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Artificial topological insulator realized in a two-terminal Josephson junction
with Rashba spin-orbit interaction
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We study a two-terminal Josephson junction with conventional superconductors and a normal region with a
Rashba spin-orbit interaction, characterized by two Aharonov-Casher (AC) fluxes. When the superconducting
phase difference equals π , the Andreev subgap spectrum may host zero-energy Weyl singularities associated with
a vanishing normal-state reflection eigenvalue. With one of the AC fluxes playing the role of a quasimomentum,
the junction can be viewed as an artificial one-dimensional chiral topological insulator. Its topological phase can
be tuned by crossing a Weyl singularity by means of varying the remaining AC flux. By associating an additional
component of the quasimomentum with the superconducting phase difference, an artificial Chern insulator is
realized.
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I. INTRODUCTION

The exploration of topology in condensed matter physics
has flourished in recent decades [1–3]. Notably, Riwar
et al. [4] introduced a novel class of topological systems
by demonstrating that combining topologically trivial super-
conducting leads to form a multiterminal Josephson junction
may result in a topologically nontrivial system, an artifi-
cial topological material, where independent superconducting
phase differences act as quasimomenta in a synthetic Brillouin
zone (BZ). Central to their proposal were superconducting-
phase-dependent Andreev bound states (ABSs), which could
undergo a topological phase transition, leading to a change
in the topological invariant, the Chern number. Consequently,
the system exhibits quantization of the transconductance,
which represents the current response in one terminal to the
voltage applied to another. Eriksson et al. [5] numerically
analyzed the same system and confirmed the quantization
of the transconductance. Research was also done on three-
terminal junctions in the presence of magnetic flux through
the normal region [6,7]. In these systems, the Aharonov-Bohm
phase associated with the magnetic flux serves as the control
parameter. Although experimental studies on multiterminal
Josephson junctions have been conducted [8–13], a demon-
stration of the quantization of the transconductance is still
missing.

In this paper, similar to Ref. [6], we introduce another
control phase. Instead of the magnetic flux and the asso-
ciated Aharonov-Bohm phase, we study systems exhibiting
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the spin-dependent Aharonov-Casher (AC) effect in the pres-
ence of the electric field [14–19]. In quasi-one-dimensional
quantum wires, the AC phase can be induced by the Rashba
spin-orbit coupling [20–23], where electrons with opposite
spins acquire opposite phases [24–26]. For an InGaAs-based
two-dimensional electron gas, the Rashba coupling, which can
be controlled by a gate voltage, typically takes values in the
range of (0.5–2.0) × 10−11 eV m [27–29]. In Rashba-gate-
controlled rings [28–31], this corresponds to values of the AC
flux between 0.3π and 3π .

Studies on the effects of spin-orbit interaction in mul-
titerminal Josephson junctions have already been con-
ducted [32,33]. These investigations examined the ABS
spectrum, including the impact of spin-orbit interaction
on Weyl nodes and superconducting gap edge touchings.
However, the consideration of spin-orbit phenomena as a pos-
sibility for the quasimomentum of a synthetic BZ has not been
explored in these works.

Here, we present a theoretical analysis focused on the
exploration of low-dimensional, topologically nontrivial ar-
tificial materials utilizing the Rashba interaction within the
normal region. The minimal model consists of a two-terminal
Josephson junction with a normal region composed of two
rings, as depicted in Fig. 1, each permeated by an AC flux.
Our investigation concludes that both the winding number and
the Chern number can be identified in this system. For the
Chern number, the system’s synthetic BZ consists of an AC
flux and the superconducting phase difference, whereas for
the winding number, the superconducting phase difference is
fixed to π .

The paper is organized to first analyze the symmetries of
a general multiterminal system with multiple AC fluxes in
the normal region and obtain the topological classification for
this family of systems. Subsequently, we restrict ourselves
to the analysis of systems with only two leads and two AC
fluxes. The winding number is computed, and with the help of
the low-energy Hamiltonian at the Weyl node, its connection
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FIG. 1. SNS Josephson junction with a superconducting phase
difference φ and a normal region (orange) consisting of intercon-
nected quantum wires, forming two rings (genus 2). Each ring can
be assigned an independent AC flux (α1,2), controllable via Rashba
coupling using gate electrodes (hatched).

to the Chern number is established. Utilizing the system’s
symmetries, we conclude that for each spin sector, Weyl nodes
come in quartets with pairs of opposite topological charges.

II. SYMMETRIES

We consider a general case of a multiterminal Josephson
junction in the presence of AC fluxes in the normal region.
The parameters of our model encompass a vector �φ contain-
ing the independent superconducting phase differences, and a
vector �α describing the AC fluxes through the normal region.
Specifically, there is one AC flux for each ring (refer to Fig. 1).

We begin with the electron Hamiltonian, which describes
the system in its normal state and has the following struc-
ture [28,29]:

H (�α) =
[

H↑(�α) 0
0 H↓(�α)

]
. (1)

Since electrons with opposite spins acquire opposite AC
phases, the nonzero blocks satisfy the relations H↓(�α) =
H↑(−�α) = H↑(�α)∗. Consequently, H exhibits symmetry un-
der conjugation and time-reversal symmetry (TRS),

H (�α)∗ = H (−�α), (2a)

T H (�α)T −1 = H (�α), (2b)

where T = iσyK; here, σy is the Pauli matrix operating on the
spin degree of freedom, and K is the conjugation operator.

This allows us to represent the Bogoliubov–de Gennes
(BdG) Hamiltonian, which incorporates the description of
superconductivity, as

HBdG( �φ, �α) =
[

H (�α) �( �φ)
�( �φ)† −T H (�α)T −1

]
, (3)

where �( �φ) is a diagonal matrix for the s-wave pairing. In
this form of the BdG Hamiltonian, the intrinsic particle-hole
symmetry (PHS) is expressed as

τyσyH∗
BdG(�α, �φ)σyτy = −HBdG(�α, �φ), (4)

where τy is the Pauli matrix acting in the Nambu space.
Additionally, from Eq. (2) and the relations T �( �φ)T −1 =
�( �φ)∗ = �(− �φ), it follows that the BdG Hamiltonian also
exhibits symmetry under conjugation and TRS:

H∗
BdG(�α, �φ) = HBdG(−�α,− �φ), (5a)

σyH∗
BdG(�α, �φ)σy = HBdG(�α,− �φ). (5b)

TABLE I. Classification table for the case where the control
parameter is a superconducting phase difference, resulting in the
exclusive presence of PHS [Eq. (6a)] within each spin sector. Bott
periodicity implies a periodic structure in dφ and dα with a period
of 8.

dφ

dα 0 1 2 3 4 5 6 7

0 0 0 Z Z2 Z2 0 2Z 0
1 0 0 0 Z Z2 Z2 0 2Z
2 2Z 0 0 0 Z Z2 Z2 0
3 0 2Z 0 0 0 Z Z2 Z2

4 Z2 0 2Z 0 0 0 Z Z2

5 Z2 Z2 0 2Z 0 0 0 Z
6 Z Z2 Z2 0 2Z 0 0 0
7 0 Z Z2 Z2 0 2Z 0 0

The BdG Hamiltonian is symmetric under σz, i.e.,
σzHBdG(�α, �φ)σz = HBdG(�α, �φ), so the Hilbert space splits into
two spin sectors. Hence, our focus lies on the classification
within each sector. Combining Eqs. (4) and (5), we obtain
two symmetries that do not mix the spin sectors,

τyH∗
BdG(�α, �φ)τy = −HBdG(−�α, �φ), (6a)

τyHBdG(�α, �φ)τy = −HBdG(�α,− �φ), (6b)

which can be regarded as PHS and chiral symmetry (CS)
within each sector. Note that, as a combination of TRS and the
intrinsic PHS, chiral symmetry is generally preserved even in
more complex Rashba interaction models.

III. TOPOLOGICAL CLASSIFICATION

To transition a system between different topological
phases, it is necessary to introduce at least one control pa-
rameter. Here, we focus on two scenarios: using either a
single superconducting phase difference or a single AC flux
as the control parameter. Selecting a superconducting phase
difference as the control parameter breaks the CS described
in Eq. (6b) while preserving the PHS described in Eq. (6a).
Conversely, choosing an AC flux as the control parameter
breaks the PHS while leaving the CS unaffected. Referring
to Ref. [34], we have constructed topological classification
tables for both scenarios (see Tables I and II); for specifics,
refer to Supplemental Material (SM) S1 [35]. In the tables, dφ

and dα denote the dimensionalities of phases composing the

TABLE II. Classification table for the case where an AC flux is
used as the control parameter, maintaining CS [Eq. (6b)] within each
spin sector.

dφ

dα Even Odd

Even 0 0
Odd Z Z ⊕ Z
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synthetic BZ, culminating in its total dimensionality dBZ =
dφ + dα .

In Table I, the case [dφ = 2, dα = 0], having a topological
invariant Z, corresponds to the system with a nontrivial Chern
number investigated in Ref. [4]. Specifically, the minimal
model constitutes a four-terminal Josephson junction featur-
ing three independent superconducting phases. Among these
phases, two contribute to defining the synthetic BZ, while the
remaining one functions as the control phase.

From here on, we restrict our analysis to systems with
two superconducting leads only. In Table I, another con-
sideration for identifying topologically nontrivial phases in
low-dimensional systems is the option [dφ = 0, dα = 2]. In
this case, the control parameter is the superconducting phase
difference φ. Yet, as we will delve into in the subsequent
sections, all the topological charges are situated at φ = π with
a total charge of 0. Consequently, the behavior manifests as
trivial.

Selecting one of the AC fluxes as the control parameter,
Table II reveals that the lowest-dimensional nontrivial cases
are Z and Z ⊕ Z for [dφ = 0, dα = 1] and [dφ = 1, dα = 1],
respectively. Here, Z represents the winding number, while
Z ⊕ Z corresponds to the Chern number and the mirror wind-
ing number [34,36,37]. In the former case, the presence of
CS requires the superconducting phase difference to be either
0 or π . Additionally, to allow for gap closures and enable
topological phase transitions, we set φ = π . Conversely, in
the latter case, this constraint is lifted and φ is treated as a
quasimomentum. For the remainder of the paper, our focus
will be on these two cases, i.e., a two-terminal Josephson
junction featuring two AC fluxes in the normal region.

IV. EFFECTIVE HAMILTONIAN

We begin with the expression determining the Andreev
bound states with energy E (|E | < |�|) within the sector
corresponding to electrons (holes) with spin ↑ (↓) [33,38,39],

[
0 S↑(�α) eiφ̂

S∗
↓(�α) e−iφ̂ 0

]
ψ = eiχψ, (7)

where χ ≡ arccos(E/|�|), with leads having the same gap
|�|. The components of ψ = [ψe, ψh]T are the amplitudes
of the outgoing waves for electrons and holes. The matrix
φ̂ = diag(φ/2,−φ/2) ⊗ IN is diagonal, where φ ∈ [0, 2π )
denotes the superconducting phase difference, and IN signifies
the identity matrix with dimension N , indicating the number
of modes in each lead. (We assume for simplicity that the
number of modes in both leads is the same.) S↑ (S∗

↓) represents
the normal-state scattering matrix for electrons (holes) with
spin ↑ (↓); it is worth noting that S↓(�α) = ST

↑ (�α). In the fol-
lowing, we will focus on the short junction limit, described by
an energy-independent scattering matrix, and use the abbrevi-
ation S = S↑(�α). A longer scattering region, characterized by
an energy-dependent matrix S(E ), would lead to additional
ABSs at finite energy. Nevertheless, the existence of Weyl
nodes and their topological properties at zero energy depend
solely on S(0).

From Eq. (7), the equation for the electron part [40] can be
obtained [4,38],

Aψe = e2iχψe, (8)

where A = Seiφ̂S†e−iφ̂ is unitary. Similar to the Joukowsky
transform [41], we decompose A = A1 + iA2 into its Hermi-
tian and anti-Hermitian component, where A1 = 1

2 (A + A†)
and A2 = 1

2i (A − A†) are both Hermitian matrices. Separating
the two parts of Eq. (8) yields a system of equations,(

IN − A1

2

)1/2

ψe = sin χ ψe, (9a)

A2ψe = 2 cos χ sin χ ψe, (9b)

where

IN − A1 = 2 sin2 φ

2

[
t ′t ′† 0

0 tt†

]
, (10a)

A2 = 2 sin
φ

2

[
−t ′t ′† cos φ

2 rt†ei φ

2

tr†e−i φ

2 tt† cos φ

2

]
. (10b)

Here, r (r′) and t (t ′) are N × N reflection and transmission
matrices at the left (right) lead, respectively, and (IN − A1) is
positive semidefinite. In Eq. (9a), we took into account the
constraint Im(eiχ ) � 0 [38], i.e., χ ∈ [0, π ]. Assuming that
(IN − A1) and A2 are nonsingular (requiring φ �= 0), we can
combine Eqs. (9a) and (9b) to derive the effective (electron)
Hamiltonian acting in the ABS subspace, Heψe = Eψe, given
by

He = |�|
[

−(t ′t ′†)1/2 cos φ

2 rt†(tt†)−1/2eiφ/2

(tt†)−1/2tr†e−iφ/2 (tt†)1/2 cos φ

2

]
. (11)

The eigenvalues of He come in pairs E±
n =

±|�|
√

1 − Tn sin2(φ/2), where Tn are eigenvalues of tt† [38].
Thus, the gap closes when φ = π and Tn = 1. In the limit
φ → 0, ABSs approach the continuum at ±|�|.

V. CHIRAL SYMMETRY

The chiral symmetry [Eq. (6b)] implies that eigenfunc-
tions appear in pairs with opposite energies, satisfying

(�α,− �φ) = iτy
(�α, �φ). This results in CS effectively swap-
ping the roles of incoming and outgoing waves. Additionally,
incoming waves are related to outgoing waves through An-
dreev reflection [38]. Consequently, under chiral symmetry,
the components of outgoing waves (ψe, ψh) transform to
(e−iφ̂−iχψe,−eiφ̂−iχψh).

Focusing on the electron component, the effective Hamil-
tonian from the previous section satisfies eiφ̂He(�α, 2π −
φ)e−iφ̂ = −He(�α, φ). For φ = π , this reduces to �πHe�

†
π =

−He, where �π = νz ⊗ IN and νz is the Pauli matrix acting in
the space of left- and right-outgoing waves. This is unsurpris-
ing, as He becomes block off-diagonal at φ = π .

VI. TOPOLOGICAL INVARIANTS AND
THE LOW-ENERGY HAMILTONIAN

We proceed by determining the topological invariant at
φ = π . From the topological classification, we already know
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that the appropriate invariant is the winding number [34,42].
However, because the winding number is gauge dependent,
we will consider the differences between winding numbers
at different values of the control AC flux. These differences
correspond to contractible (i.e., null-homotopic) loops in the
space of AC fluxes. For such loops, we derive

Wπ = 1

2π i

∮
Cα

d log (det h) = 1

2π i

∮
Cα

d log (det r), (12)

where Cα is an arbitrary contractible loop, and h =
irt†(tt†)−1/2 is the off-diagonal block of He. In the last step,
we assumed that Cα does not cross or enclose any gap edge
touchings. Consequently, only the reflection matrix r con-
tributes to Wπ .

Next, let us focus on the low-energy limit, particularly
on the band touching at a Weyl node located at �xW =
[α1W , α2W , π ]T . Denoting the two chiral states at the Weyl
node with positive and negative chirality as |a+

e 〉 and |a−
e 〉,

respectively (where νz|a±
e 〉 = ±|a±

e 〉), we can express the low-
energy Hamiltonian as (details in SM S2 [35])

HW = δ�x · M3 ��. (13)

Here, δ�x = [δα1, δα2, δφ]T represents the displacement from
the Weyl node, �� is a vector of Pauli matrices acting in the
space of chiral states |a±

e 〉, and

M3 =
⎡
⎣ M2 0

0
0 0 1

2

⎤
⎦,

M2 =
[
∂α1 Re(ζ ) −∂α1 Im(ζ )
∂α2 Re(ζ ) −∂α2 Im(ζ )

]
�x=�xW

, (14)

where ζ (�x) = 〈a+
e |He(�x)|a−

e 〉, and M2 is evaluated at the Weyl
node. Thus, the low-energy dispersion at the Weyl node is
conical, given by E± = ±

√
|δ�α · ∇�αζ |2 + (δφ/2)2.

From Eq. (14), topological charges associated with
winding and Chern numbers can be obtained as WW =
sgn[det(M2)] and CW = sgn[det(M3)], respectively. It is clear
that the two charges are equivalent, and we henceforth denote
them as qW .

Following the topological classification of the BdG Hamil-
tonian presented in Table II, the remaining invariant is the
mirror winding number, defined as [36]

WMZ = sgn[W0 − Wπ ](|W0| − |Wπ |), (15)

where W0 is the winding number evaluated in the plane φ = 0.
Although the winding number is well defined for the entire
BdG Hamiltonian, our approach involving scattering matrices
and ABSs, which merge with the continuum, does not permit
us to obtain W0 in our present formulation. We leave the calcu-
lation of the mirror winding number of the BdG Hamiltonian
for further study.

Applying conjugation symmetry, Eq. (5a), at the
conjugation-invariant phase φ = π [43], leads us to the
conclusion that Weyl nodes come in pairs at ±�xW with
equal topological charges, qW (�xW ) = qW (−�xW ). Given this
equivalence of topological charges and considering the
Nielsen-Ninomiya theorem, which necessitates total charge
cancellation [44–46], we infer the existence of quartets of

Weyl nodes within each spin sector. Each quartet comprises
two Weyl nodes with positive topological charge and two
with negative topological charge.

Considering both sectors, the TRS [Eq. (5b)] implies
that q↓

W (�xW ) = q↑
W (−�xW ) = q↑

W (�xW ), resulting in both sectors
having identical topological charges at �xW . Consequently,
eigenstates at the Weyl nodes are topologically protected
and can be gapped only by the annihilation of opposite
charges. The total charge, combining charges for both sectors,
amounts to twice the topological charge for each individual
sector.

VII. DISCUSSION

To summarize, we provided a topological classification
of multiterminal Josephson junctions with AC fluxes in the
normal region. In contrast to previous proposals for real-
izing Josephson junctions as topological matter [4,6,7], we
showed that topologically nontrivial regimes can arise even
in Josephson junctions with just two terminals. Specifically,
for two-terminal Josephson junctions with the superconduct-
ing phase difference equal to π , we demonstrated that when
no gap edge touchings are enclosed by Cα , the computation
of winding number differences simplifies to the topolog-
ical properties of the reflection matrix r. We confirmed
that the dispersion near zero-energy singularities is conical,
identifying these singularities as Weyl nodes. Addition-
ally, we established the equivalence between the topological
charges associated with the winding number and the Chern
number. Finally, we showed that the Weyl nodes of the
two spin sectors coincide and carry the same topological
charges.

In our approach, we derived ABS spectra using scattering
matrices. However, by neglecting the energy dependence of
these matrices, we encountered ABS spectra with gap edge
touchings. Incorporating energy dependence in the scatter-
ing matrix could introduce finite level repulsion between the
highest ABS and the continuum, thereby restoring the adia-
baticity of the ABSs, as discussed in Ref. [4]. Furthermore,
as highlighted in the main text, another limitation of this
scattering formalism and ABS-based approach is its inability
to compute the mirror winding number of the BdG Hamil-
tonian. To address this, analytical generalizations similar to
those proposed in Ref. [47] may be required. Further ex-
ploration of these ideas is a direction for future theoretical
research.

Another challenge stems from the constrained variation
range of the AC flux. To handle this limitation, a protocol
should be devised that does not require quasimomentum varia-
tions exceeding 2π , unlike the protocol presented in Ref. [4].
The proposed protocol should identify a quantized physical
observable related to either the winding number or the Chern
number (or their associated topological charges). It is impor-
tant to note that, unlike superconducting phases, which are
associated with electric currents, AC fluxes are related to spin
currents. Further research along these lines is detailed in a
separate publication [48].

While we acknowledge that experimentally realizing the
proposed systems remains challenging, we hope our results
will inspire efforts toward the development of such devices.
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