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Minimal model of an artificial topological material realized in a two-terminal Josephson junction
threaded by Aharonov-Casher fluxes
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We investigate a minimal model of a two-terminal Josephson junction with conventional superconducting
(SC) leads and a pair of interconnected quantum dots in the presence of two Aharonov-Casher (AC) fluxes. The
Andreev bound-state spectrum features Weyl nodes within a three-dimensional synthetic Brillouin zone defined
in the space of these AC fluxes and the SC phase difference. The aim is to determine the location and topological
charge of these nodes by probing the Berry curvature on closed surfaces that may enclose them. This is achieved
by adiabatically varying the superconducting phase difference and AC fluxes along a path on these surfaces
and measuring the associated currents. We define the kinematic curvature as the cross product of a tangent
vector along the path and the vector of these currents. In the adiabatic regime, the path-averaged kinematic
curvature provides a quantized response equal to the topological charge enclosed by the surface, provided the
path uniformly and densely covers it.
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I. INTRODUCTION

Advances in modern physics and technology have spurred
great interest in the study of symmetry and topology in
condensed matter physics [1–3]. Among these pursuits, sig-
nificant attention has been drawn to Weyl semimetals (WSMs)
[4,5], which host topologically protected Weyl nodes, leading
to anomalous phenomena in these materials [6–8].

Treating independent superconducting (SC) phase differ-
ences as quasimomenta, an analog of WSMs can be realized
in multiterminal Josephson junctions [9,10]. In the subgap
regime, the Andreev bound states (ABSs) exhibit Weyl sin-
gularities with conical dispersion. Importantly, the authors
of Ref. [9] proposed a protocol and a measurable quan-
tity capable of distinguishing between topological and trivial
phases in such a system. Following their approach, one ap-
plies incommensurate voltages to two SC leads, causing the
corresponding SC phase differences to traverse the entire two-
dimensional synthetic Brillouin zone (BZ). The remaining
independent SC phase differences serve as control parameters,
enabling the transition of the system between distinct topo-
logical regimes, reflected in the change of transconductance,
i.e., a time-averaged response in one SC lead due to voltage
applied to another.

Subsequent research has explored systems where a SC con-
trol phase difference is replaced by a magnetic flux through
the normal region [11–13]. In contrast to Ref. [9], where at
least four terminals are needed to realize Weyl topology, these
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works have shown that a three-terminal junction is sufficient
in the presence of the magnetic flux.

In our recent investigation [14], we examined two-terminal
Josephson junctions involving the Aharonov-Casher (AC) ef-
fect [15–21] in the normal region. The normal region consists
of quasi-one-dimensional Rashba quantum wires forming
rings, where electrons with opposite spins acquire opposite
AC phases [22–25]. (In general, a Rashba spin-orbit interac-
tion induces a non-Abelian AC phase factor [26,27], which,
however, reduces to an Abelian one for narrow straight wires
[28]). We demonstrated that both the winding and the Chern
numbers can be identified in such a junction, and that, since
the Weyl nodes are located only at the SC phase difference
φ = π , the two topological invariants coincide.

In this paper, we analyze a toy model to explicitly demon-
strate a topologically nontrivial regime within the class
of systems introduced in Ref. [14]. The system’s three-
dimensional synthetic BZ is in the space of two AC fluxes
and the SC phase difference. Unlike SC phase differences, the
AC flux in Rashba-gate-controlled rings [28–31] can only be
varied over a limited range. Therefore, we consider driving
protocols that vary the AC fluxes and the SC phase difference
along a path on a small enough closed surface. To determine
the enclosed topological charge, we introduce the concept of
kinematic curvature, which is defined as the cross product of a
tangent vector along the path and the vector of currents associ-
ated with AC fluxes and SC phase difference. We demonstrate
the connection between the topological charge enclosed by the
surface and the path-averaged kinematic curvature. Addition-
ally, we propose a specific driving protocol in which the path
is confined to a sphere and use it to compute the path-averaged
kinematic curvature for the toy model.

The paper is structured as follows. In Sec. II, we introduce
a toy model incorporating two AC fluxes, present a phase
diagram identifying gapless regimes that host Weyl nodes, and
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FIG. 1. Superconducting leads (in red) attached to a pair of inter-
connected quantum dots (gray). The system is threaded by two AC
fluxes, inducing phase factors eiα1 and eiα2 .

assign a topological charge to each node. In Sec. III, we intro-
duce the kinematic curvature and demonstrate its connection
to the topological charge. Finally, in Sec. IV, we provide a
concrete example of a driving protocol in which the AC fluxes
and SC phase difference evolve along a path covering the
sphere.

II. MODEL

Instead of simulating a Josephson junction with gated
Rashba quantum wires as proposed in Ref. [14], we employ
a simplified toy model (illustrated in Fig. 1) consisting of
two SC leads coupled to two interconnected noninteracting
quantum dots (QDs), which form two rings threaded by AC
fluxes. This toy model effectively captures the key topological
aspects of the system discussed in Ref. [14].

The full Bogoliubov–de Gennes Hamiltonian describing
the system is provided in the Supplemental Material (SM) S1
[32]. Here, however, we focus on the key components relevant
for computing ABSs using the scattering matrix formalism
[33]. In Ref. [14], we demonstrated that the topological prop-
erties of such systems are identical for both spin sectors.
Consequently, we restrict our analysis to the spin sector with
spin ↑ (↓) electrons (holes).

The Hamiltonian describing the QDs is

HQD =
[

u′ −γ ′
−γ ′ u′

]
, (1)

where u′ represents the onsite potential on the QDs, and γ ′
denotes the hopping between them. The hopping between the
QDs, along with the tunneling from the SC leads to the QDs,
defines two rings, each of which is threaded by an AC flux. As
a result, an electron with spin ↑ moving in the anticlockwise
direction along a ring acquires an AC phase, either α1 or
α2, and the tunneling from the SC leads to the QDs can be
expressed by the matrix

HT = −γ ′
[

1 1
eiα1 e−iα2

]
. (2)

The minimal model presented includes a single channel
per lead, resulting in a 2 × 2 normal-state scattering matrix S.
Neglecting its energy dependence [14,33], it is given by [34]

S ≡
[

r t ′
t r′

]
=

(
I − i

γ
W

)−1(
I + i

γ
W

)
, (3)

where r (r′) and t (t ′) denote the reflection and transmission
amplitudes for a state incident on the scattering region from
the left (right) lead, respectively, γ is the hopping parameter
in the leads, and W = H†

T H−1
QDHT . Closed-form expressions

FIG. 2. (a) ABS band gap in the parameter space (u′, γ ′). The
dashed lines delineate the gapped and gapless regimes. (b) Positions
of the Weyl nodes with γ ′/γ = 0.4 fixed and varying u′ [solid line in
(a)]. Red (blue) lines represent paths of the Weyl nodes with positive
(negative) topological charges. (c) Positions of the Weyl nodes in the
synthetic BZ (α1, α2) for u′ = 0.3γ and γ ′/γ = 0.4. At u′ = γ ′, the
ABS energy gap closes along the dashed line.

for the reflection and transmission amplitudes are provided in
the SM S2 [32].

The energy dispersion of ABSs for a single-channel
two-terminal Josephson junction is given by E± =
±�

√
1 − T sin2(φ/2), where � is the SC gap, φ is the

SC phase difference, and T = |t |2 is the transmission
eigenvalue [33]. Figure 2(a) illustrates the phase diagram
in the parameter space of u′ and γ ′, showing the energy
gap Egap between the two bands of ABSs in the synthetic
BZ. The dashed lines in Fig. 2(a) delineate the gapped
regime (in cyan) from the gapless one (purple); for details,
see SM S2 [32]. As we increase u′ while keeping γ ′ fixed
(e.g., γ ′ = 0.4γ ), two pairs of Weyl nodes with opposite
charges emerge at α1 = α2 = ±π/2 [indicated by crosses
in Figs. 2(b) and 2(c)]. Further increasing the parameter u′
leads to the separation of the Weyl nodes in the space of AC
fluxes, as depicted in Figs. 2(b) and 2(c). At u′ = γ ′, the Weyl
nodes with negative (positive) charge merge at α1,2 = 0 (π ).
Simultaneously, the ABS band gap closes along α1 = −α2

[dashed line in Fig. 2(c)], resulting in the annihilation of the
charges, and the gap forms upon further increasing u′.

Using the values of parameters corresponding to the white
dot in Fig. 2(a), Fig. 3 illustrates the phases of reflection and
transmission amplitudes. The Weyl nodes are marked as qi,
and their topological charges can be visually inferred from
Fig. 3(a): encircling once a single Weyl node in the clockwise
direction accumulates a phase of ±2π , corresponding to a
topological charge of ±1. To be more rigorous, following the
methodology outlined in Ref. [14], the topological charge q(i)

W
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FIG. 3. Phases of (a) the reflection amplitude arg(r) and (b) the
transmission amplitude arg(t ), plotted as functions of the AC fluxes
α1 and α2, for u′ = 0.3γ and γ ′ = 0.4γ . Positions of Weyl nodes
are indicated by qi. Dashed lines represent a closed SC gap-edge-
touching line.

associated with the Weyl point qi at α1 = α2 = α
(i)
W and φ = π

can be determined from r alone (see SM S2 [32] for a detailed
derivation):

q(i)
W = sgn

[
Im

(
∂r

∂α1

∂r∗

∂α2

)]
α1=α2=α

(i)
W

= −sgn
[

cos
(
α

(i)
W

)]
.

(4)

III. KINEMATIC CURVATURE

We propose an observable, termed kinematic curvature,
and show that it can be used to determine the topological
charge qW . To develop this concept, we first define a vector
of currents as �I = 〈ψ |∇�xH |ψ〉, where �x = [α1, α2, φ]T is a
vector containing the AC fluxes and the SC phase difference,
and the effective (electron) Hamiltonian acting in the ABS
subspace is given by [14]

H =�

[
−(t ′t ′†)1/2 cos φ

2 rt†(tt†)−1/2eiφ/2

(tt†)−1/2tr†e−iφ/2 (tt†)1/2 cos φ

2

]
. (5)

The first (second) component of �I is proportional to the spin
current in the left (right) ring, while the last component is
proportional to the SC current. The wave function |ψ〉, ini-
tially prepared in the ground state, evolves according to the
time-dependent Schrödinger equation,

ih̄|ψ̇ (τ )〉 = H (τ )|ψ (τ )〉, (6)

where τ denotes the time variable.
Assume that �x(τ ) evolves along a path P that lies on a

closed surface S within the synthetic BZ, which may poten-
tially contain a Weyl node (or several of them). Let us define
the kinematic curvature as

�F = �̇x
|�̇x|2

× �I. (7)

We will see that this quantity, which arises from the system’s
transport along a path, is closely related to the Berry curvature.
For adiabatic driving, the currents can be expressed up to the

first-order correction in velocity �̇x as [9]

�I = 1

h̄
∇�xE− − �̇x × �B. (8)

The first term represents the adiabatic current, while the sec-
ond term accounts for the first-order correction, with �B =
−Im(〈∇�xψ | × |∇�xψ〉) denoting the Berry curvature. Then, the
kinematic curvature can be expressed as

�F = �B + 1

h̄
�̇x

|�̇x|2
× ∇�xE− − �̇x(�̇x · �B)

|�̇x|2
. (9)

To eliminate the adiabatic term, one can assume a driving
protocol in which the path P is traversed twice, once in each
direction. Let n̂(τ ) denote the unit vector normal to the surface
at the point �x(τ ). Given that n̂ and �̇x are orthogonal, we obtain
〈 �F · n̂〉P = 〈 �B · n̂〉P , where 〈 〉P denotes average along the
path P , which is traversed in both directions. [The average
along P is defined as 〈 f 〉P = ∫

P f (s)ds/
∫
P ds, where s =∫ τ

0 |�̇x(τ ′)|dτ ′ is the arc length.]
Assuming that the path evenly and densely covers the

surface S , allowing the line integral to be approximated by
a surface integral, we derive that the path-averaged kinematic
curvature

Q = |S|
2π

〈 �F · n̂〉P (10)

is equal to the topological charge
∑

i q(i)
W enclosed inside S .

Here, |S| denotes the surface area of S . Thus, by measuring
the aforementioned currents, one can establish a connection
between the system’s topology and the (path-averaged) kine-
matic curvature.

Note that, to ensure adiabatic time evolution, the occupied
ABSs must remain sufficiently separated from the unoccupied
ones and the continuum states throughout the evolution. This
requires that, along the protocol path, both Weyl nodes and
SC gap-edge-touching singularities stay adequately distant
from S . Specifically, for the model introduced in the previous
section, the Weyl nodes and an SC gap-edge-touching line
(see SM S2 [32] for details) are indicated in Fig. 3.

IV. DRIVING PROTOCOL EXAMPLE

As a specific example of a driving protocol, we consider
the vector �x confined to the sphere. The goal is to distinguish
between spheres that enclose a Weyl point and those that
do not.

A point on a sphere of radius R, centered at �x0, is given
by �x(θ, φ) = �x0 + R n̂(θ, φ), where θ ∈ [0, π ] and φ are the
polar and azimuthal angles, respectively. To evenly traverse
the sphere, we set φ(θ ) = 2θN , where N is the number of rev-
olutions around the polar axis (see Fig. 4). For the polar angle,
we choose θ (τ ) = arccos (1 − 4τ

τ0
) for τ ∈ [0, τ0/2], where τ0

is the total time to traverse the path in both directions. For
τ ∈ [τ0/2, τ0], the path is retraced in the opposite direction.
This choice of θ (τ ) ensures that the speed |�̇x| remains approx-
imately constant (with an average speed of 〈|�̇x|〉τ ≈ 8NR/τ0

for large N). Provided that |�̇x| remains small compared to the
energy gap εgap along the path P , the first-order correction in
Eq. (8) remains valid throughout the time evolution. The only
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FIG. 4. Depiction of the path on a sphere with N = 32 revolu-
tions around the polar axis.

exception occurs near the poles, where |�̇x| diverges. However,
the contribution from this part of the path to the path-
averaged kinematic curvature becomes negligible for large N .
Moreover, more sophisticated protocols could easily be de-
vised to mitigate this problem.

We numerically verified Eq. (10) by traversing spheres
centered at �x0 = [α, α, π ]T , where α specifies the center’s
position along the diagonal in the plane of AC fluxes
(cf. Fig. 3). The quantization of Q is shown in Fig. 5, which
illustrates that paths on spheres enclosing Weyl nodes pro-
duce a nonzero quantized response, while those that do not
enclose Weyl nodes yield a zero response. The width of the
nonzero plateaus is R

√
2. We used the following parameters

for the paths: R = 0.2, N = 32, and τ0 = 2 × 106 h̄/�. Near
the edges of the plateaus, we observe spikes whose width
decreases as τ0 increases (see SM S3 [32]). These spikes occur
because certain sections of the path come close to a Weyl
node, where εgap becomes small compared to |�̇x|, causing the
adiabatic approximation in Eq. (8) to break down. The slight
asymmetry between the spikes arises from deviations from
conical dispersion as one moves away from the Weyl nodes
and from the protocol’s finite value of N .

In SM S3 [32], an analysis with various values of N and
τ0 is presented, demonstrating the robustness of quantization
even for small values of N , such as N = 8. The analysis also
highlights the breakdown of quantization when the time per
revolution around the polar axis, τ0

2N , approaches the charac-
teristic timescale defined by εgap.

FIG. 5. Quantization of Q. The positions of the Weyl cones, and
spheres (with radius R and centers at �x0 = [α, α, π ]T ) on which the
path P lies at a given α are shown above the plot.

In the Supplemental Material, we demonstrate that our
proposal extends to models with multichannel leads. Further-
more, we present a comprehensive approach, working in the
Nambu space to account for both electron and hole degrees
of freedom, which yields results nearly identical to those in
Fig. 5, with only minor numerical deviations, especially near
the spikes at the edges of the quantized plateaus. Finally,
the results remain robust even when continuum states are
included, which we verified numerically for systems with
finite leads. Details of these computations can be found in SM
S4–S6 [32].

V. DISCUSSION

In this paper, we presented an approach for experimen-
tally determining the topological properties of a two-terminal
Josephson junction with a normal region threaded by AC
fluxes. Specifically, we investigated a model in which the
normal region consists of two interconnected quantum dots.
To measure the topological charges of Weyl nodes emerging
in the ABS spectrum, we proposed a protocol involving a path
in the space of SC phase difference and AC fluxes that covers
a closed surface, potentially enclosing a topological charge.
By traversing this path and measuring the superconducting
and spin currents, we established a connection between the
system’s topology and the path-averaged kinematic curva-
ture. Numerical simulations confirmed the effectiveness of the
proposed protocol, demonstrating the quantization of Q with
respect to the enclosed topological charge.

We acknowledge experimental challenges associated with
tuning the AC fluxes and measuring the spin currents in the
rings. In Rashba-gate-controlled semiconductor rings, spin-
orbit lengths of the order of 100 nm were reported [19],
allowing the variation of the AC flux over several interfer-
ence periods. Although not directly applicable to our setting,
a promising avenue might be germanium hut wires, with
electric-field-controlled spin-orbit lengths as low as 2 nm
recently observed [21]. Regarding the measurement of spin
currents, it has been explored in various theoretical and ex-
perimental studies in other contexts [35–39]. Since these
works lay a valuable foundation for future developments, we
remain optimistic about the experimental validation of our
predictions.

For future investigation, it would also be interesting to
develop a protocol where the path is confined to the plane
φ = π and to identify a measurable quantity directly linked to
the winding number in the presence of chiral symmetry [14].
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