17. I2C communication channel

Sometimes sensors are distant to the microcontroller. In such case it might be impractical to send
analog signal from the sensor to the ADC included in the microcontroller due to the possible
degradation of analog signal quality along the line. In would be better to include the ADC into the
sensor, and pass the digital result of the ADC conversion to the microcontroller. Digital signals are far
less prone to degradation, and ADCs are easy and cheap to include into integrated circuits. Sensors
with ADCs included are quite frequent at the present state of technology.

The digital signals at the output of the ADC are 8 or 16 bits wide, and ADC chip alone uses
additional control and status signals. When one considers the number of required wires and pins at
the microcontroller to accommodate all these signals, one recognizes the need for a more efficient
transfer of ADC results into the microcontroller. Serial busses were invented to avoid these
problems. They use considerably less wires to transfer the same signals as mentioned before. The
data is conveyed serially bit by bit in precisely defined time slots. To avoid problems with time slots, a
common clock signal is used by all devices connected on a bus. The price one has to pay to use fewer
wires is the prolonged time to transfer the same information and a rather complex set of rules to be
obeyed when programming the transfer of data or the devices connected to the common bus might
rebel and refuse to transfer data.

The two typical serial busses will be explained and implemented in this and next chapter, these
are I°C (Inter Integrated Circuit, 1IC or I°C) and SPI (Serial Peripheral Bus). Only a simple variant of
busses without the error checking will be implemented. The experiment requires a sensor
conforming to a bus used, and accelerometers / gyroscopes will be used here.

The I1°C is the name of the bus that requires vee
three wires between units: a common ground and
two wires for clock signal (SCL, Serial CLock) and MASTER scL SLAVE
data signal (SDA, Serial DAta). Several units may be Jlﬁ_ A
connected to the same bus as shown in Fig. 1, but < SDA >
only one of the devices controls the dataflow; this ’JEI- -E”“
device is called a master, others are called slaves. All E
devices have so called “open collector” or “open SLAVE
drain” outputs meaning that they can only pull a z
signal low, but never force it to go high. There are 1 »
two pull-up resistors, one for each wire to pull the -E”‘<

line to logic high. Therefore, if no device requests)
Figure 1: The I2C bus can be used to transfer data

the line to be low, the line remains high due to the
! g between the MASTER and one of the SLAVE devices

Playing with STM32F407 test board — I’C Communication Channel

pull-up resistor. If any or many of the devices turn on their outputs pulling the line low, the line
becomes logic low. The value of a pull-up resistor depends on the required speed, and is typically
around 10 k€. The logic levels are defined by the power supply +VCC of the devices connected to the
bus and their technology; in our case the power supply equals 3.5V.

The procedure to transfer the data over I°C bus is described in I°C protocol. There are four typical
combinations of signals SCL and SDA:

- Start combination. Both SDA and SCL are initially high. First signal SDA goes low, next signal

SCL goes low, as in Fig. 2a, left. The important part is that signal SDA changes from high to low
during the time signal SCL is high. The start combination defines the beginning of the
transmission over the bus.

- Stop combination. Both signals SDA and SCL are initially low. First SCL goes high, and then

signal SDA goes high, as in Fig. 2d, right. The important part is that the signal SDA changes
from low to high during the time signal SCL is high. The stop combination defines the end of
transmission over the bus.

- Bit transfer combination. Signal SDA (serial data) can be either low or high, and the signal SCL

changes from low to high, and then to low again forming one clock pulse on the SCL line. This
combination clocks one data bit into the destination device, Fig. 2c. A string of eight (ten in
special cases) bits is used to send the complete byte. The line SDA must not change during the
time signal SCL in high.

- Acknowledge combination. The destination device is expected to confirm safe receipt of a

byte. A string of eight data bits is followed by an acknowledge combination, where the
originating device releases the SDA line, and issues one clock pulse at the SCL line. The
receiving device is supposed to pull the SDA line low during the clock pulse if it managed to
receive the eight bits successfully, Fig. 2d.

SDA [mse)i i - fLse | [
st {1l ifol o fs) o] |

START BIT TR. ACK STOP
Figure 1: The signals on the 12C bus

There can be more than one slave devices on the bus, and the master device can communicate
with one slave device at a time. Addressing is used to activate one of the slave devices. The I°C
standard allows the use of either 7-bit addressing or 10-bit addressing; we will use only 7-bit version.

Consider the situation where the master is writing into the slave, Fig. 3, top. The master first
sends a start combination, followed by eight bits; here master defines the SDA line and issues eight
clock pulses on the SCL line. Out of these eight bits first seven represent the address of the slave, and
the 8" bit is low signaling the writing into the slave. If a slave with the address specified is connected
to the bus, then the slave confirms its presence by the acknowledge combination; the master sends
the 9" clock pulse and the slave pulls the SDA line low during the time of this pulse. From now on the
master can send as many bytes to the selected slave as desired. Each byte is followed by the
acknowledge combination, where the slave pulls the SDA line low telling the master that it is still able

Playing with STM32F407 test board — I’C Communication Channel

to receive bytes. When the transmission is complete, the master issues the “stop” combination
releasing the slave. The address of the slave in this example is 37hex, and the data written is 57hex.

Similarly the reading from the slave into the master is started by s “start” combination and the
addressing byte, Fig. 3, bottom; out of this first seven bits represent the address, and the 8" bit is
high signaling the reading from the slave. If a slave with the address specified is connected to the
bus, then the slave confirms its presence by the acknowledge combination; the master sends the 9™
clock pulse and the slave pulls the SDA line low during the time of the pulse. From now on the master
can read as many bytes from the slave as desired. Each byte is followed by the acknowledge
combination, where the master pulls the SDA line low telling the slave that it has received the byte
and that the slave can continue sending bytes. The transmission is terminated by the master issuing
the “stop” combination. The address of the slave is again 37hex, and it returns 39hex.

-
- o

= 2232922 i3588383888E8 P
SDA\0/11\0/111R0001110010/1"\‘I_

Figure 3: 12C bus signals during the writing into the slave (top), and reading from the slave (bottom)

All digital logic elements are integrated into a block I°C, and three such blocks are built into the
microcontroller, these are named 12C1 to 12C3. They are identical and a simplified block diagram for
one of them is shown in Fig. 4. Two pins at the microcontroller chip are required (for signals SDA and
SCL), and they are mapped from regular ports of the microcontroller. The block includes a Data Shift
Register to shift the data byte bit-by-bit out-of or in-to the block. The content of the shift register can
be accessed by reading from or writing to register DR. The speed of transmission is defined by writing
control bits into the register CCR (Clock Control Register), which defines the behavior of the Clock
Control block. The information of clock pulses, status of SDA and SCL lines, the status of the data
register and alike is available to the Control Logic, and can be read-out through status registers SR

Data Register

|_DR__|
SDA me-» C%ﬁ?ol «—»| Data ShiftRegister |—+
Clock EVENTs
ocC / VA
SCL =< Contol [) Y Control
Control Registers Logic TO DMA
T
CR2 __ |e/>
Control Register
Status Registers
SR nEA IRQs
SR2 e />
TO NVIC

Figure 4: A simplified block diagram of an I°C block

Playing with STM32F407 test board — I’C Communication Channel

and SR2. The operation of the control logic is be defined by bits in control registers CR1 and CR2. The
control logic can issue events and interrupt requests to call assistance to the block.

The protocol I°C requires interaction of the processor. After every major step in communication
the processor must supply instructions to the hardware of what to do next, and all major steps are
signaled by events. The procedure is as follows: the processor initializes the I°C block, and then
requests a certain action. It takes some time for the block to complete the requested action, and the
competition is signaled by issuing an event. The event can be used as an interrupt, or the processor
can simply waste time executing an empty loop waiting for the event. This second option is not very
effective, but will be used here for the simplicity of the example.

The diagram on Fig. 5 gives a copy from the RM0090, page 712, figure 242 for actions and events
during writing a byte from master to slave.

|? Address | A Datal | A Data? A DataN A T|

EV5 EV6 | EV8_1 EV8 EV8 EV8 EV8_2

Legend: S= Start, S, = Repeated Start, P= Stop, A= Acknowledge,
EVx= Event

EV5: SB=1, cleared by reading SR1 register followed by writing DR register with Address.

EV6: ADDR=1, cleared by reading SR1 register followed by reading SR2.

EV8_1: TxE=1, shift register empty, data register empty, write Data1 in DR.

EV8: TxE=1, shift register not empty,.data register empty, cleared by writing DR register

EV8_2: TxE=1, BTF = 1, Program Stop request. TXE and BTF are cleared by hardware by the Stop condition

Figure 5: Commands and events during the transmission of a byte to slave

The procedure starts by processor requesting the 1°C block to issue a “start” condition (S) on the
bus. When the “start” condition is established the I°C block responds with an event (EV5) and sets bit
SB in the status register SR1. Once this happens the processor can continue by writing the address of
the slave device into the data register DR. The I°C block proceeds by sending address out bit-by-bit
and waiting for acknowledge A from the slave during the ninth bit of the clock SCL . When the ninth
bit is over the block issues event (EV6) and sets the bit ADDR in the status register SR1. Once this bit
is set the processor can continue. First the bit ADDR must be cleared by reading from the status
register SR2, and then the byte to be sent to the slave is written into the data register DR. The fresh
content of the register DR is immediately transferred into the shift register, and sending starts. This
now empties the data register DR and the block issues new event (EVS8, bit TxE in SR1 gets set,
Transmitter Empty) telling the processor that a new byte of data can be written into the data register
DR in case there are more bytes to be sent. The new byte will not be used by the shift register until
the transmission of the current byte is complete, and then the new byte will be automatically
transferred into the shift register and sent out, and repeated event (EV8) will be issued signaling the
emptiness of the data register DR. If we ignore this event since we have no data to transfer any
more, the last event takes place once the complete byte is shifted out of the shift register and both
the data register DR and the shift register are empty. This is the event (EV8_2), it signals that the
transmission has finished, and bit BTF (Byte Transfer Finished) in status register SR1 is set. The
processor can now request a “stop” condition on the I°C bus to terminate the writing into the slave.

A slave unit commonly houses more than one byte for data, so the master should tell where
inside the slave the data should be written to. This is resolved by master sending three bytes; the
first byte represents the address of the slave, the second byte represents the address of the register

Playing with STM32F407 test board — I’C Communication Channel

within the slave, and the third byte is the actual data to be written into the selected register within
the slave. This is the case in our example.

The function to implement the above is shown in Fig. 6. The function receives two arguments for
selecting the register within the slave (Adr) and the data to be sent to this register (Dat); both
arguments are 8 bits wide and declared as characters. The rest of the function strictly follows what
was written in the paragraphs above. First the “start” condition is requested by setting bit 8 (START)
of the register CR1. The processor then waits executing an empty loop for confirmation from the 12C
block on the “start” condition, this confirmation comes in a form of a zero-th bit (SB) being set to one
in register SR. The address of the slave (0xdO in this example) is then written into the data register
DR, the least significant bit of the address is low requesting the write operation from the 1°C block.
The processor then again enters an empty loop where it waits for setting of the bit 1 (ADDR) in the
status register SR1. Once this bit is set the transmission of the slave address is completed and the
processor reads the status register SR2 to clear the bit ADDR, and then writes the address of the
register within the slave into the data register DR. After writing it enters an empty loop waiting for
the data register DR to become empty. The I°C block transfers the content of the data register into
the shift register to transmit it, and sets the bit TxE signaling the processor can write next byte into
the data register DR. This allows the processor to exit the empty loop and write the last byte Dat into
the data register DR. After this the processor enters into another empty loop where it first waits for
the data register DR to become empty, and then for the transmission to be finished. The last is
signaled by setting of the bit BTF in the status register SR1. Once this is done the processor
terminates the transmission by setting the bit STOP (bit 9) in control register CR1, and the 1°C block
returns to idle state by sending the “stop” condition.

void 12C2_WriteChar (char Adr, char Dat) {

while (1(12C2->SR1
while (1(12C2->SR1
12C2->CR1

0x0080)) {}; 7/ wait for DR empty (TxE)
0x0004)) {}:; // wait for Byte sent (BTF)
0x0200; // send STOP bit

12C2->CR1 |= 0x0100; // send START bit
while (1(12C2->SR1 & 0x0001)) {}; // wait for START condition (SB=1)
12C2->DR = 0xdO; // slave address -> DR & write
while (1(12C2->SR1 & 0x0002)) {}; // wait for ADDRESS sent (ADDR=1)
int Status2 = 12C2->SR2; // read status to clear flag
12C2->DR = Adr; // Address in chip -> DR & write
while (1(12C2->SR1 & 0x0080)) {}; // wait for DR empty (TxXE)
12C2->DR = Dat; // Dat -> DR & write

&

&

Figure 6: A listing of the function to send a byte over I12C bus to a slave

The diagram on Fig. 7 gives a copy from the manual RM0090, page 714, figure 243 for actions and
events during reading from the slave.

[s] Address | A Datal [A] Data2 A pataN [Na| P |
EV5 EV6 EV7 evr| Ev7_1] EV7

Legend: S= Start, Sr = repeated Start, P = Stop, A= Ackowledge, NA = Non-acknowledge,

EVx= Event

EV5: SB=1, cleared by reading SR1 register followed by writing DR register.

EV6: ADDR=1, cleared by reading SR1 register followed by reading SR2. In 10-bit master receiver mode, this sequence

should be followed by writing CR2 with SART = 1.

In case of the reception of 1 byte, the Acknowledge disable must be performed suring EV6 event, i.e. before clearing ADDR flag.
EV7: RxNE = 1 cleared by reading DR register.

EV7_1: RxNE = 1 cleared by reading DR register, programming ACK = 0 and STOP request.

Figure 7: Commands and events during the reception of a byte from the slave

Playing with STM32F407 test board — I’C Communication Channel

The reading from the slave again starts with the processor requesting the “start” condition. The
I°C block executes the request and issues an event (EV5), where it confirms the “start” condition on
the I°C lines by setting the bit SB (bit 0, status resister SB1). The processor has been waiting for this
event, and can now proceed with writing the address of the slave into the Data Register DR. The
address is composed of seven bits to select a device on the 1°C bus, and the eighth bit (logic high) to
request reading. After this, the processor must wait for the address to be sent and the receipt of the
address confirmed by the slave. Once this happens, the event (EV6) is issued by the I°C block, and the
bit ADDR (bit 1, status register SR1) is set. The processor responds by reading the status register SR2
(this clears the bit ADDR). This read, in combination with the eights bit sent as address, signals the 1’C
block to continue by issuing nine clock pulses and receive a data byte from the slave. Once the data
byte is composed in the shift register, it gets automatically transferred into the Data Register, and an
event (EV7) is issued. This sets bit RXNE (bit6, status register SR1), and the processor can now read
the received byte from the data register. If this is all to receive, then the processor can request the
“stop” combination from the I°C block and terminate the reading.

The example function in Fig. 8 is more complex. There are many registers within one device
connected to the I°C bus, and one must select a location within the device to read from. The reading
becomes more complex and is composed out of two steps. The first step is the writing of the address
within the device, and the second step is the reading from the device. Both steps are visually
separated by blank lines in Fig. 8.

char 12C2_ReadChar (char Adr) { // procedure: RMO090, pg. 584!

int Status2

12C2->CR1 |= 0x0100; // send START bit

whille (1(12C2->SR1 & 0x0001)) {}; // wait for START condition (SB=1)
12C2->DR = 0xdO; // slave address -> DR (LSB=1)
whille (I(12C2->SR1 & 0x0002)) {}; // wait for ADDRESS sent (ADDR=1)

12C2->SR2; // read SR2 to clear flag

12C2->DR Adr; // register in chip -> DR

whille (1(12C2->SR1 & 0x0080)) {}:; // wait for DR empty (TxE=1)
whille (I(12C2->SR1 & 0x0004)) {}; // wait for ByteTransferred (BTF=1)
12C2->CR1 |= 0x0100; // send START bit

while (Y(12C2->SR1 & 0x0001)) {}; // wait for START condition (SB=1)
12C2->DR = Oxdi1; // slave address -> DR (LSB=0)
while (Y(12C2->SR1 & 0x0002)) {}; // wait for ADDRESS sent (ADDR=1)
int Status4 = 12C2->SR2; // read status to clear flag

while (Y(12C2->SR1 & 0x0040)) {}; // wait for ByteReceived (RXNE=1)
12C2->CR1 |= 0x0200; // send STOP bit

return ((char)12C2->DR); // return byte

Figure 8: A listing of the function to retrieve a byte over I12C bus from the slave

The sending of the address within the device is the same as in Fig. 6, but only one byte (the
address within the device) gets transferred. Once this is sent, the bit BTF (Byte transferred, bit 2,
status register SR1) is set, and the processor requests another “start” condition at the beginning of
the second step. Once this condition is re-established, the processor again addresses the slave
device, but this time with the least significant bit of the address set to read from the device, and
waits for the flag ADDR (ADDR sent, bit 1, SR1). Once this flag is set, the processor clears it by reading
the status register SR2, and waits for a byte to become ready in the data register. This is signaled by
setting of the bit RXNE (bit 6, Receiver Not Empty, SR1). The processor then reads the byte received

Playing with STM32F407 test board — I’C Communication Channel

and terminates the transmission by requesting the “stop” condition. The function ends by a return
statement, where the properly formatted byte is sent back to the main program.

Similar function is prepared for reading two bytes in a row from the same device on the I°C bus. It
would be a waste of time to repeat the function from Fig. 8 two times, and devices on the 1°C bus
normally allow sequential reading, where two consecutive addresses within the device I°C get read.
The function is given in Fig. 9. It returns the combined bytes as a 16-bit “short” variable.

short 12C2_ReadShort (char Adr) {

int Status2

12C2->CR1 |= 0x0100; // send START bit

whille (1(12C2->SR1 & 0x0001)) {}; // wait for START condition (SB=1)
12C2->DR = 0xdO; // slave address -> DR (LSB=1)
whille (1(12C2->SR1 & 0x0002)) {}; // wait for ADDRESS sent (ADDR=1)

12C2->SR2; // read SR2 to clear flag

12C2->DR Adr; // register in chip -> DR

whille (1(12C2->SR1 & 0x0080)) {}; // wait for DR empty (TxE=1)
whille (1(12C2->SR1 & 0x0004)) {}:; // wait for ByteTransferred (BTF=1)
12C2->CR1 = 0x0100; // send START bit

whille (I(12C2->SR1 & 0x0001)) {}; // wait for START condition (SB=1)
12C2->DR = Oxd1; // slave address -> DR (LSB=0)
whille (I(12C2->SR1 & 0x0002)) {}; // wait for ADDRESS sent (ADDR=1)
12C2->CR1 |= 0x0800; // POS enable

int Status4 12C2->SR2; // read status to clear flag
while (Y(12C2->SR1 & 0x0004)) {}; // wait for ByteReceived (BTF=1)

12C2->CR1 |= 0x0200; // send STOP bit

short x1 = 12C2->DR << 8; // safe place

short x2 = 12C2->DR; // safe place

return ((short)(x1 + x2)); // return combined bytes

Figure 9: A listing of the function to retrieve two bytes over I12C bus from the slave

The microcontroller needs initialization prior to the use of 12C block. The initialization includes
mapping of the port pins to reach the 12C block, and the initialization of the control registers within
the 12C block. The function to initialize is shown in Fig. 10.

void 12C2_Init (void) {

// declare and initialize pins to be used for 12C

RCC->AHB1ENR |= 0x00000002; // Enable clock for GPI0OB

GPIOB->AFR[1] |= 0x00004400; // select AF4 (12C) for PB10,11 -> 12C2
GPI0OB->MODER |= 0x00a00000; // PB10,11 => alternate functions
GPIOB->0TYPER |= 0x0c00; // use open-drain output on these pins!

// initialize 12C block

RCC->APB1ENR |= 0x00400000; // Enable clock for 12C2
12C2->CR2 |= 0x0008; // clock == 8MHz!
12C2->CCR |= 0x0040; // clock control register (270kHz)
12C2->TRISE |= 0x0009; // rise time register
12C2->CR1 |]= 0x0001; // 12C2 enable
}

Figure 10: A listing of the function to initialize the I12C block

By inspection of mapping table (Table 8, DM00037051, page 59) one can see that the 12C block
number two can be accessed through port B, bits 10 (SCL) and 11 (SDA) if one selects alternate
function 4 for these bits. Pins that correspond to these bits are conveniently connected to connector
K470 on the test board. In order to map these pins to the block 12C, the port B block must first
receive the clock (line 1, body of the function, Fig. 10), and then alternate functions 4 must be
selected for bits 10 and 11. The use of alternate functions must be activated in the MODE register

Playing with STM32F407 test board — I’C Communication Channel

(line 3), and the outputs must be defined as “open-drain”, since the 1°C standard requires this type of
driving for all lines I°C.

The 12C block used also requires a clock, and the bit to enable it is located in register APB1ENR.
The appropriate speed of transmission must be selected by selecting the basic clock frequency (8MHz
in our case, as selected in the 6 line of the function body), and then selecting the clock division ratio
(7™ line, define the content of the Clock Control Register CCR). The clock is adjusted to the slowest
device connected on the I°C bus; in our case the slowest device runs at 400 kHz, but about 270 Khz
clock speed is used. The allowed rise time of the signal at the bus is selected (register TRISE), and
lastly the I°C reception and transmission is enabled by setting the least significant bit in control
register CR1.

A device for measuring the acceleration and the speed of rotation is used in this example. The
device houses a local microcontroller and three independent accelerometers (xyz axis) combined
with three independent gyro (the speed of rotation, XYZ axis) sensors. The result from each individual
sensor is available as a “short” in two consecutive registers within the device. The program to read
the sensor data is presented in Fig. 11

#include "'stm32f4xx.h"
#include "'LCD2x16.c"

void main O {
// Init accelerometer chip
12C2_Init(); // initialize 12C2 block
12C2_WriteChar(0x6b,0x00) ; // wake-up!
12C2_WriteChar(0x1b,0x10); // Gyro full scale = +/-1000 deg/s

// Init LCD & prepare display

LCD_init(Q); // Init LCD
LCD_string('A(2)= mg', 0x00); // prepare 1st row
LCD_string("R(2)= d/s"™, 0x40); // prepare 2nd row
// endless loop
while (1) {
short AccZz = 12C2_ReadShort(0x3f); // read acc In z axis
LCD_sIntl6(AccZz / 16, 0x05, 1); // write to LCD
short RotZ = 12C2_ReadShort(0x47); // read gyro in z axis
LCD_sIntl6(RotZz / 33, 0x45, 1); // write to LCD
for (int i=0; i<3000000; i++) {}: // waste time, ~100ms
}:
}

Figure 11: A listing of the program to read data from sensor using the 12C bus

The program starts with initialization of the 12C block within the microcontroller (a call to the
function 12C2_Init) and the initialization of the device connected to the 12C bus (the two consecutive
writes to the 12C device, see data on the gyro/accel device). The program then proceeds with the
initialization of the LCD screen where the results will be written to, and enters the endless loop to
periodically read results of measurement from the device and writes the results on the LCD screen.

