12. Periodical interrupts and ADC/DAC

The knowledge from previous chapters will be used here to prepare a program, which can
periodically start a conversion at the ADC, wait for the result and pass the result to DAC.

The previously given demonstration program for ADC shows the initialization needed to use two
of the built-in ADCs to sample two analog input signals. The results were displayed at the LCD. Here
the results will be passed to the DAC giving a replica of the input signal, quantized in time. The
picture in Fig. 1 shows one of the input signals and the corresponding quantized version at the
output from a DAC. Similar program could be prepared using two former examples on ADC and DAC
and inserting a software delay loop within the endless loop in regular program to define the time
interval between two successive loop repetitions. However, using the software to define the time
interval is wasting the processor time, and should be avoided.

Figure 1: The quantized-in-time version of the input signal

It has been shown that time intervals can be defined using a timer, and that the reload events of a
timer can trigger interrupts. It is therefore only natural to define time intervals between two
successive measurements by a timer, and to use interrupt function to start the conversion at ADC,
wait for the result, and pass the result to DAC.

The complete listing of the program is given in Fig. 2. The program starts with a set of
initializations, which were copied from previous examples:

- Ports are initialized first. Clocks are enabled, and three outputs are defined for two demo
signals and a LED. One of the demo signals is used to mark the execution of the endless loop
in the regular part of the program (bit 9, port E), and one is used to signal the execution of the
interrupt function (bit 8, port E). The LED is used to confirm that the endless loop is running;
when a pushbutton S370 is pressed, the LED is turned on.



Playing with STM32F407 test board — Periodical interrupts and ADC/DAC

- Next digital to analog converters are initialized. The initialization statements are copied from
demo program “DACtest.c”.

- Next analog to digital converters are initialized. The initialization is copied from demo
program “ADCtest.c”.

- Interrupt controller NVIC is initialized to receive interrupt requests from timer TIM2.

- Next timer TIM2 is initialized to generate interrupt requests every 100us. The initialization
statements are copied from demo program “Timer5_IRQ.c”, providing that the timer TIM2 is
used instead of timer TIM5 and that the time interval is changed.

#include "'stm32f4xx.h"

int main Q {
// GP10 clock enable, digital pin definitions
RCC->AHB1ENR 0x00000001 ; // Enable clock for GPIOA
RCC->AHB1ENR 0x00000010; // Enable clock for GPIOE
GP10E->MODER 0x00010000; // output pin PE08: time mark
GP10E->MODER 0x00040000; // output pin PE09: toggle
GPI10A->MODER 0x00001000; // output pin PA06: LED D390

// DAC set-up
RCC->APB1ENR |
DAC->CR |
GPI0A->MODER |

0x20000000; // Enable clock for DAC
0x00010001; // DAC control reg, both channels ON
0x00000f00; // PAO4, PAO5 are analog outputs

// ADCset-up
RCC->APB2ENR |= 0x00000100; // clock for ADC1
RCC->APB2ENR |= 0x00000200; // clock for ADC2

ADC->CCR = 0x00000006; // Regular simultaneous mode only
ADC1->CR2 = 0x00000001; // ADC1 ON

ADC1->SQR3 = 0x00000002; // use PAO2 as input

ADC2->CR2 = 0x00000001; // ADC1 ON

ADC2->SQR3 = 0x00000003; // use PAO3 as input

GPI0A->MODER |

0x000000f0; // PAO2, PAO3 are analog inputs

// NVIC IRQ enable
NVIC_EnablelRQ(TIM2_IRQnN); // Enable IRQ for TIM2 in NVIC

// Timer 2 set-up

RCC->APB1ENR |= 0x0001; // Enable clock for Timer 2
TIM2->ARR = 8400; // Auto Reload value: 8400 == 100us
TIM2->DIER |]= 0x0001; // DNMA/IRQ Enable Register - enable IRQ on update
TIM2->CR1 ]= 0x0001; // Enable Counting
// endless loop - indefinite
while (1) {
if (GPIOE->IDR & 0x0001) GPIOA->0ODR |= 0x0040; // LED on
else GPIOA->0DR &= ~0x0040; // else LED off
GPIOE->0ODR |= 0x0200; // PE09 up
GPIOE->0DR &= ~0x0200; // PEO9 down
¥
ks
// 1RQ function
void TIM2_IRQHandler(void) // PASS takes approx 500ns of CPU time!
{
GP10E->0DR |= 0x0100; // PEO8 up
TIM2->SR &= ~0x00000001; // clear update event flag in TIM2
DAC->DHR12R1 = ADC1->DR; // pass ADC -> DAC, also clears EOC flag
DAC->DHR12R2 = ADC2->DR; // pass ADC -> DAC, also clears EOC flag
ADC1->CR2 |]= 0x40000000; // simultaneous Start Conversion
GP10E->0DR &= ~0x0100; // PEO8 down
ks

Figure 2: A listing of the program to periodically sample input signals and pass them to the DAC



Playing with STM32F407 test board — Periodical interrupts and ADC/DAC

Following the initialization the program enters the endless loop to check the status of the
pushbutton S370 and turn-on the LED on demand, as well as to generate a pulse for every execution
of the loop.

The interrupt function starts with setting of the bit 8, port E, and ends with clearing the same bit.
The corresponding signal can be checked using an oscilloscope to verify the execution of the
interrupt function and to determine the time needed to execute it.

The body of the interrupt function starts by resetting of the interrupt request flag, as shown
already in the demo program “Timer5_IRQ.c”. Next the contents of both ADC data registers
(ADCx_DR) are copied to two data holding registers (DAC_DHR12Rx) in DACs, and the next
conversion is started by setting of the bit 30 in ADC control register 2 (ADC1_CR2).

Such implementation is straightforward, but may not be the best. It is known from theory than it
is very important to take samples of the input signal at exact time intervals, or the signal to noise
ratio of results will be impaired. The exact period is not guaranteed in the former example, since the
processor can start executing the interrupt function only after it finishes the execution of the current
instruction, and instructions can take different time to execute. Furthermore, the execution of the
interrupt function for timer TIM2 itself might be delayed in a more complex program utilizing more
than one interrupt function. It is therefore better to trigger a start of conversion directly by a timer
without the intervention of the software, and use interrupt function only to copy the result of
conversion to the DAC. Such interrupt function shall be initiated by end of conversion signal coming
from the ADC, which can be used to trigger an interrupt. The listing of such version of the program is
given in Fig. 3.

Most of the initialization statement are the same and are not repeated in listing in Fig. 3. Only the
difference is given:

- Three statements are added to the initialization of the ADC regarding the source of the start
conversion (SC) signal.
0 This time the signal SC is supplied by the timer TIM2, and this is selected by setting
bits EXTSEL (ADC1_CR2) at the control input of the multiplexer within the ADC1 (see
Fig. 1, Analog to digital converters).
0 External SC signals are enabled by setting the bit EXTEN (ADC1_CR2).
0 The ADC is enabled to issue an interrupt request signal by setting the least significant
bit in control register 1 (ADC1_CR1).
- The interrupt controller must be allowed to respond to interrupts from the ADC, and the call
to NVIC_EnablelRQ function is modified accordingly.
- The initialization of timer TIM2 is changed, and the timer is not allowed to issue interrupt
requests. The formerly present statement (TIM2->CR2 =W 0x0020;) has been removed.

The interrupt function lacks two statements:

- The interrupts requests are not issued by timer anymore, so there is no need to clear the
interrupt request flag within the timer; the corresponding statement has been removed. A
flag to memorize the interrupt request from the ADC is present within the ADC, but gets
cleared automatically when the content of the data register within the ADC is read by the
software, so there is no need to insert a new statement to clear the flag.

- The statement to start the conversion (ADC1->CR2 |= 0x40000000;) has been removed.



Playing with STM32F407 test board — Periodical interrupts and ADC/DAC

#include "stm32f4xx.h"

int main QO {
// GP10 clock enable, digital pin definitions
// the same as above and not shown here again

}

// DAC set-up

// the same as above and not shown here again

// ADC set-up

// the same as above and not shown here again

ADC1->CR2 |]= 0x06000000;
ADC1->CR2 |= 0x10000000;
ADC1->CR1 |]= 0x00000020;

// NVIC IRQ enable
NVIC_EnablelRQ(ADC_IRQN);

// Timer 2 set-up

RCC->APB1ENR ]= 0x0001;
TIM2->ARR = 8400;

TIM2->CR2 |= 0x0020;
TIM2->CR1 |]= 0x0001;

// endless loop - indefinite

//
//
//

//

use TIM2, TRGO as SC source
Enable external SC, rising edge
Enable ADC Interrupt for EOC

Enable IRQ for ADC in NVIC

Enable clock for Timer 2

Auto Reload value: 8400 == 100us
select TRGO to be update event (UE)
Enable Counting

// the same as above and not shown here again

// IRQ function
void ADC_IRQHandler(void)

{

GP10E->0DR |
DAC->DHR12R1
DAC->DHR12R2
GPIOE->0DR &

0x0100;
ADC1->DR;
ADC2->DR;
~0x0100;

//

//
//
//
//

PASS takes approx 400ns of CPU time!
PEO8 up
pass ADC -> DAC, also clears EOC flag

pass ADC -> DAC, also clears EOC flag
PEO8 down

Figure 3: A listing of the program to do the same as listing in Fig. 2,

but using timer as source for a start conversion signal



