
1

22. Phase Locked Loop

A Phase Locked Loop (PLL) is another commonly used block in digital electronics. The PLL block is

capable of generating a signal fVCO with a frequency which is the same as the frequency of the input

signal fIN; it is given in Fig. 1 in its basic form. By adding two dividers (one in series with each of the

input signals to the phase comparator) the block generates a signal fVCO which is the ratio of the two

division factors multiplied by the frequency of the input signal fIN. The same block can be used for

frequency demodulation of the input signal fIN; the signal TP accurately represents the frequency of

the input signal fIN.

In the following example we will program the PLL into the microcontroller obtaining a frequency

meter and frequency demodulator at the same time. For those with experience in electronics: there

are basically two types of phase comparators, XOR gate and a memory circuit (referred as Type I and

Type II in classical PLL chip CD4046); we will implement the memory circuit, since it does not lock on

harmonics of the input signal.

The frequency of the local oscillator fVCO can be the same as the frequency of the input signal fIN,

as shown in Fig. 2. In this case the PLL is locked to the input frequency, and no further actions are

needed. Arrows show the moment of sampling the two signals, and numbers their current value.

Figure 1: Graphical representation of the IIR filtering

PHASE

COMPARATOR

INf

DDS
GENERATOR

VCO

VCOf

LP FILTER

TP

INTEGRATOR

Figure 2: PLL is locked to the input signal;

fVCO is equal to fIN in frequency and phase, no adjustments are needed

0

0VCO 0

1

10

1

01

1

0

0 1IN

1

0

0

1

1

1

f

0

1

f

1

00

Playing with STM32F407 test board – Phase Locked Loop

2

When phases (and/or frequencies) of the two signals differ, two situations are possible. The local

signal fVCO can be delayed compared to the input signal fIN, as shown in Fig. 3, left; in this case the

frequency of the local signal fVCO must be increased to align the edges. Alternatively, the local signal

fVCO can come ahead of the input signal fIN as shown in the same figure, right; in this case the

frequency of the local signal must be decreased to match the edges.

If we use a DDS technique to generate the local signal fVCO then increasing the frequency requires

increasing the factor K (see chapter 16 on DDS, the frequency is proportional to factor K). From Fig. 3,

left, we can deduce to increase the frequency (therefore factor K) while the input signal fIN is high

and the local signal fVCO is low, and also while the input signal fIN is low and the local signal fVCO is high.

The same can be deduced for decreasing the frequency from Fig. 3, right. What to do, then?

 Consider the current and past samples of the input signal. The consecutive samples can be

arranged to form an array of bits having value of either zero or one. Such array, when short, can

comprise an integer variable; bit 0 (LSB) of the variable belongs to the current sample of the input

signal, bit 1 belongs to the previous sample, bit 2 to the pre-previous sample... , like 001111110000

for the Fig. 3, left, top. When two digital signals (for fIN and fVCO) are sampled simultaneously,

consecutive samples can be arranged in a common integer variable in such a way that odd bits (bit 1,

bit 3,…) of the integer variable represent signal fIN, and even bits (bit 0, bit 2,…) signal fVCO.

Additionally, let the least significant two bits represent the current values of both signals, and next

two more significant bits past values of the same signals, Fig. 4. Only four bits are important; for

instance, at time c (the third sample, Fig. 3, left) the corresponding integer number reads 0010b.

Using this construct we can now isolate the following situations:

- When signal fIN and fVCO have equal values, we should not change the frequency (factor K).

- When signals have different values, we should change frequency of the DDS generator:

o The frequency should start increasing when the constructed integer becomes 0010b, and

keep increasing until both signals become equal.

o The frequency should also start increasing when the constructed integer becomes 1101b,

and keep increasing until both signals become equal.

o The frequency should start decreasing when the constructed integer becomes 0001b, and

should keep decreasing until both signals become equal.

Figure 3: Two possible situations: left => frequency of signal fVCO must be increased to match the phase;

right => frequency of the signal fVCO must be decreased to match the phase

0 0 0 0 1 1 1 1 1 1 00

00 11 11 11 00 0 0

f IN

VCOf

1 0

1

0IN

1

1 0

1

1

0f 1

1f

0

1

0 1

0

0VCO

0 1

1 0

0

0

a b c ed f j kg ih l ifd kc h j la geb

Figure 4: The arrangement of bits for the phase detection

VCOf k[]
IN kf []f k-1k-1 []VCO[]INf

BIT0BIT1BIT2BIT3

Playing with STM32F407 test board – Phase Locked Loop

3

o The frequency should also start decreasing when the constructed integer becomes 1110b,

and should keep decreasing until both signals become equal.

The unit performing this functions (constructing the integer value and calculating the required

frequency) replaces both the phase comparator and the LP filter / integrator in the block diagram in

Fig. 1.

The program for PLL unit is given in figures 5 and 6. The main part of the program is the same as

used for the DDS generator from chapter 16, and is given in Fig. 5. It starts with the declaration of

variables for the DDS generator. Important variable to mention here is the variable dK which defines

the change of the factor K; positive dK means the frequency of the signal fVCO is increasing. The

endless loop includes a write to the LCD; the frequency of the DDS generator is calculated using the

known time interval between consecutive timer interrupt requests (10s) and the width of the

variable holding the table pointer (16 bits).

#include "stm32f4xx.h"

#include "LCD2x16.c"

#include "math.h"

int Table[4096], TablePtr, K = 655, dK = 0;

char InPat = 0;

int PortE, f_VCO;

int main () {

 // Table init

 for (TablePtr = 0; TablePtr <= 4095; TablePtr++)

 Table[TablePtr] = (int)(1850.0 * sin((float)TablePtr / 2048.0 * 3.14159265));

 // GPIO clock enable, digital pin definitions

 RCC->AHB1ENR |= 0x00000001; // Enable clock for GPIOA

 RCC->AHB1ENR |= 0x00000010; // Enable clock for GPIOE

 GPIOE->MODER |= 0x00010000; // output pin PE08: time mark

 GPIOE->MODER |= 0x10000000; // output pin PE14: f_out

 // LCD init

 LCD_init(); LCD_string("F in=", 0x01);

 // DAC set-up

 RCC->APB1ENR |= 0x20000000; // Enable clock for DAC

 DAC->CR |= 0x00010001; // DAC control reg, both channels ON

 GPIOA->MODER |= 0x00000f00; // PA04, PA05 are analog outputs

 // Timer 2 set-up

 RCC->APB1ENR |= 0x0001; // Enable clock for Timer 2

 TIM2->ARR = 840; // Auto Reload: 8400 == 100us -> 100kHz

 TIM2->DIER |= 0x0001; // DMA/IRQ Enable Register - enable IRQ on update

 TIM2->CR1 |= 0x0001; // Enable Counting

 // NVIC IRQ enable

 NVIC_EnableIRQ(TIM2_IRQn); // Enable IRQ for TIM2 in NVIC

 // endless loop - display parameters

 while (1) {

 LCD_uInt16((int)(K * 100000 / 65536),0x08,1); // display frequency

 for (int i = 0; i < 500000; i++) {}; // waste time

 };

}

Figure 5: The declaration of variables and initialization of hardware

Playing with STM32F407 test board – Phase Locked Loop

4

The PLL is implemented in the interrupt function given in Fig. 6. As always all variables used in the

interrupt function that should retain their values between interrupt function calls must be declared

as global. The function starts by clearing the interrupt request flag in the timer TIM2, and then reads

the value of the signal fIN, connected to port E, bit 15, into variable f_IN. All other bits of port E are

ignored. The current value of the locally generated signal fVCO is also determined and stored in

variable f_VCO. This is determined by taking the most significant bit of the 16-bit table pointer

TablePtr. Next the integer variable gets constructed; its name is InPat. Its content is first shifted left

for two places to move data from the two least significant bits to bits 2 and 3, and then least

significant bits of variable InPat are filled with values of both signals f_IN and f_VCO.

Once the variable is constructed the software decides what to do with the frequency of the DDS

generator. If both signals are the same the variable dK (delta K, for this amount the frequency should

change) is set to zero. However, when signals are different, all four possibilities from the former

bulleted list are checked and the variable dK is set accordingly.

The variable dK is next used to update the factor K, therefore the frequency of the signal fVCO. It

might happen that the update of factor K pushes its value out of the acceptable range, so the factor K

is next checked and bound.

The next statement updates the pointer to table with samples of the output signal. The last term

in the sum needs to be added to ensure the stability of the PLL loop (check the theory). The last three

statements take care of generating the actual signals at pins of the microcontroller. The digital signal

fVCO is generated at port E, bit 14, and the analog version is generated at the DAC1. The second DAC2

is used to generate the K factor, therefore the analog voltage representing the frequency of the

locally generated signal fVCO. When a frequency-modulated signal is used ad fIN, the output of the

DAC2 is the demodulated version of the input signal.

.

// IRQ function

void TIM2_IRQHandler(void) // PLL takes approx 800 ns of CPU time!

{

 GPIOE->ODR |= 0x0100; // PE08 up

 TIM2->SR &= ~0x00000001; // clear update event flag in TIM2

 PortE = GPIOE->IDR & 0x8000; // read input signal

 f_VCO = TablePtr & 0x8000; // this is locally generated signal

 InPat = (InPat << 2) & 0x0c; // construct pattern for phase detector

 if (PortE) InPat += 2; //

 if (f_VCO) InPat += 1; //

 if (PortE == f_VCO) dK = 0; // if equal signals (frequencies)

 else { if (InPat == 0x02) dK = 1; // if frequency too high

 if (InPat == 0x0d) dK = 1; //

 if (InPat == 0x01) dK = -1; // if frequency too low

 if (InPat == 0x0e) dK = -1; //

 };

 K += dK; // correct time interval

 if (K > 0x8000) K = 0x8000; // but not too much

 if (K < 0x0080) K = 0x0080; //

 TablePtr = (TablePtr + K + (dK << 8)) & 0xffff; // update pointer to table

 GPIOE->ODR = (GPIOE->ODR & ~0x4000) | (f_VCO >> 1); // digital out - f_VCO

 DAC->DHR12R1 = (Table[TablePtr >> 4]) + 2048; // analog signal -> DAC

 DAC->DHR12R2 = K >> 2; // frequency -> DAC

 GPIOE->ODR &= ~0x0100; // PE08 down

}

Figure 3:The listing of the interrupt function - PLL

