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S1. BOGOLIUBOV-DE GENNES HAMILTONIAN OF THE MODEL

Here, we provide the Bogoliubov-de Gennes (BdG) Hamiltonian of the system in a block matrix form

HBdG =

 Hl H†
T,l 0

HT,l HQD HT,r

0 H†
T,r Hr

 , (1)

where the subsystems are defined as follows. The BdG Hamiltonians describing the left (Hl) and right (Hr)
superconducting leads take the form

Hl/r =

[
hl/r ∆l/r

∆∗
l/r −hl/r

]
. (2)

The normal-state Hamiltonians for the semi-infinite left and right leads are

hl =


. . .

. . .

. . .
. . . −γ
−γ 0 −γ

−γ 0

⊗ σ0, hr =


0 −γ
−γ 0 −γ

−γ . . .
. . .

. . .
. . .

⊗ σ0, (3)

where σ0 is the 2 × 2 identity matrix acting on the spin degree of freedom. The superconducting pairing is
described by

∆l = eiϕ


. . .

. . .

∆
∆

⊗ σ0, ∆r =


∆

∆
.. .

. . .

⊗ σ0. (4)

The central region, consisting of two interconnected quantum dots (QDs), is described by

HQD =

[
HQD 0
0 −HQD

]
, HQD =

[
u′ −γ′
−γ′ u′

]
⊗ σ0. (5)

Finally, the matrices describing the tunneling between the superconducting leads and the QDs are

HT,l/r =

[
HT,l/r 0

0 −HT,l/r

]
, (6)

where

HT,l = −γ′
[
. . . 0 0 σ0
. . . 0 0 eiα1σz

]
, HT,r = −γ′

[
σ0 0 0 . . .

e−iα2σz 0 0 . . .

]
. (7)

Here, σz is the Pauli matrix acting on the spin degree of freedom.
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S2. ANALYTICAL TREATMENT OF THE MODEL

The closed-form expressions for the reflection and transmission amplitudes for an electron with spin ↑ incoming
from the left lead are

r(α1, α2) =

(
−1 +

2γ2
(
(u′)2 − (γ′)2

)
− 4iγ(γ′)2 (u′ + γ′ cos(α2))

γ2 ((u′)2 − (γ′)2) + 2(γ′)4 (1− cos(α1 + α2)) + 2iγ(γ′)3 (cos(α1)− cos(α2))

)−1

, (8a)

t(α1, α2) =
2iγ(γ′)2

[
u′
(
1 + ei(α1+α2)

)
+ γ′

(
eiα1 + eiα2

)]
γ2 ((u′)2 − (γ′)2)− 4iγ(γ′)2u′ − 2(γ′)4 (1− cos(α1 + α2))− 2iγ(γ′)3 (cos(α1) + cos(α2))

. (8b)

Due to the left-right mirror symmetry of the model (see Fig. 1 of the main text), the reflection and
transmission amplitudes for an incoming electron from the right lead are r′(α1, α2) = r(−α2,−α1) and
t′(α1, α2) = t(−α2,−α1), respectively.

For a two-terminal junction, the energy dispersion is given by E±(x⃗) = ±
√

1− T (α1, α2) sin
2(ϕ/2) [1], where

T (α1, α2) = |t(α1, α2)|2 = 1 − |r(α1, α2)|2. Therefore, ABS band touchings (E± = 0) occur when ϕ = π and
r = 0. Hence, we obtain the condition for the ABS band gap closure by setting the denominator in Eq. (8a)
to zero. Separating the real and imaginary parts, this leads to the conclusion that the system is gapless for

0 ≤ γ2((γ′)2−(u′)2)
4(γ′)4 ≤ 1 at αW = α1 = α2 = 1

2 arccos

(
1− γ2((γ′)2−(u′)2)

2(γ′)4

)
.

The system exhibits SC gap edge touchings if and only if ϕ = 0 or t = 0. The condition t = 0 is satisfied by
setting the numerator of Eq. (8b) to zero, leading to the following expression:

eiα2 = − u′ + γ′eiα1

γ′ + u′ eiα1
. (9)

By satisfying this constraint separately for the real and imaginary parts, we obtain

α2 = ± arccos

(
−2u′γ′ +

(
(u′)2 + (γ′)2

)
cos(α1)

(u′)2 + (γ′)2 + 2u′γ′ cos(α1)

)
(10)

with + and − signs for α1 ∈ [−π, 0) and α1 ∈ [0, π), respectively. Thus, instead of having SC gap-edge-touching
nodes, the system possesses a closed SC gap-edge-touching line, as depicted in Fig. 3(b) of the main text
(dashed).
For the derivatives of the reflection amplitude r, evaluated at αW = α1 = α2, which indicates the position of

the Weyl node at x⃗W = [αW , αW , π]
T , we compute

∂r

∂α1,2

∣∣∣∣
α1,2=αW

=
2(γ′)3 (γ′ sin(2αW )∓ iγ sin(αW ))

2γ ((u′)2 − (γ′)2)− 4iγ(γ′)2 (u′ + γ′ cos(αW ))
(11)

where − (+) sign is taken for the derivative with respect to α1 (α2).
Based on our previous work [2], we know that the topological charge qW can be computed as

qW = sgn [det(M2)] = sgn

[
Im

(
∂ζ

∂α1
· ∂ζ

∗

∂α2

)]
x⃗=x⃗W

, (12)

where

M2 =

[
∂α1

Re(ζ) −∂α1
Im(ζ)

∂α2
Re(ζ) −∂α2

Im(ζ)

]
x⃗=x⃗W

, ζ(x⃗) = ⟨a+e |H(x⃗)|a−e ⟩. (13)

Here, H denotes the effective (electron) Hamiltonian within the ABS subspace [refer to Eq. (5) in the main
text], and |a±e ⟩ represent the chiral states at the Weyl node with positive and negative chirality, respectively.
For a 2× 2 scattering matrix S, these states can be expressed as

|a+e ⟩ =
[
V1(x⃗W )

0

]
, |a−e ⟩ =

[
0

V2(x⃗W )

]
. (14)

where V1 = r/|r| ≡ eiθr and V2 = −i t/|t| ≡ −i eiθt are complex numbers derived from the polar decomposition
of S [3, 4], which takes the form

S ≡
[
r t′

t r′

]
=

[
V1 0
0 V2

] [
−i|r| |t|
|t| −i|r|

] [
U†
1 0

0 U†
2

]
, U1 = −i, U2 = r(t′)∗/|rt| ≡ ei(θr−θt′ ). (15)
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Note that from the unitarity of S, it follows rt∗ + t′(r′)∗ = 0. Since r(x⃗W ) = 0, the derivatives in Eq. (12)
reduce to

∂ζ

∂αi
(x⃗W ) = ∆e−iθr(x⃗W ) ∂r

∂αi
(x⃗W ), (16)

which further simplifies the expression for the topological charge to

qW = sgn

[
Im

(
∂r

∂α1
· ∂r

∗

∂α2

)]
α1,2=αW

. (17)

Using Eq. (11), we can show that this evaluates to

qW = −sgn [sin(αW ) sin(2αW )] = −sgn [cos(αW )] , (18)

which demonstrates the validity of Eq. (4) in the main text.

S3. ANALYSIS OF PROTOCOL PARAMETERS

In the analysis of the protocol parameters, we vary the number of revolutions around the polar axis, N , and the
duration of the driving protocol, τ0. The results are presented in Fig. S1. Even for N = 8, the driving protocol
sufficiently samples typical values of the Berry curvature, enabling the recovery of the topological charge qW .
On the other hand, the correspondence between Q and the enclosed topological charge qW deteriorates when
the assumption of adiabatic driving is not fulfilled for sufficiently short τ0. Specifically, as shown in Fig. S1(b),
this happens at τ0 = 2 · 104 (in units of ℏ/∆). At this value, the time scale of one revolution around the polar
axis, τ0

2N ≈ 300, becomes comparable to the time scale associated with the energy gap τgap = h
ϵgap

≈ 30. The

two time scales, with faster and slower oscillations, can be explicitly seen in the results for currents presented
in Fig. S2.
Additionally, in Fig. S1, we observe that as N decreases, the spikes at the edges of the quantized plateaus

become less prominent or vanish entirely. This happens because lower values of N reduce the likelihood of
closely approaching the Weyl nodes, thereby better preserving the adiabatic assumption. Furthermore, the
asymmetry in the shape of Q around each Weyl node qi becomes more pronounced. This increased asymmetry
near the transitions results from the sparser path coverage of the sphere at smaller N .

S4. EXTENSION TO MULTI-CHANNEL LEADS

We extended our analysis to leads with multiple channels, specifically examining two coupled copies of the
system described in the main text with inter-lead hopping, γ⊥. In Fig. S3, we show results for (a) one copy,
(b) two uncoupled copies, and (c) two coupled copies with γ⊥ = 0.2γ. In contrast to the main text, where r
is a scalar, the top panels show arg (det r) [2], since, in general, r is an NL ×NL matrix, where NL represents
the number of channels in the left lead. Notably, in Fig. S3(b), the complex phase of det r is doubled. When
the inter-lead coupling is nonzero [Fig. S3(c)], nodes with topological charge ±2 split into pairs of Weyl nodes
with charges ±1.
The middle panels display the ABS dispersions at ϕ = π along the diagonal α = α1 = α2, while the

bottom panels present the results of the driving protocol with the sphere’s center positioned along this diagonal.
For two uncoupled copies, the currents double, resulting in the measurement of topological charges ±2. For

γ⊥ = 0.2γ, the Weyl nodes q
(1,2)
3 are sufficiently far apart to be distinguishable by our protocol, whereas q

(1,2)
4

are separated by less than R in the (α1, α2) plane. With a sphere radius R = 0.2, both Weyl nodes can be
enclosed simultaneously, leading to a plateau at Q = 2 in Fig. S3(c). Nonetheless, the Weyl nodes remain
distinguishable, as indicated by narrow plateaus at 1. The distinguishability of the nodes would improve in the
adiabatic limit.

S5. FORMULATION OF TIME EVOLUTION IN THE NAMBU SPACE

In Ref. [2], we introduced an alternative approach to computing topological invariants that accounts for the
entire Nambu space, treating both the electron and hole components of ABSs rather than focusing solely on
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Figure S1. The path-averaged kinematic curvature Q, with the center of the sphere at x⃗0 = [α, α, π]T . The parameters
used are consistent with those in Fig. 5 of the main text. Panels (a) and (b) depict comparisons for distinct values of N
and τ0, respectively.
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Figure S2. Currents for different driving periods τ0. The left and right panels display shorter and longer time windows,
respectively. For τ0 = 2 · 104 (non-adiabatic regime), the two time scales, τgap ≈ 30 and τ0/(2N) ≈ 300, are comparable.
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Figure S3. Top panels: phases of the determinant of the reflection matrix at the left lead, arg(det r), plotted in the plane
of AC fluxes α1 and α2, with the positions of the Weyl nodes labeled by qi. Middle panels: energy dispersions of the ABSs
as a function of α = α1 = α2. Bottom panels: the path-averaged kinematic curvature Q, illustrating its relationship to
the Weyl node charges enclosed by a sphere centered at (α, α, π). Plateaus correspond to quantized topological charges
of ±1 or ±2, depending on whether the Weyl nodes are resolved individually or enclosed together.

the electron part. Here, we extend this formalism to compute the time evolution of the wave function and the
currents by utilizing the basis of instantaneous eigenfunctions and propagating the corresponding coefficients in
time. Using these eigenfunctions as the basis is crucial, as the ABSs span only a submanifold of the full Nambu
space.
We work in the instantaneous basis of the ABSs |φn(τ)⟩ of the time-dependent BdG Hamiltonian H(τ):

H(τ)|φn(τ)⟩ = En(τ)|φn(τ)⟩. (19)

Solving the time-dependent equation

iℏ|ψ̇(τ)⟩ = H(τ)|ψ(τ)⟩, (20)

where |ψ(τ)⟩ =∑n an(τ)|φn(τ)⟩ is written in the basis of instantaneous eigenfunctions, we obtain the system
of differential equations governing the time evolution of the coefficients an:

ȧm(τ) = −iEm(τ)am(τ)−
∑
n

⟨φm(τ)|φ̇n(τ)⟩an(τ). (21)

To compute the nonadiabatic couplings ⟨φm(τ)|φ̇n(τ)⟩, a smooth structure gauge for the instantaneous eigen-
states is required. This is obtained using polar decomposition [2]. For the particular case under study, with
only two ABSs (m,n ∈ {+,−}), the desired result is[

φ+ φ−
]
=

1

2

[
φα φβ

] [e−iϕ/4 0
0 eiϕ/4

] [
1 1
1 −1

] [
z/|z| 0
0 1

] [
1 1
1 −1

]
. (22)
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Here, z = |t| cos(ϕ/2)− i|r|, and

[
φα φβ

]
=

1√
2

 0 r/|r|
−it/|t| 0
−i 0
0 −r(t′)∗/|rt′|

 (23)

where the scattering matrix elements r, r′, t, and t′ all change with the AC fluxes α1 and α2, which are time
dependent. Expectation values for the currents are obtained from

I⃗(τ) = ⟨ψ(τ)|∇x⃗H(τ)|ψ(τ)⟩ =
∑
n

|an|2∇x⃗En −
∑
n ̸=m

a∗man(Em − En)⟨φm|∇x⃗|φn⟩. (24)

This approach yields results nearly identical to those in Fig. S1, with only minor numerical deviations, especially
near the transition points.

S6. EXACT TIME EVOLUTION OF THE BDG HAMILTONIAN

The effective electron Hamiltonian approach presented in the main text, along with its extension to the full
Nambu space in Sec. S5, introduces several approximations to the exact solution of our toy model. Namely,
the Andreev approximation assumes that the SC band gap is small compared to the bandwidth (∆ ≪ γ), the
energy dependence of the scattering matrix is neglected, and the contribution of continuum states to currents
is disregarded.

To check that our conclusions do not rely on any of those approximations, we perform the exact time evolution
of the BdG Hamiltonian for the toy model with a finite number of sites per SC lead. Starting with the ground
state at τ = 0, we evolve the state in time and compute Q. The results for ∆ = 0.2γ and L = 50 sites per
SC lead are shown in Fig. S4(b). Results are converged with respect to L. Note that the quantized plateaus
in Q are slightly shifted compared to those obtained using the effective Hamiltonian approach. This is due to
the finite value of ∆: the Andreev approximation is not strictly satisfied, resulting in a displacement of the
Weyl nodes from their expected positions [see Fig. S4(a)]. We performed the calculation both with and without
accounting for continuum states. The outcomes are indistinguishable (results including continuum states are
not shown), confirming that the quantization of Q is exclusively due to ABS.
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Figure S4. Comparison of the effective Hamiltonian approach presented in the main text with the exact solution: (a)
energy dispersion and (b) quantization of Q as a function of α, with spheres centered at [α, α, π]T . Dashed lines indicate
the positions of the Weyl nodes.
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