
1

11. Interrupts & Timer TIM5

The explanation of interrupt processing was given in chapter 10 (Ports & Interrupts). Here an
example of the use of timer and interrupt processing will demonstrate how to make periodic
interruptions to the execution of the regular program in such a way that the processor can do some
useful work at precisely defined time intervals. In our case the processor will generate two
consecutive pulses at port E, bit 8, for every interrupt request.

The block representing the behavior of the microcontroller for this experiment is given in Fig. 1.

- The timer TIM5 is used for the demonstration. It is the same as previously described timer
TIM2; it uses 32-bit counter and has additional hardware to select the input signal and control
the counting. The timer TIM5 is driven by a clock signal with a frequency of 84 MHz from
inside of the microcontroller. This is also the fastest clock this counter can handle, and is
connected to the input of the counter through a previously described set of multiplexers by
default.

- The timer TIM5 counts up to a predefined number and then resets back to zero; the return to
zero is called update event. The predefined number is stored in register TIM5_ARR (Auto
Reload Register). If the content of register TIM5_ARR is zero then the counter counts up to
232-1. By setting the content of the register TIM5_ARR to 84000 and using the clock signal
with the frequency of 84 MHz the time interval T between two consecutive update events
equals to 1 ms, as shown in Fig. 1. These update events can be used as interrupt requests.

- The update events are mapped as interrupt requests to the input to the controller NVIC,
which must be enabled at the channel for interrupt requests from timer TIM5. This is done by
a call to a function “NVIC_EnableIRQ” to enable the controller NVIC.

Figure 1: The chain used to implement periodic interrupt requests - simplified

TIM5 PROCESSORNVIC

T

IRQ IRQ IRQ

REGISTERS TO
 DEFINE TIM5

CLK
84MHz

pulses at Port E

Playing with STM32F407 test board – Interrupts & Timer TIM5

2

- The interrupt function must be prepared to be executed on interrupt request. Within the
interrupt function the actual work should be done. In our case four statements are needed to
toggle port E, bit 8, high-low-high-low. Additionally, the update event is stored in register
TIM5_SR (Status Register), bit 0 when update event takes place. This bit must be cleared
within the interrupt function to prevent immediate repetition of the same interrupt request.

The order of events is then as follows. When the counter TIM5 content reaches the predefined
value stored in the reload register TIM5_ARR, the content of the counter register TIM5_CNT
returns to zero triggering the reload event, then the counting continues from zero on. The reload
event is saved into the status register TIM5_SR, bit 0, and simultaneously passed to the controller
NVIC as an interrupt request from timer TIM5. Since the controller NVIC is enabled to respond to
this particular interrupt request, it forces the processor to interrupt the execution of the regular
program and starts executing the interrupt function. Within the interrupt function the processor
toggles the port E, bit 8, four times to make two consecutive pulses and clears the update event
stored in the status register TIM5_SR, bit 0, to acknowledge the execution of the interrupt
function. After this the processor continues with the execution of the regular program as if
nothing had happened.

The complete listing of the demo program is given in Fig. 2. The program starts with the
initialization by enabling the clock for ports A and E, and the clock for timer TIM5. Next a pin on port
E is defined as output, here the pulses will be available, and a pin at port A is defined as output, here
the LED is connected and will be turned on when the pushbutton S370 is pressed to confirm that the
regular program is running.

#include "stm32f4xx.h"

int main () {

 RCC->AHB1ENR |= 0x0010; // Enable clock for GPIOE & GPIOA
 RCC->APB1ENR |= 0x00000008; // Enable Clock for Timer 5

 GPIOE->MODER |= 0x00010000; // Output pin for time mark at port E
 GPIOA->MODER |= 0x00001000; // output pin for LED D390

 NVIC_EnableIRQ(TIM5_IRQn); // Enable IRQ for TIM5 in NVIC

 TIM5->ARR = 84000; // Auto Reload Register value => 1ms
 TIM5->DIER |= 0x0001; // DMA/IRQ Enable Register - enable IRQ on update
 TIM5->CR1 |= 0x0001; // Enable Counting

 while (1) {
 if (GPIOE->IDR & 0x01) GPIOA->ODR |= 0x0040; // press S370 to turn on D390
 else GPIOA->ODR &= ~0x0040;
 };
}

void TIM5_IRQHandler(void)
{
 TIM5->SR &= ~TIM_SR_UIF; // clear IRQ flag in TIM5
 GPIOE->ODR |= 0x0100; // PE08 up
 GPIOE->ODR &= ~0x0100; // PE08 down
 GPIOE->ODR |= 0x0100; // PE08 up
 GPIOE->ODR &= ~0x0100; // PE08 down
}

Figure 2: A listing of the program to utilize interrupt requests at port E, bit 3

Playing with STM32F407 test board – Interrupts & Timer TIM5

3

The interrupt controller is enabled for interrupt request signals coming from timer TIM5 by a call
to function NVIC_EnableIRQ. The initialization is finished by setting-up the timer TIM5. The reload
value is written into the reload register TIM5_ARR, and the update event is mapped as a valid
interrupt request from this timer by setting the LS bit of the register TIM5_DIER. Finally, the timer is
enabled to run by setting the LS bit in control register TIM5_CR.

Within the main loop the state of the pushbutton S370 is checked and the LED390 is turned on
when this pushbutton is pressed.

The interrupt function is named as required by the interrupt vector table (TIM5_IRQHandler). The
function does not pass any variables, therefore the declaration section of this function uses “void”
keywords. Within the function the flag to memorize the update event is first cleared, then the two
pulses are generated.

	11. Interrupts & Timer TIM5

