
1

16. Signal generation using DDS

A technique known as Direct Digital Synthesis (DDS) will be implemented to demonstrate the use

of interrupts and DAC to generate a signal with the desired frequency.

Consider a 16-bit wide register. Its content is increased periodically (the period is given as TP) by a

factor K. Obviously the time T needed to overflow the register equals:

If we keep increasing the content of the register then the overflows will repeat at regular time

intervals, and the frequency of overflows f can be calculated as:

where fP represents the number of increases per unit of time. Such structure is easy to implement

in a microcontroller. One only needs a timer and associated interrupt function. The timer defines the

period TP, and periodically calls an interrupt function, where a variable declared as an unsigned

integer gets increased by a factor K. The frequency of overflows is linearly dependant of factor K, and

it changes for about 15.26E-6 times fP. If we select the frequency of interrupt requests from the timer

(fP) at 100 kHz, then we will be able to define the frequency of overflows linearly in steps of 1.5 Hz.

If we consider the content of the register as the output signal, then we get a sawtooth generator.

However, we can use the content of the register as a pointer to a table, which can be filled by any

waveshape during the initialization process, like for instance one period of a sinewave. If we consider

the entry from a table, pointed to by the content of the register, as the output signal, we have a

sinewave generator. The frequency of the signal can still be adjusted in small steps, and the

amplitude can be adjusted by a simple multiplication of the entry by a constant before it gets passed

to the DAC.

It does not seem rational to prepare a huge table with 65536 entries, since neighboring entries

will be very similar. We can prepare smaller table, and use only the bits from the upper part of the

register as a pointer; we intend to generate signals within the audio range from 20 Hz on, and the

factor K will be about 16 at least. The decision on the table length depends on the required precision,

and we will use a table with 4096 entries in this example. It would be possible to reduce the size of

this table to ¼ by exploiting the properties of a sinewave, but we will not do this for the reason of

simplicity. The block diagram of the hardware that could be used as a DDS generator is shown in Fig.

1.

Playing with STM32F407 test board – Signal generation using DDS

2

The same technique is widely used in contemporary digital receiver units, and width of registers is

increased to about 40 bits as is the frequency of increasing to some hundreds of MHz to achieve a

stable output signal with a frequency of above 100 MHz that can be set within few mHz! By

expanding this technique it is very simple to generate a modulated signal (AM, FM, PM, …), and also

to define new shapes of signals as well as to generate multiple signals with different frequencies.

There are specialized integrated circuits available to do this.

The complete listing of the program is given in Fig. 2. The program starts with the declaration of

the table with 4096 integer elements, the pointer to this table, and some variables to define the

amplitude Am and factor K. Those must be declared as global since they are used in the interrupt

function. The program then proceeds to fill the table with entries following one period of a sinewave.

The values range from -1850 to +1850, allowing for some space to accommodate the saturation

voltage of the operational amplifier at the output from the DAC. Floating point arithmetic must be

used to calculate sin function. Next is the initialization of clocks for peripherals, ports, LCD display,

DAC, timer and the controller NVIC, as it was already explained in previous chapters. This

initialization is simply copied from examples given before. The program then enters an endless loop

where it periodically reads pushbuttons S372 to S375, increases or decreases the variables defining

the amplitude and the frequency of the output signal, and writes on LCD.

The interrupt function is given next. It is properly named as required by the interrupt vector table

as “TIM2_IRQHandler”. Both port accesses at the beginning and at the end are inserted to allow the

determination of the execution time of this function using an oscilloscope, and could be removed.

The important body starts by clearing the interrupt flag in the timer TIM2 and calculating the new

pointer into the table. A factor K is added to the pointer, and its value is bound by 65536. Next the

calculated pointer is used to retrieve correct element of the table, and only upper 12 bits of the

pointer are used (this is the “ >> 4 ” operation). The retrieved element is multiplied by a variable Am

(amplitude), and the resulting number divided by 256 to remain in the range of the DAC. The DAC can

handle positive numbers only, so half of the DAC range (2048) is still added before sending the

number to its destination.

In order to show the possibility of phase modulation (and also to allow further experiments with

quadrature signals) the second DAC is used to generate a sinewave signal which is 90 degrees out of

phase with the already generated signal. This is accomplished by retrieving the element from the

table which is for ¼ of the table length away from the current pointer. Upper 12 bits of the pointer

are taken, and 1024 is added to it. The sum might point outside of the table, so the sum is corrected

Figure 1: A hardware implementation of the DDS technique

REGISTER

ADDER

16 16

16

K

TP

16 12
TABLE

POINTER

12
DAC

OUT

Playing with STM32F407 test board – Signal generation using DDS

3

to remain within the bounds of the table by AND-ing it with the pointer to the last valid element

(4095), the rest is the same as for the first DAC.

The interrupt function takes about 500ns to execute, and the quality of the generated signal could be

much improved by increasing the frequency of interrupt requests.

#include "stm32f4xx.h"

#include "LCD2x16.c"

#include "math.h"

int Table[4096], TablePtr, Am = 255, K = 655; // declare global variables

int main () {

 // Table init

 for (TablePtr = 0; TablePtr <= 4095; TablePtr++)

 Table[TablePtr] = (int)(1850.0 * sin((float)TablePtr / 2048.0 * 3.14159265));

 // GPIO clock enable, digital pin definitions

 RCC->AHB1ENR |= 0x00000001; // Enable clock for GPIOA

 RCC->AHB1ENR |= 0x00000010; // Enable clock for GPIOE

 GPIOE->MODER |= 0x00010000; // output pin PE08: time mark for TIM2 IRQ

 // LCD init

 LCD_init(); LCD_string("f =", 0x01); LCD_string("Am=", 0x41);

 // DAC set-up

 RCC->APB1ENR |= 0x20000000; // Enable clock for DAC

 DAC->CR |= 0x00010001; // DAC control reg, both channels ON

 GPIOA->MODER |= 0x00000f00; // PA04, PA05 are analog outputs

 // Timer 2 set-up

 RCC->APB1ENR |= 0x0001; // Enable clock for Timer 2

 TIM2->ARR = 840; // Auto Reload: 8400 == 100us -> 100kHz

 TIM2->DIER |= 0x0001; // DMA/IRQ Enable Register - enable IRQ on update

 TIM2->CR1 |= 0x0001; // Enable Counting

 // NVIC IRQ enable

 NVIC_EnableIRQ(TIM2_IRQn); // Enable IRQ for TIM2 in NVIC

 // waste time - check pushbuttons and display parameters

 while (1) {

 if ((GPIOE->IDR & 0x0004) && (K < 32767)) K += 1; // IF S372...

 if ((GPIOE->IDR & 0x0008) && (K > 2)) K -= 1; // IF S373...

 if ((GPIOE->IDR & 0x0010) && (Am < 255)) Am += 1; // IF S374...

 if ((GPIOE->IDR & 0x0020) && (Am > 1)) Am -= 1; // IF S375...

 int Fp = (int)(1.0e5 * (float)K / 65536.9); // calculate frequency

 LCD_uInt16(Fp,0x08,1); LCD_uInt16(Am,0x48,1); // display Fp, Ap

 };

}

// IRQ function

void TIM2_IRQHandler(void) // IRQ function takes approx 500ns of CPU time!

{

 GPIOE->ODR |= 0x0100; // PE08 up

 TIM2->SR &= ~0x00000001; // clear update event flag in TIM2

 TablePtr = (TablePtr + K) & 0xffff; // increase pointer and limit to 16b

 DAC->DHR12R1 = (Am * Table[TablePtr >> 4]) / 256 + 2048;

 DAC->DHR12R2 = (Am * Table[((TablePtr >> 4) + 1024) & 4095]) / 256 + 2048;

 GPIOE->ODR &= ~0x0100; // PE08 down

}

Figure 1: A listing of the program for sinewave signal generation – DDS method

