
1

10. Interrupts & ports

The regular program executes line after line as it was written by the programmer. Jumps from one
part of the program to another part are possible, but are preprogrammed or/and used to follow
decisions based on the values of variables. Many times an important event outside of the processor
requires attention and action of the processor while it is executing regular program. The situation
where the execution of the regular program is suspended and the processor is forced to take care of
the important event is called an interrupt. Such situation is initiated by an electrical signal called
interrupt request. The interrupt request can be issued by a hardware built into the microcontroller,
but can also be issued by an external hardware connected to a pin of a port. This example will show
how to program a microcontroller to respond to the interrupt request caused by pressing a
pushbutton connected to port E, bit 3.

A special block of hardware is built into the microcontroller in order to release the processor from
complex tasks involved in handling interrupt requests. This hardware is called interrupt controller.
The interrupt controller hardware is capable of receiving an interrupt request signal, interpreting it as
a justified reason to stop the processor from executing the regular program and actually forcing the
processor to jump to and execute a special piece of code called interrupt function. It is the task of the
processor to return to the regular program after the execution of the interrupt function and continue
its execution as if nothing has happened.

In STM32F4xx series microcontrollers the interrupt controller is called Nested Vectored Interrupt
Controller (NVIC, RM0090, chapter 10, page 247). The controller NVIC can handle interrupt requests
caused by most hardware (like DMA requests, interrupt requests from communication channels
USART, CAN, I2C, and timers) built into the microcontroller alone, and also receives interrupt
requests from ports through an additional hardware called External interrupt/event Controller (EXTI).
A simplified block diagram for the processing of interrupt request signals in shown in Fig. 1.

Figure 1: The chain involved in the processing of interrupt requests - simplified

DMA IRQ
USART IRQ

CAN IRQ
TIMER IRQ NVIC PROCESSOR

EXTI

I2C IRQ

Port A

Port I

Port B

Playing with STM32F407 test board – Interrupts & Ports

2

In order to utilize the interrupt capabilities of the microcontroller the following must be fulfilled:

- The interrupt function must be prepared.

-

 This means that the programmer must know what
to do in case of an interrupt request, and must write the code (interrupt function) to be
executed due to the interrupt. The interrupt function must be written in a special way not to
harm the execution of the regular program and the compiler must be notified that this is the
function to be executed in case of a certain interrupt request on a certain event. The interrupt
function cannot receive or return any arguments; the arguments used within the interrupt
function must be declared as global at the beginning of the regular program.
The interrupt controller NVIC must be initialized and enabled.

-

 Since changing of the settings
within the interrupt controller is a delicate task and the registers involved into initialization of
this controller can be accessed only from a privileged state of the processor, a set of functions
to change/initialize the controller NVIC is included in a library within the compiler package.
Each function from the set will be explained bellow.
The controller EXTI must be initialized and enabled

Once the controller NVIC receives the interrupt request it validates it and notifies the processor.
The processor then requests the code of the interrupt request source and uses it to find the pointer
to the corresponding interrupt function from the interrupt vector table. The table is located in the
memory of the microcontroller, and has more than 80 entries for vectors. The complete listing of
vectors is given in Table 43, RM0090, page 248. The default priority for interrupts is given in column 2
of the same table, but the priority can be changed by the software. From this table one can see that
there are seven vectors reserved for interrupt requests from ports; these vectors are named EXTIx,
where x stands for the number. These seven vectors can serve 16 interrupt requests issued through
ports; some vectors are shared by more than one interrupt request.

 to sort-out the signals at ports and
interpret them as interrupt requests. The procedure is completed by writing bits in registers
in a normal fashion.

The vector table itself as used by the compiler can be seen in assembly language source file
“startup_stm32f4xx.s” from line 57 on. Individual vectors to point to corresponding interrupt
functions are placed into this table during the compilation process, and the functions to be executed
on individual interrupt requests must have the same names as stated in this table. As an example,
the interrupt function to be executed on external interrupt EXTI3 must have the name
“EXTI3_IRQHandler”. The required names of interrupt functions for other interrupt request can be
obtained from this vector table.

As stated before the controller NVIC can be handled only in privileged mode, and a set of
functions to change registers of the controller is available to ease the setting of the controller. The
functions available are:

- NVIC_EnableIRQ (IRQ#)

-

: Enables the handling for the given interrupt request (IRQ#) as
specified in Table 44, RM0090, page 252, first column. The number IRQ# can also be replaced
by a human-friendly definition from file »stm32f4xx.h«, from line 157 on.
NVIC_DisableIRQ (IRQ#)

-
: Disables the handling for the given interrupt request (IRQ#).

NVIC_SetPendingIRQ (IRQ#)
-

: Sets the status of an interrupt request as pending.
NVIC_ClearPendingIRQ (IRQ#)

-
: Clears the status of an interrupt request from being pending.

NVIC_GetPendingIRQ (IRQ#): Inquires about the pending status of a given interrupt request
(IRQ#) and returns a non-zero value if IRQ# is pending.

Playing with STM32F407 test board – Interrupts & Ports

3

- NVIC_SetPriority (IRQ#, priority#)

-

: Sets the priority for the given interrupt request (IRQ#) with
configurable priority level to value stated by priority#.
NVIC_GetPriority (IRQ#)

The controller EXTI handles the processing of interrupt request signals from all bits of ports (144
of them) and concentrates the requests into 16 (23 including some extra interrupt request sources,
see RM0090, chapter 10, for details) lines to be passed on to controller NVIC. It consists of 16
multiplexers for routing signals from ports and hardware to evaluate the routed interrupt request
signals, see fig. 2.

: Reads the priority for the given interrupt request with configurable
priority level.

Multiplexers are used concentrate interrupt request signals into fewer. Bits 0 from all ports enter
a multiplexer, and one of them can be used as an EXTI0 interrupt request signal. The multiplexer is
controlled by four least significant bits of register SYSCFG_EXTICR[0]; combination ‘0010’ for instance
selects PC00. Bits 1 from all ports enter next multiplexer, and one of them can be used as an EXTI1
interrupt request signal. The multiplexer is controlled by next four bits of register SYSCFG_EXTICR[0].
The same pattern repeats for other bits. Note that the SYSCFG_EXTICR[x] registers reside in SYSCFG
block which must be clocked in order to be used.

The resulting bus is 23-bits wide and enters a circuit for edge detection; an interrupt can be issued
on rising and/or falling edge of a signal, and the appropriate edge for each of the 23 signals is
enabled individually by setting bits in registers EXTI_RTSR and EXTI_FTSR.

A interrupt request can be also issued by software. Setting a bit in register EXTI_SWIER initiates
the interrupt processing as if it would be initiated by hardware. However, not all interrupt request
signals can actually trigger the interrupt. A mask to enable individual interrupt request signals in

Figure 2: The hardware of controller EXTI: blue boxes are registers, red dots are input pins

PA00
PB00
PC00
PD00
PE00
PF00
PG00
PH00
PI00

EXTI0

PA01
PB01
PC01
PD01
PE01
PF01
PG01
PH01
PI01

EXTI1

PA15
PB15
PC15
PD15
PE15
PF15
PG15
PH15

EXTI15

SYSCFG_EXTICR0[3..0]

SYSCFG_EXTICR0[7..4]

SYSCFG_EXTICR3[15..12]

EXTI16..EXTI22

23 EDGE DETECT
CIRCUIT

EXTI_RTSR EXTI_FTSR

RISING EDGE FALLING EDGE

23 23

23

EXTI_SWIER
23SOFTWARE INTERRUPT

INTERRUPT MASK

EXTI_IMR

EVENT MASK

EXTI_EMR

TO NVICPENDING
REQUEST
REGISTER

EXTI_PR

23

23

23

23

23

23

23

EVENT

PENDING INTERRUPT

Playing with STM32F407 test board – Interrupts & Ports

4

located in register EXTI_IMR. Only enabled interrupt requests can pass the last top AND gate and
enter a queue before entering the interrupt controller NVIC.

When the processor is executing a high priority interrupt function other, lower priority requests
must wait to be executed. Those are called “pending interrupt requests”. The software can check
about such pending requests by investigating the content of register EXTI_PR. The same register also
remembers the interrupt request, and must be cleared from the software within the interrupt
function. The interrupt request gets cleared by writing a high to the bit to be cleared.

In this simple example ports and controllers NVCI and EXTI are initialized first, and then infinite
loop is executed. Here the content of the variable “IRQcount” is periodically written to the LCD.
There is an interrupt function “EXTI3_IRQHandler« prepared. It is called upon pressing of the
pushbutton S372 and increments the value of variable “IRQcount”. Be aware that pressing of a
pushbutton does not give a clean transition from logic zero to one. Due to the bouncing of the switch
a series of pulses will most likely be present at the port causing a train of interrupts to increment the
value of the variable “IRQcount” several times. Instead of pressing a pushbutton a square wave signal
of appropriate amplitude can be connected to J370, pin 5.

The complete listing of the demo program is given in Fig. 3.

#include "stm32f4xx.h"
#include "LCD2x16.c"

int IRQcounter = 0; // declare & initialize IRQ counter

void main (void){

 RCC->AHB1ENR |= 0x10; // Clock PortE
 RCC->APB2ENR |= 0x00004000; // Clock SYSCFG - system configuration controller

 GPIOE->MODER |= 0x55550000; // complete upper half of port E == outputs

 LCD_init(); // init LCD
 LCD_string("Number of IRQs:", 0x00); // display title string

 NVIC_EnableIRQ(EXTI3_IRQn); // Enable IRQ for ext. signals, line EXTI3_IRQn

 SYSCFG->EXTICR[0] = 0x4000; // select PE to make IRQ EXTI3
 EXTI->RTSR |= 0x00000008; // allow positive edge interrupt for EXTI3
 EXTI->IMR |= 0x00000008; // enable interrupt on EXTI3

 while (1) {
 LCD_uInt16(IRQcounter,0x40,1); // write IRQ count to LCD
 LCD_uInt16(GPIOE->IDR & 0x3f,0x48,1); // write keycode to LCD
 for (int i = 0; i<100000; i++) {}; // waste some time
 };
}

// IRQ function
void EXTI3_IRQHandler (void) {
 IRQcounter++; // do the actual work
 EXTI->PR = 0x0008; // clear interrupt flag for EXTI3
 GPIOE->ODR |= 0x0100; // added to show the execution of IRQ function
 GPIOE->ODR &= ~0x0100; // end of execution, about 300ns later
}

Figure 3: A listing of the program to utilize interrupt requests at port E, bit 3

	10. Interrupts & ports

