the filter is actually a delayed version of the
filtered input signal x. The required delay depends on the number of coefficients used in convolution.

Figure 1:The blocks involved in FIR filtering.

OUT
PROCESSOR DACADC

IN

Figure 2: The samples used in FIR filtering

k-2M k-2M+1x xk-2M+2 x k-M xk-2 xk-1 xkx

MhM-1hM-2h0hM-2hM-1hMh
* * *****

S

k-M yy k-2yk-2M y k-1y y kk-2M+2 yk-2M+1

X buffer

Y buffer

Playing with STM32F407 test board – FIR filtering

2

The coefficients ℎ𝑚 for a low pass FIR filter are given by:

ℎ𝑚 = 2
𝑓𝑐
𝑓𝑠

 ∙
sin�2𝜋𝑚𝑓𝑐

𝑓𝑠
�

2𝜋𝑚𝑓𝑐
𝑓𝑠

 ,

where 𝑓𝑠 stands for the sampling frequency, and 𝑓𝑐 for the corner frequency of the filter. The
sharpness of the filter is better for a large number of coefficients. However, a large number of
coefficients imply many multiplications in the convolution formula, so one has to choose m carefully.

The attenuation at frequencies above the corner frequency can be poor, but can be improved by
progressively reducing the values of coefficients close to index M; the process is known as
“windowing”. A common window function is a raised cosine, named von Hann window.

ℎ𝑚 𝑤𝑖𝑛𝑑𝑜𝑤𝑒𝑑 = ℎ𝑚 ∙
1 + cos (𝜋 𝑚

𝑀 − 1)
2

FIR filtering can be implemented in real time. Input signal must be sampled at regular time
intervals, and this can be achieved by timer built into the microcontroller. The timer can start the
acquisition, and then the sampled value can be stored into a circular buffer x, as it was already
explained in experiment 13, ”The use of circular buffer”. The buffered samples can be used to
calculate the convolution immediately after each new sample, and the result of convolution can be
converted back to analog signal using a DAC or stored into another circular buffer y for further use.
The important thing is that the calculation of convolution must be performed immediately after a
new sample of the input signal is available, therefore within the interrupt function. The calculation
must be finished before the next interrupt request; this limits the number of coefficients in the
convolution formula, since every multiplication takes some time.

The coefficients used in convolution formula stay the same throughout the filtering, and should
be calculated once prior to the filtering.

The listing of the program is given in Fig. 3. Two circular buffers x1 and x2, and a pointer xPtr are
declared first; these must be global variables since they are used in the interrupt function and must
retain their content from one execution of the interrupt function to another. The length of circular
buffers is exaggerated, but shows that a long buffer is not a problem for this microcontroller. The
buffers are declared as integers, 32 bit signed values. In order to store the result from ADCs a “short”
(16 bits) would suffice and would save RAM. Next an array for coefficients w is declared, and is
composed of “float” values. Following the formula above the coefficients will have the value of less
than one, and must therefore be floating point numbers. Again, the length of this array is
exaggerated.

In the main part of the program the peripherals are first initialized. The initialization is hidden in
functions called from the main, and is the same as it was in previous chapters. The functions
themselves are listed at the end of this chapter. The initialization turns on two ADCs and two DACs,
defines their properties and associated port pins. The initialization also starts the timer to issue
periodic Start Conversion pulses for the ADC at 100µs time intervals, and enables interrupt requests
from the ADC.

The main program is continued by calculating the values of coefficients used in convolution. As we
can see from the formula above the values of coefficients are symmetrical around the central

Playing with STM32F407 test board – FIR filtering

3

coefficient with index 0, therefore we need to calculate coefficients only for positive indexes m, and
this is done in the next three program lines. There are 63 coefficients for positive indexes and a
central one for index 0. Next two lines implement the windowing function.

The microcontroller is now ready to start filtering and the program continues into an endless loop
where it wastes time.

The important stuff happens in the interrupt function. When a new sample is ready in the ADC,
the interrupt function is called. Results from both ADCs are first stored into circular buffers at
location pointed to by a pointer xPtr. Next a float variable is declared and a product of the central
weight w[0] and past central sample x1[(xPtr-100) & 4095] is stored into it. Here we assume that an
offset of 100 from the current sample is sufficient to cover the length of the convolution; it must be
bigger than M. The AND function within the pointer into the circular buffer is used to avoid reads out
of the circular buffer boundaries as explained in chapter 13.

The rest of the convolution is implemented within the “for” statement for coefficients with
indexes from 1 to including 63. Coefficient values are symmetrical around the central coefficient, and
it would be a waste of time to make separate multiplications of input samples with the same value of

#include "stm32f4xx.h"
#include "math.h"
#define pi 3.14159

int x1[4096], x2[4096], xPtr; // declaration of circular buffers
float w[1024]; // declaration of FIR weights

int main () {
 GPIO_setup(); // GPIO clock enable, digital pin definitions
 DAC_setup(); // DAC set-up
 ADC_setup(); // ADC set-up
 Timer2_setup(); // Timer 2 set-up
 NVIC_EnableIRQ(ADC_IRQn); // Enable IRQ for ADC in NVIC

 w[0] = 2.0 * 100.0 / 10000.0;
 for (short k = 1; k < 64; k++) // FIR weights
 w[k] = (w[0] * (sin(pi * k * w[0])) / (pi * k * w[0]));
 for (short k = 1; k < 64; k++) // windowing, Hanning
 w[k] = (w[k] * cos(pi/2 * k / 62.0));

 // waste time - indefinite
 while (1) {
 if (GPIOE->IDR & 0x0001) GPIOA->ODR |= 0x0040; // LED on
 else GPIOA->ODR &= ~0x0040; // else LED off
 };
}

// IRQ function
void ADC_IRQHandler(void) // PASS takes approx 42us of CPU time!
{
 GPIOE->ODR |= 0x0100; // PE08 up
 x1[xPtr] = ADC1->DR; // pass ADC -> circular buffer x1
 x2[xPtr] = ADC2->DR; // pass ADC -> circular buffer x2
 float conv = (float)x1[(xPtr - 100) & 4095] * w[0]; // take central weight
 for (int k = 1; k < 64; k++) // convolve the rest
 conv += w[k] * (x1[(xPtr - 100 + k) & 4095] + x1[(xPtr - 100 - k) & 4095]);
 DAC->DHR12R1 = (int)conv; // result -> DAC
 DAC->DHR12R2 = x1[(xPtr - 100) & 4095]; // original -> DAC
 xPtr = (xPtr + 1) & 4095; // increment pointer to circulat buffer
 GPIOE->ODR &= ~0x0100; // PE08 down
}

Figure 3: A listing of a program to implement FIR filtering

Playing with STM32F407 test board – FIR filtering

4

coefficient. It is better to add the two input samples first, and then multiply the sum by the
coefficient. The input samples are indexed as [xPtr – 100 + k] and [xPtr – 100 - k] to emphasize the
symmetry, and the AND function is used to keep the pointer within the circular buffer.

Once the convolution is calculated the result is converted to integer and sent to DAC for
conversion. The unfiltered original signal is sent to the second DAC for comparison. This signal must
be equally delayed as the filtered one; the central sample as used in convolution is sent to the DAC.

The two GPIOE functions are used to make a pulse at port E, and the pulse can be used to
determine the time needed to execute the interrupt function (42µs in this case).

The speed of execution can be improved by using integer variables and integer mathematical
operations. Only few lines of program shown in Fig. 3 need to be changed, and those are shown in
Fig. 4. The declaration of the array with coefficients is changed to “int”. As stated before the
coefficients have values less than one and cannot be directly converted to integers. However, they
can be multiplied by 65536 (which is equivalent for shifting the coefficient values for 16 bits to the
left) and then stored as integers. Since we now have integer coefficients and integer samples of input
signals all calculations can be performed by integers. As expected, this produces the result of
convolution which is 65356 times too big, and has to be divided by 65536 (shifted by 16 bits to the
right) to obtain the correct result.

The calculation of coefficient values in “main” part of the program is changed. First a value of the
central coefficient is calculated as “float”, but is immediately converted to integer and stored into the
array of coefficients at position 0. Next coefficient values for indexes from 1 to 63 are calculated, all
multiplied by 65536. In order to implement the windowing the calculated coefficients are again
converted to floating point numbers, multiplied by the weight, and converted back to integers.

In the interrupt function the intermediate variable “conv” is declared as integer, and the
calculation is performed in a regular way without explicitly stating the integer arithmetic. This gets
done automatically when all variables are integers. The only difference follows at the point where
the result of convolution is sent to the DAC; it first gets divided by 65536 (shift right for 16 bits), and
then written to the DAC.

The improvement in speed is significant; the execution of the interrupt function using integer
arithmetic takes only 10µs.

int w[1024]; // declaration of FIR weights

// in main

 float w0 = 2.0 * 100.0 / 10000.0;
 w[0] = (int)(w0 * 65536);
 for (short k = 1; k < 64; k++) // FIR weights
 w[k] = (int)(w0 * 65536 * (sin(pi * k * w0)) / (pi * k * w0));
 for (short k = 1; k < 64; k++) // windowing, Hanning
 w[k] = (int)((float)w[k] * cos(pi/2 * k / 63.0));

// in IRQ function

 int conv = x1[(xPtr - 100) & 4095] * w[0]; // take central weight
 for (int k = 1; k < 64; k++) // convolve the rest
 conv += w[k] * (x1[(xPtr - 100 + k) & 4095] + x1[(xPtr - 100 - k) & 4095]);
 DAC->DHR12R1 = conv >> 16; // result -> DAC

Figure 4: Changes to the program from Fig. 3 to implement filtering in integer

Playing with STM32F407 test board – FIR filtering

5

An interesting function that can be implemented using the FIR filtering is the shifting of a signal
with unknown frequency for 90 degrees. Such function is called the Hilbert transform. The
coefficients for a Hilbert transform are given by:

ℎ𝑚 =
−1 + (−1)𝑚

𝜋𝑚

The same program as used for the integer version of FIR filtering can be used, but the coefficients
must be calculated following the formula above, Fig. 5. Note that here also the coefficients are
multiplied by 65535, and that the result of convolution must be divided by the same factor.

Figure 6 shows the function for the initialization of the peripherals, which were moved out of the
main program in Fig. 3.

[1] The Scientist and Engineer’s Guide to Digital Signal Processing

void ADC_setup(void) {
 RCC->APB2ENR |= 0x00000100; // clock for ADC1
 RCC->APB2ENR |= 0x00000200; // clock for ADC2
 ADC->CCR = 0x00000006; // Regular simultaneous mode only
 ADC1->CR2 = 0x00000001; // ADC1 ON
 ADC1->SQR3 = 0x00000002; // use PA02 as input
 ADC2->CR2 = 0x00000001; // ADC1 ON
 ADC2->SQR3 = 0x00000003; // use PA03 as input
 GPIOA->MODER |= 0x000000f0; // PA02, PA03 are analog inputs

 ADC1->CR2 |= 0x06000000; // use TIM2, TRG0 as SC source
 ADC1->CR2 |= 0x10000000; // Enable external SC, rising edge
 ADC1->CR1 |= 0x00000020; // Enable ADC Interrupt for EOC
}

void DAC_setup(void) {
 RCC->APB1ENR |= 0x20000000; // Enable clock for DAC
 DAC->CR |= 0x00010001; // DAC control reg, both channels ON
 GPIOA->MODER |= 0x00000f00; // PA04, PA05 are analog outputs
}

void GPIO_setup(void) {
 RCC->AHB1ENR |= 0x00000001; // Enable clock for GPIOA
 RCC->AHB1ENR |= 0x00000010; // Enable clock for GPIOE
 GPIOE->MODER |= 0x00010000; // output pin PE08: time mark
 GPIOE->MODER |= 0x00040000; // output pin PE09: toggle
 GPIOA->MODER |= 0x00001000; // output pin PA06: LED D390
}

void Timer2_setup(void) {
 RCC->APB1ENR |= 0x0001; // Enable clock for Timer 2
 TIM2->ARR = 8400; // Auto Reload value: 8400 == 100us
 TIM2->CR2 |= 0x0020; // select TRGO to be update event (UE)
 TIM2->CR1 |= 0x0001; // Enable Counting
}

Figure 6: A listing of function for the initialization

// in main

 w[0] = 0;
 for (short k = 1; k < 64; k++) // FIR weights
 w[k] = (int)(65536.0 * (-1.0 + cos(pi * k)) / (pi * k));
 for (short k = 1; k < 64; k++) // windowing, Hanning
 w[k] = (int)((float)w[k] * cos(pi/2 * k / 63.0));

Figure 5: The calculation of coefficients to implement a Hilbert transform

	19. FIR filtering, on-line

