
1

21. PID controller

The PID (Proportional Integral Differential) controller is a basic building block in regulation. It can

be implemented in many different ways, this example will show you how to code it in a

microcontroller and give a simple demonstration of its abilities.

Consider a well stirred pot of water (system), which we need to keep at the desired temperature

(reference value, R) above the temperature of the surroundings. What we do is we insert a

thermometer (sensor) into the water and read its temperature (actual value, X). If the water is too

cold, then we turn-on the heater (actuator) placed under the pot. Once the temperature reading on

the thermometer reaches the desired value, we turn off the heater. The temperature of the water

still rises for some time (overshoot), and then starts to decrease. When temperature of the water

drops below the desired value, we turn-on the heater again. It takes some time before the heater

heats-up (this causes the undershoot) and starts to deliver the heat into the water, but eventually

the temperature of the water reaches the desired value again, and the process repeats. What we

have is a regulation system, where we act as a controller; we observe the actual value, compare it

with the reference value, and influence the system based on the result of the comparison, Fig. 1.

The temperature of the water in the above example never remains at the desired value, but

instead wobbles around it. The wobbling depends on the properties F of the system, and properties

of the sensor and actuator. In order to improve the behavior of the temperature and reduce the

wobbling we can improve the regulation process by introducing more complex decisions in the

controller. For instance: we could stop the heating some time before the temperature reaches the

desired value if we know the amount of overshoots. We could reduce the overshoot also by reducing

the amount of heat delivered into the water when the actual temperature becomes close to the

desired. There are other possibilities, but they can all be put to life by introduction of a control unit

which performs so-called PID regulation.

Figure 1: A crude example for a regulation

SYSTEM

X R

ACTUATOR

Playing with STM32F407 test board – PID controller

2

In terms of regulation theory the above crude example can be described by a second order

differential equation, and the regulated system is called a second order. These are best tamed by a

PID controller.

A PID controller consists first of a unit to calculate the difference between the desired value and

the actual value. The calculated error signal is fed to three units to calculate the multiple of the error

(proportional part, Prop), the rate of changing of the error (differential part, Dif), and the up-to-now

sum of the error (integral part, Int). All three components are weighted by corresponding factors (Kp,

Kd, Ki) and summed to get the final value (Reg) used by the actuator to influence the system.

When such PID controller is implemented in microcontroller the above action must be performed

periodically, the period being short enough compared to the response time of the regulated system.

This again calls for periodic sampling, calculation and generation of values. The same programming

skeleton as used in FIR and IIR filtering can be re-used. The initialization of the microcontroller is the

same, all calculation of the controller functions should be performed within the interrupt function.

The listing of the program is given in Fig. 3.

The program starts with the declaration (and initialization where appropriate) of variables. Two

integer circular buffers are used for the desired and actual value, and additional two floating point

circular buffers for the error and past output values. Three variables for components and three for

corresponding weights are declared as floating point numbers and initialized next. Finally, a variable

needed to calculate the rate of change is declared and initialized.

Within the main function the ADC and DAC are initialized, the timer is programmed to issue one

start of conversion at the ADCs every 100us giving the sampling rate of 10 kHz, and the interrupt

controller NVIC is enabled for interrupt requests from the ADC. Following this the microcontroller

continues with the execution of the endless loop. Since we are implementing a PID regulator it seems

normal to allow the user to change the weight for proportional, differential and integral component

during the execution of the program. The status of buttons is periodically checked, the period being

defined by the time-wasting loop at the beginning of the endless loop. Next three lines of the

program are used to change the value of the weight for the proportional component. If pushbutton

S370 (connected to port E, bit 0, 0x01) is pressed in combination with the pushbutton S375

Figure 2: A system controlled by a PID controller

SYSTEMACTUATOR SENSOR

Error
DIFFERENCE

1

d
dt

x dt

K p

K

K

d

i

n

Prop

Dif

Int

Reg

X

Ref

PID controller

Playing with STM32F407 test board – PID controller

3

(connected to port E, bit 5, 0x20), then the weight is increased by one. If pushbutton S370 is pressed

in combination with the pushbutton S374 (port E, bit 4, 0x10) then the weight is decreased by one.

The third line bounds the value of the proportional weight to values between (and including) 0 and

1000. Next three lines do the same with the weight for differential component, and the next three

lines for the integral component. Finally all three weights are written to the LCD screen.

#include "stm32f4xx.h"

#include "LCD2x16.c"

int Ref[64], x[64], Ptr; // declare circular buffers

int Error[64], Reg[64]; // declare error and past output vectors

float Prop, Dif, Int = 0; // declare (& init) vars

float Kp = 1.0, Ki = 0.0, Kd = 0.0; // declare & init params

float Ts = 0.0001; // defined by constant 8400 in TIM2->arr; 10kHz

int main () {

 GPIO_setup(); // GPIO set-up

 DAC_setup(); // DAC set-up

 ADC_setup(); // ADC set-up

 Timer2_setup(); // Timer 2 set-up

 NVIC_EnableIRQ(ADC_IRQn); // Enable IRQ for ADC in NVIC

 LCD_init();

 LCD_string("Kp:", 0x00); LCD_string("Kd:", 0x09); LCD_string("Ki:", 0x49);

 // set gains & waste time - indefinite loop

 while (1) {

 for (int i = 0; i < 2000000; i++) {}; // waste time

 if ((GPIOE->IDR & 0x003f) == (0x01 + 0x20)) Kp++; // manually set Kp

 if ((GPIOE->IDR & 0x003f) == (0x01 + 0x10)) Kp--;

 if (Kp<0) Kp = 0; if (Kp > 1000) Kp = 1000;

 if ((GPIOE->IDR & 0x003f) == (0x02 + 0x20)) Kd += 0.001; // manually set Kd

 if ((GPIOE->IDR & 0x003f) == (0x02 + 0x10)) Kd -= 0.001;

 if (Kd < 0) Kd = 0; if (Kd > 1) Kd = 1;

 if ((GPIOE->IDR & 0x003f) == (0x04 + 0x20)) Ki += 0.0001; // manually set Ki

 if ((GPIOE->IDR & 0x003f) == (0x04 + 0x10)) Ki -= 0.0001;

 if (Ki < 0) Ki = 0; if (Ki > 1) Ki = 1;

 LCD_sInt3DG((int)Kp,0x03,1); // write Kp

 LCD_sInt3DG((int)(Kd*1000),0x0c,1); // write Kd

 LCD_sInt3DG((int)(Ki*10000),0x4c,1); // write Ki

 };

}

// IRQ function

void ADC_IRQHandler(void) // this takes approx 6us of CPU time!

{

 GPIOE->ODR |= 0x0100; // PE08 up

 Ref[Ptr] = ADC1->DR; // pass ADC -> circular buffer x1

 x[Ptr] = ADC2->DR; // pass ADC -> circular buffer x2

 // PID calculation start

 Error[Ptr] = Ref[Ptr] - x[Ptr]; // calculate error

 Prop = Kp * (float)Error[Ptr]; // proportional part

 Dif = Kd * (float)(Error[Ptr] - Error[(Ptr-1) & 63]) / Ts; // diff. part

 Int += Ki * (float)Error[Ptr]; // integral part

 Reg[Ptr] = (int)(Prop + Dif + Int); // summ all three

 // PID calculation stop

 if (Reg[Ptr] > 4095) DAC->DHR12R1 = 4095; // limit output due to DAC

 else if (Reg[Ptr] < 0) DAC->DHR12R1 = 0;

 else DAC->DHR12R1 = (int)Reg[Ptr]; // regulator output -> DAC

 DAC->DHR12R2 = Error[Ptr] + 2048; // Error -> DAC

 Ptr = (Ptr + 1) & 63; // increment pointer to circular buffer

 GPIOE->ODR &= ~0x0100; // PE08 down

}

Figure 3:The listing of a program to implement PID controller

Playing with STM32F407 test board – PID controller

4

The complete calculation of the control is performed within the interrupt function. The results of

conversion from two ADCs (desired and actual value) are first stored in circular buffers. The

difference between these two values is calculated next, and immediately saved into the third circular

buffer as Error. Next three lines calculate the three components and weight them; the fourth line

adds components together and saves the sum into the fourth circular buffer as Reg. This value should

be the output of the regulator andi therefore sent to the DAC. However, the DAC can accept values

between 0 and 4095, while other numbers are folded into this range; for instance the number 4097 is

DAC-ed the same as number 1, and this would cause significant error in regulation. The numbers are

therefore best limited to the acceptable values, and this is done in the next three lines of code. The

second DAC is used to generate the analog version of the error signal, and the value is shifted for one

half of the DAC range by adding 2048 to the error value. Finally, the pointer in circular buffers gets

updated.

The calculation of the control is put between

two statements to change values of bit 0, port E,

and the signal generated at this bit can be used

to determine the execution time of the interrupt

function, which in this case is about 6s.

The program can be tested by adding a simple

second order system between the DAC output

(Reg, DAC1) and ADC input (actual value, ADC2-

>DR, ADC3 input). The other ADC (ADC1->DR,

ADC2 input) is used to read the desired value.

Two serially connected RC circuits can be used as

a substitute for the second order system; this

simplifies the demonstration. Additionally, the

desired value Ref can be generated using a function generator, as can the interference signal Intf.

The complete connection of the demo circuit is given in Fig. 4.

Figures 5 to 8 give the actual values (X, red) for the circuit in Fig. 4 for different values of Kp, Kd,

and Ki. The interference signal Intf is kept at zero, and the desired value (Ref, blue) is a squarewave

with the frequency of 10Hz. The offset of the Ref signal is set close to the middle of the ADC scale.

The horizontal scale is in seconds, while the vertical scale is in volts.

Figure 4: The connection for experiment

12k

470nF

12k

470nF

120k

Reg

X

Ref

Intf

Err

D
A

C
1

D
A

C
2

A
D

C
2

A
D

C
3

A
D

C
1

A
D

C
0

K
3

0
0

Figure 5: Kp = 1, Kd = 0, Ki = 0; Proportinal gain is too

low and the actual value (red) does not reach the

desired value (blue)

0.4

0.6

0.8

1.0

1.2

1.4

-0.02 0.02 0.06 0.10 0.14 0.18

Figure 6: Kp = 50, Kd = 0, Ki = 0; Proportional gain is

high, the actual value (red) is closer to the desired value

(blue), but oscillations become visible

1.0

1.1

1.2

1.3

1.4

-0.02 0.02 0.06 0.10 0.14 0.18

Playing with STM32F407 test board – PID controller

5

The next set of diagrams on Figures 9 to 13 give responses (red) of the regulated system to the

interference signal (blue) while the reference signal (not shown) is kept at a constant value of 1.21V.

It is expected that the response is also a constant if the regulator does its job properly.

Figure 7: Kp = 50, Kd =4 0, Ki = 0; Differential gain

smoothes out the oscillations, but the actual value (red)

is still not the same as the desired value (blue)

1.0

1.1

1.2

1.3

1.4

-0.02 0.02 0.06 0.10 0.14 0.18

Figure 8: Kp = 50, Kd = 40, Ki = 40; The integral gain

pushes the average of the actual value up to become the

same as the average of the desired value

1.0

1.1

1.2

1.3

1.4

-0.02 0.02 0.06 0.10 0.14 0.18

Figure 9: Kp = 1, Kd = 0, Ki = 0; Proportional gain is too

low and the influence of the interfering signal is

significant

0.4

0.6

0.8

1.0

1.2

1.4

-0.02 0.02 0.06 0.10 0.14 0.18

Figure 10: Kp = 50, Kd = 0, Ki = 0; Proportional gain is

high, the actual value (red) is closer to 1.21V, but

oscillations caused by the interfiring signal are visible

1.0

1.1

1.2

1.3

1.4

-0.02 0.02 0.06 0.10 0.14 0.18

Figure 11: Kp = 50, Kd =4 0, Ki = 0; Differential gain

smoothes out the oscillations, but the actual value (red)

is still not the same as the desired value (1.21V)

1.0

1.1

1.2

1.3

1.4

-0.02 0.02 0.06 0.10 0.14 0.18

Figure 8: Kp = 50, Kd = 40, Ki = 40; The integral gain

pushes the average of the actual value up to become the

same as the average of the desired value (1.21V)

1.0

1.1

1.2

1.3

1.4

-0.02 0.02 0.06 0.10 0.14 0.18

