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1. Introduction

The Neumann system is one of the classical examples of integrable systems. In

its original form, presented in [1], it describes a particle moving on the two-sphere

S2 = {(q1, q2, q3); q
2
1 +q2

2 +q3
2 = 1} under the influence of the quadratic potential V (q) =

〈q, A(q)〉, where A is a symmetric 3×3 matrix with arbitrary eigenvalues. Suppose now

that the particle is electrically charged and that its motion is additionally influenced by

the magnetic-like field B(q, q̇) = f(q, q̇)(1, 0, 0), where f(q, q̇) is equal to 〈q̇×q, (1, 0, 0)〉,
that is to the (1, 0, 0)-component of the particle’s angular momentum. The Lorentz-

type force exerted on the particle by the field B is equal to f(q, q̇) · (q̇ × (1, 0, 0)). This

means that the Lorentz force of the homogeneous magnetic field Bh is amplified by the

rotation of the particle around the (1, 0, 0)-axis. We shall study the Neumann system

perturbed by the field B. In this paper the field B will be called the quasimagnetic field

with the axis (1, 0, 0). Physically more realistic systems, in which the motion of charged

particles is influenced by the magnetic field affected by their own motion, are studied in

the theory of magnetohydrodynamics. If in our situation the Neumann potential V (q) is

rotationally symmetric with respect to the (1, 0, 0)-axis, our system describes the motion

of the magnetically charged particle under the influence of the potential V (q) and the

usual homogeneous magnetic field Bh(q) = (1, 0, 0).

The first main result of the paper is Theorem 2 proved in section 4. We will show

that the Neumann system perturbed by the quasimagnetic field B is Arnold-Liouville

integrable. Moreover, we shall give its Lax equation. To the author’s knowledge, this

adds a new example to the list of known integrable systems. Our system is closely

related to the spherical pendulum which is another classical integrable system on S2. It

describes the motion of a particle on S2 under the influence of the linear potential

W (q) = 〈q, l〉, where l ∈ R3. In order to establish successfully the relationship

between our quasimagnetic Neumann system and the spherical pendulum, we will

modify the spherical pendulum by the magnetic field Bd(q) = q/‖q‖3. This is the

field of the Dirac magnetic monopole. Our construction shows how the field Bd of the

monopole and the field B described above are related. In the simple, but nevertheless

important rotationally symmetric case, this construction explains the relation between

the magnetic monopole on S2 and the physically more realistic homogeneous magnetic

field Bh(q) on the same space.

Systems with magnetic fields can be described in terms of the Kaluza-Klein

construction. This amounts to adding to the configuration space a cyclic coordinate

whose conjugate momentum is the conserved charge. In symplectic terms, the Kaluza-

Klein procedure is an example of the symplectic reconstruction - a process which is

inverse to the symplectic reduction. Symplectic reconstruction and geometric phases

were studied in [2], [3] and [4]. We will show that in the case of the spherical pendulum

with the magnetic monopole, the Kaluza-Klein construction yields the system which

describes the motion of a particle on the three-sphere S3 = {g = (q1, q2, q3, q4)} under

the influence of the potential U(q) = 〈q, Ã(q)〉 such that the eigenvalues of Ã are
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{a, a − a,−a}. This is a special case of the Neumann system on S3. In other words,

we will show that the Neumann system on S3 with the potential U(g) is the symplectic

reconstruction of the magnetic spherical pendulum. A similar construction, relating a

system with magnetic monopole on CPn to a system with quartic potential on S2n+1,

was given in [5]. If we now project the above Neumann system on S3 to the equatorial

two-sphere S2 = {(q1, 0, q3, q4)} in S3 in a suitable way, we obtain a magnetically

perturbed Neumann system on S2. This system describes the motion of a charged

particle under the influence of the potential V (q) = 〈q, A(q)〉 and the quasimagnetic

field B(q, q̇) = f(q, q̇)(1, 0, 0).

The above construction can be made more precise. We will show that the

Hamiltonian formulation of the Neumann system on S2 with the potential V (q) and

the quasimagnetic field B is (T ∗S2, ωc, Hm), where

Hm(q, pq) =
1

2
‖pq × q − (P + 〈pq × q, σ〉)σ‖2 + V (q), (1)

σ = (1, 0, 0) and P is a real constant. Suppose that in our coordinates the potential

V (q) has the expression V (q) = (λ1 + d)q2
1 + (d− λ1)(q

2
2 + q2

3)− 2λ3q1q2 + 2λ2q1q3. Let

l = (λ1 − λ3, λ2). In Theorem 2 we shall see that F : T ∗S2 → R, given by

F (q, pq) = 〈pq × q, l〉+ (〈pq × q, σ〉+ P )V (q), (2)

is an integral of our system, which proves the Arnold-Liouville integrability of

(T ∗S2, ωc, Hm).

Let (T ∗S2, ωc + Pωd, Hsp) be the spherical pendulum with the charge P in the

magnetic field of the Dirac monopole. The magnetic field Bd is encoded by the form

ωd which is the pull-back to T ∗S2 of the volume form on S2. The Hamiltonian is

Hsp(q, pq) = 1
2
‖pq‖2 + 〈q, l〉. We will see that an integral of this system is G(q, pq) =

〈pq× q, l〉+P 〈q, l〉. Let us now equip the two-sphere S2 = {q = (q1, q2, q3);
∑3

i=1 q2
i = 1}

with the spherical coordinates q = (q1, q2, q3) 7→ (q1, q2 + iq3) = (cos ϑ, eiϕ sin ϑ). Let

[: TqS
2 → T ∗

q S
2 be given by [(X) = X[ = 〈X,−〉q. We will prove the following theorem

which is our second main result.

Theorem 1 Let (T ∗S2, ωc + Pωd, Hsp) be the magnetic spherical pendulum with the

gravitational force directed along the arbitrarily chosen vector l ∈ R3. Let the curve

(Q(t), PQ(t)): [c, d] → T ∗S2 be a solution of this system such that G(Q(t), PQ(t)) = C

for every t ∈ [c, d]. If in spherical coordinates

Q(t) = (cos(ϑ(t)), eiϕ(t) sin(ϑ(t))): [c, d] → S2

then the curve

q(t) = (cos(
1

2
ϑ(t)), ei(ϕ(t)−π

2
) sin(

1

2
ϑ(t))): [c, d] → S2

is the solution of the quasimagnetic Neumann system (T ∗S2, ωc, Hm) such that

F (q(t), pq(t)) = F (q(t), (q̇(t))[) = C, t ∈ [c, d],

where Hm is given by (1) and F is the integral given by (2).
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We note that, even when the curve Q(t) is a circle with axis l, the curve q(t) has

no symmetry with respect to l whenever l is not parallel to (1, 0, 0). Theorem 1 is

an immediate corollary of Propositions 3 and 7 proved bellow. The key ingredient

of our construction is the relation between two different representations of S2. When

considered as the configuration space of the spherical pendulum, the sphere S2 will be

represented as an adjoint orbit in the Lie algebra su(2). The configuration space of

the Neumann system will, in turn, be the Cartan model of S2 in the Lie group SU(2),

i.e. the fixed-point set of a suitable involutive anti-isomorphism of SU(2). Both models

are naturally related to S3 = SU(2). The adjoint orbit is the base space of the Hopf

fibration SU(2) → S2 given by g 7→ Adg(σ) for some σ ∈ su(2), and the Cartan model

is a totally geodesic submanifold in SU(2). This constellation of spheres will yield the

relation between the spherical pendulum and the perturbed Neumann system, and in

particular between the magnetic fields Bd and Bh and the quasimagnetic field B. The

magnetic field Bh is given by an exact 2-form and B is closely related to Bh. Typically

such fields are less symmetric than those given by the topologically non-trivial forms.

Examples of integrable systems with exact magnetic and gyrostatic terms have been

studied by many authors. A classical example is the paper [6] of Volterra. Such forms

arise in the study of the motion of a heavy solid in the fluid, see e. g. in [7]. An

important example is also the Kowalevski top with the gyrostatic term described in [8]

and [9]. Recently, another integrable system of this kind was found by Sokolov in [10].

The paper is divided into five sections. In section 2 we describe the special case

of the Neumann system on S3 mentioned above. The third section is devoted to the

spherical pendulum with the Dirac magnetic monopole and the connection of this system

with the special Neumann system on S3. This gives the first part of the proof of Theorem

1. In section 4 we explain the relation between the special Neumann system on S3

and the quasimagnetic perturbation of the Neumann system on S2. The first part of

the section which includes the Propositions 4 and 5 concentrates on the construction

and description of the quasimagnetic perturbation of the Neumann system. In the

rest of the section we prove the integrability of the new quasimagnetic system and

conclude the proof of Theorem 1. We also describe the relation between the magnetic

spherical pendulum and the axially symmetric Neumann system on S2 perturbed by

the homogeneous magnetic field Bh. We summarize the paper and suggest possible

directions for further research in section 5.

2. A special case of the Neumann system on S3

The Neumann system on S3 = {g = (q1, q2, q3, q4);
∑4

i=1 q2
i = 1} describes the motion

of a particle on S3 under the influence of the potential U(g) = 〈g, A(g)〉, where A is a

symmetric matrix. In suitable coordinates we have U(g′) =
∑4

i=1 ai(q
′
i)

2. Therefore, this

system can also be viewed as a description of the motion of four 1-dimensional harmonic

oscillators with positions q′i, i = 1, . . . , 4, subject to the constraint
∑4

i=1(q
′
i)

2 = 1. Thus,

the constants ai will be called the spring constants of the system. We shall be interested
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in the Neumann system on S3 in which the spring constants satisfy the equations a1 = a2,

a3 = a4 and a1 = −a3. Let us identify the sphere S3 with the special unitary group

SU(2) via the map

g = (q1, q2, q3, q4) 7→ g =

(
q1 + iq2 q3 + iq4

−q3 + iq4 q1 − iq2

)
. (3)

Let ωc denote the canonical cotangent symplectic structure on the cotangent bundle

T ∗SU(2) and let σ = diag(i,−i) ∈ su(2).

Proposition 1 The Neumann system on the three-sphere whose spring constants are

{a, a,−a,−a} can be expressed as the Hamiltonian system (T ∗SU(2), ωc, H), where

H(g, pg) =
1

2
‖pg‖2 + 〈λ, Adg(σ)〉

for any λ ∈ su(2) such that ‖λ‖2 = −1
2
Tr(λ2) = a2.

Proof: Let λ = i(λ1σ1 + λ2σ2 + λ3σ3), where σj are the standard Pauli spin matrices.

For g ∈ SU(2) we have g−1 = g∗. The matrix multiplication and the identification (3)

give

〈λ, Adg(σ)〉 = λ1(q
2
1 + q2

2 − q2
3 − q2

4) + 2λ2(q1q3 − q2q4) + 2λ3(q1q4 + q2q3).

It is now straightforward to check that this quadratic form has two double eigenvalues

a1,2 = +‖λ‖ and a3,4 = −‖λ‖, which proves the proposition. 2

It is well-known that the Neumann system is completely integrable, see, e.g. [11],

[12]. Since we shall need a specific form of the integrals, let us nevertheless outline the

proof of the integrability of the system (T ∗SU(2), ωc, H).

Proposition 2 The Hamiltonian system (T ∗SU(2), ωc, H) is completely integrable. A

set of Poisson-commuting integrals is given by

M(g, pg) = 〈pgg−1, Adg(σ)〉, E(g, pg) = 〈pgg−1, λ〉 and H, (4)

where pgg
−1 denotes the adjoint of the right translation.

Proof: The Legendre transformation and the fact that ‖pg‖ = ‖gtg−1‖ tell us that the

Lagrangian of our system is

L(g(t)) =

∫ d

c

(1

2
‖gtg−1‖2 − 〈λ, Adg(σ)〉

)
dt.

Let g(t): [c, d] → SU(2) be a path such that g(c) = g1 and g(d) = g2, and let

a(t, s): [c, d] × (−ε, ε) → SU(2) be a map such that a(t, 0) ≡ g(t), a(c, s) ≡ g1 and

a(d, s) ≡ g2. Let g(t, s) = a(t, s)g(t). Then a calculation, in which one uses integration

by parts, the relation d
du

Adg(u)(κ) = [gug
−1, Adg(κ)] and the ad-invariance of the Killing

form, 〈ξ, [η, ζ]〉 = 〈[ξ, η], ζ〉, gives

d

ds
|s=0L(g(t, s) =

∫ d

c

〈(gtg−1)t − [λ, Adg(σ)], δa〉 dt,

where δa = d
ds

a(t, s)a−1(t, s)|s=0. Thus, the equation of the motion of our system is

(gtg
−1)t = [λ, Adg(σ)]. (5)
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It is straightforward to check that the equation (5) is equivalent to the Lax equation

Lt = [A, L],

where

L(z) = Adg(σ) + zgtg
−1 + z2λ, A(z) = gtg

−1 + zλ.

Therefore, the conserved quantities of the equation (5) are the coefficients of the

characteristic polynomial det(L(z) − wI). Since Tr(L(z)) = 0, the integrals are the

coefficients of the polynomial det(L(z)) = 〈L(z), L(z)〉 which is equal to

‖σ‖2 + z〈gtg−1, Adg(σ)〉+ z2
(
‖gtg−1‖2 + 2〈λ, Adg(σ)〉

)
+ z3〈gtg−1, λ〉+ z4‖λ‖2. (6)

If we use the identification pg = 〈gt,−〉g, where 〈−,−〉g is the bi-invariant metric on

SU(2) defined by the Killing form, then gtg
−1 corresponds to pgg

−1. Formula (6) tells us

that, in addition to the Hamiltonian H, the functions M, E: T ∗SU(2) → R given by (4)

are indeed integrals of our system. We shall include the proof of Poisson-commutativity

of M and E in the proof of Proposition 3. For a more general proof we refer the reader

to the seminal work [12], and for different proofs to [13] and [5]. 2

3. Spherical pendulum with the Dirac monopole

In this section we shall study the relation between the special Neumann system

(T ∗SU(2), ωc, H) and the spherical pendulum with the additional magnetic field caused

by the Dirac monopole. This relation will give us an interesting physical interpretation

of the integrals M, E: T ∗SU(2) → R constructed above. The geometry of the spherical

pendulum was studied by Duistermaat in [14]. The pendulum moving in the field of

the magnetic monopole is described, e.g. in [15], [16]. An interesting connection of this

system with the configurations of vortex filament is given in [17].

A result similar to the one described in this section is already implicit in the

existing literature. Felix Klein showed in [18] that the magnetic spherical pendulum

is a symplectic reduction of the Lagrange top. The phase space of this (and indeed

of any) top is T ∗SO(3) = T ∗RP3. In [5] we describe how a Hamiltonian system on

T ∗RPn can be pulled back to a Hamiltonian system on T ∗Sn via the antipodal map.

In particular we note, that a polynomial potential of degree n on RPn pulls back to a

polynomial potential of degree 2n on Sn. If we apply this procedure on the Lagrange

top, we obtain a system on T ∗SU(2) = T ∗S3 similar to the Neumann system with a

circular symmetry. The difference between these two systems is in the kinetic energy.

In the case of the Neumann system it is given by the Ad-invariant Killing form on su(2),

while on the lifted Lagrange top it is determined by a metric on su(2) which is only

left-invariant.

We recall that the spherical pendulum is the Hamiltonian system (T ∗S2, ωc, Hsp),

where

Hsp(Q,PQ) =
1

2
‖PQ‖2 + 〈Q,L〉 (7)
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and Q = (Q1, Q2, Q3) ∈ S2 ⊂ R3. The vector L = (L1, L2, L3) ∈ R3 is the direction

of the gravitational force. A frequent choice in the literature is L = (0, 0, 1) which

sets the potential function 〈L, Q〉 to Q3. Let ω̃d be the volume 2-form on S2 and let

ωd = π∗(ω̃d), where π: T ∗S2 → S2 is the natural projection. The Hamiltonian system

(T ∗S2, ωc + Pωd, Hsp) describes the motion of a particle with the electric charge P

confined to the 2-sphere under the influence of the gravitational potential 〈Q, L〉 and

of the monopole magnetic field Bd(Q) = Q/‖Q‖3. For a detailed explanation of the

relation between the form ωd and the magnetic field Bd, see [4].

From Proposition 2 it is clear that the special Neumann system is invariant with

respect to the suitable U(1)-action. More precisely, let ρ be the action of the subgroup

Uσ(1) = {Exp(sσ); s ∈ [0, 2π)} on SU(2) given by ρu(g) = g · u and let ρ̃ be the lifting

of ρ to the cotangent bundle T ∗SU(2). Then the system (T ∗SU(2), ωc, H) is invariant

with respect to the action ρ̃. Let S2 ⊂ su(2) be the adjoint orbit of σ. Consider the

map

f : SU(2) → S2 = S2 ⊂ su(2), f(g) = Q = Adg(σ).

In spherical coordinates this map has the expression(
eiψ cos ϑ eiϕ sin ϑ

−e−iϕ sin ϑ e−iψ cos ϑ

)
f7−→

(
i cos 2ϑ ei(ϕ+ψ+π

2
) sin 2ϑ

−e−i(ϕ+ψ+π
2
) sin 2ϑ −i cos 2ϑ

)
. (8)

The fibers of f are precisely the orbits of ρ and f is a realization of the well-known Hopf

fibration S1 ↪→ S3 → S2. Let

TgSU(2) = Vertg ⊕ Horg ∼= span
(
Adg(σ)

)
⊕ span

(
[X, Adg(σ)]; X ∈ su(2)

)
(9)

be the decomposition of the tangent space, where Vertg is the fibre of f and Horg
its orthogonal complement with respect to the Riemannian metric on SU(2) = S3

determined by the Killing form. The second sum is obtained from the first one by

identifying TgSU(2) with su(2) via the right translations by g−1. Accordingly, we have

the decomposition

T ∗
g SU(2) = Vert∗g ⊕ Hor∗g, pg = pvg + phg , pvg ∈ Vert∗g, phg ∈ Hor∗g, (10)

where Vert∗g is the annihilator of Horg and Hor∗g is the annihilator of Vertg. Observe

that the restriction (Df)g: Horg → Tf(g)S2 is an isometry for every g ∈ SU(2). We can

lift the map f to the map F : T ∗SU(2) → T ∗S2 by setting

F(g, pg) =
(
Adg(σ), {pgg−1, Adg(σ)}

)
= (Q,PQ), (11)

where 〈{pgg−1, X}, Y 〉 = 〈pgg−1, [X, Y ]〉 for every X, Y ∈ su(2).

Now we shall describe a decomposition of the canonical form ωc on T ∗SU(2) induced

by the map F . First we have the decomposition of the tautological form α on T ∗SU(2):

α(g,pg)(Xg, Xpg) = pg(Xg) = pvg(Xg) + phg(Xg), (12)

where (Xg, Xpg) ∈ T(g,pg)(T
∗SU(2)) ∼= su(2)× su(2)∗. Recall the formula

dβ(Y1, Y2) = Ỹ1(β(Ỹ2))− Ỹ2(β(Ỹ1)) + β([Ỹ1, Ỹ2]) (13)
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which holds for any 1-form β on any manifold and for arbitrary choice of vector fields

Ỹ1 and Ỹ2 extending the tangent vectors Y1 and Y2. If we use the Uσ(1)-invariant vector

fields in the above formula applied to the tautological form, then the decompositions

(9) and (12) and formulae (11), (4) give us

(ωc)(g,pg) = F∗(ωco)(g,pg) + M(q, pq)F∗(ωd)(g,pg) + M(g, pg)(ωfib)(g,pg). (14)

By ωco we denoted the canonical form on T ∗S2, and ωd is the pull-back on T ∗S2 of the

volume 2-form ω̃d on the two-sphere which, on the adjoint orbit S2 ⊂ su(2), has the

expression

(ω̃d)Q(XQ, YQ) = 〈Q, [XQYQ]〉, XQ, YQ ∈ TQS2 ∼= Q⊥ ⊂ su(2).

The form (ωfib)(g,pg) is the canonical form on the fibre of F through (g, pg). Note that

this fibre is isomorphic to T ∗U(1). A more detailed proof of (14) for a slightly more

general situation can be found in [5].

The following proposition will constitute the first half of the proof of Theorem 1.

Proposition 3 The magnetic spherical pendulum (T ∗S2, ωc + Pωd, Hsp) is the

symplectic quotient of the special Neumann system (T ∗SU(2), ωc, H) with respect to the

action ρ̃ of U(1) on T ∗SU(2). The moment map of this action is precisely the integral

M : T ∗SU(2) → R defined in (4). The integral E: T ∗SU(2) → R defined in (4) induces

the integral

G(Q,PQ) = −〈[PQ, Q], λ〉+ P 〈Q, λ〉.

Let (Q(t), PQ(t)): [c, d] → T ∗S2 be a solution of the system (T ∗S2, ωc + Pωd, Hsp) such

that G(Q(t), PQ(t)) = C. The symplectic reconstruction of (Q(t), PQ(t)) is then every

solution (g(t), pg(t)): [c, d] → T ∗SU(2) of (T ∗SU(2), ωc, H) such that

M(g(t), pg(t)) = P, E(g(t), pg(t)) = C, t ∈ [c, d] (15)

and such that f(g(c)) = q(c).

If we interpret the Neumann system (T ∗SU(2), ωc, H) as the Kaluza-Klein

description of the magnetic spherical pendulum, then the integral M : T ∗SU(2) → R
is the charge of the pendulum. The integral E: T ∗SU(2) → R is the sum of the angular

momentum of the pendulum around its natural axis and of the gravitational potential

multiplied by the charge.

Proof: First we shall determine the moment map µ: T ∗SU(2) → R ∼= u(1) of ρ̃. The

action ρ̃ is the lifting of the action ρ of Uσ(1) on SU(2). Under the right trivialization,

the infinitesimal action ξg of Uσ(1) at g is ξg = Adg(σ). Thus,

µ(g, pg) = pg(ξg) = 〈pgg−1, Adg(σ)〉 = M(g, pg). (16)

From (9) we see that under the trivialization by the right translations we have

µ−1(P ) = {(g, pg); pgg
−1 = {pgg−1, Adg(σ)} + P (Adg(σ))[}. (17)

Recall that the induced symplectic form ωSQ on the symplectic quotient µ−1(P )/Uσ(1)

is the 2-form satisfying the relation i∗(ωc) = π∗(ωSQ), where i: µ−1(P ) → T ∗SU(2)
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is the inclusion and π: µ−1(P ) → µ−1(P )/Uσ(1) is the natural projection. Clearly,

µ−1(P )/Uσ(1) ∼= T ∗S2. If we represent the 2-sphere as the adjoint orbit S2, then the

projection π is the restriction

F : µ−1(P ) → µ−1(P )/Uσ(1) ∼= T ∗S2

of the map F : T ∗SU(2) → T ∗S2 given by (11). From (16) and (14) we now get

ωSQ = ωco + Pωd.

Let us now restrict the Hamiltonian H(g, pg) = 1
2
‖pgg−1‖2 + 〈λ, Adg(σ)〉 to the subspace

µ−1(P ) of T ∗SU(2). Since the decomposition (10) is orthogonal, the expression (17)

gives

H(g, pg) =
1

2
‖{pgg−1, Adg(σ)}‖2 + P 2 + 〈λ, Adg(σ)〉.

Under the projection induced by the map f(g) = Adg(σ) = Q this function descends to

the Hamiltonian of the spherical pendulum

Hsp(Q,PQ) =
1

2
‖PQ‖2 + 〈λ, Q〉,

where we have omitted the irrelevant constant P 2.

Clearly, the integral E of the Neumann system on SU(2) is invariant with respect

to the action ρ̃. Since the integral M is the moment map of ρ̃, the functions E and

M Poisson-commute, as we claimed in Proposition 2, and E induces an integral on the

symplectic quotient. Let us denote mg = pgg
−1. Suppose mg ∈ µ−1(0). Then mg is

perpendicular to f(g) = Adg(σ), and mg 7→ [mg, Adg(σ)] is the rotation through π
2

in

T ∗
f(g)S2. Thus, we can write

mg = −[[mg, Adg(σ)], Adg(σ)] + 〈mg, Adg(σ)〉Adg(σ) = −[PQ, Q] + µ(g, pg)Q.

From this we get immediately

G(Q,PQ) = −〈[PQ, Q], λ〉+ P 〈Q, λ〉. (18)

Let the path (g(t), pg(t)): [c, d] → T ∗SU(2) be a symplectic reconstruction of a

solution (Q(t), PQ(t)): [c, d] → T ∗S2 of (T ∗S2, ωc + Pωd, Hsp). Since (g(t), pg(t)) ⊂
µ−1(P ), we clearly have M(g(t), pg(t)) ≡ P . Any symplectic reconstruction of

(Q((t), PQ(t)) is of the form ρ̃(u)(g(t), pg(t)) for some path (g(t), pg(t)) such that

F(g(t), pg(t)) = (Q(t), PQ(t)). But the function E: T ∗SU(2) → R is invariant with

respect to the action ρ̃. This, together with the decomposition

pgg
−1 = phgg

−1 + pvgg
−1 = −[PQ, Q] + PQ,

valid for every pg ∈ µ−1(P ) = M−1(P ), finally proves the second equation of (15). 2
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4. Neumann system on S2 in the axially symmetric quasimagnetic field

We shall now describe the quasimagnetic perturbation of the Neumann system on S2 in

the Lie theoretic terms. Let J = diag(1,−1). Then

θ: SU(2) → SU(2), θ(g) = gθ = J · g · J

is the involution whose fixed point set is Uσ(1) = {Exp(tσ); t ∈ [0, 2π)} ⊂ SU(2). The

fixed point set of the map g 7→ (gθ)−1 is a copy of S2 in SU(2) which consists of the

matrices q ∈ SU(2) of the form

q =

(
q1 q2 + iq3

−q2 + iq3 q1

)
=

(
cos ϑ eiϕ sin ϑ

−e−iϕ sin ϑ cos ϑ

)
. (19)

This realization of S2 is called the Cartan model of S2 in SU(2) and we shall denote it

by S2. For more on Cartan models of symmetric spaces, see [19] and [20]. The tangent

and the cotangent bundles of S2 are of course nontrivial, but the Cartan model allows

us to embed TS2 and T ∗S2 in the trivial bundles TSU(2) and T ∗SU(2), respectively.

For every q ∈ S2 the map

θq: su(2) → su(2), θq(α) = Adq(deθ(α)) = Adq(α
θ) (20)

is an involutive isomorphism which preserves the Killing form. (By an abuse of notation

we write θ(g) = gθ and dθe(α) = αθ for elements g ∈ SU(2) and α ∈ su(2) alike.) For

every q ∈ S2, we have the orthogonal decomposition

su(2) = uq ⊕ pq

into (+1) and (−1)- eigenspaces of θq. Here uq is a Lie subalgebra isomorphic to u(1).

It is immediately clear that for every q ∈ S2 we have

[uq, uq] ⊂ uq, [pq, pq] ⊂ uq, [uq, pq] ⊂ pq. (21)

A decomposition of a Lie algebra satisfying the above relations is called the Cartan

decomposition. Let q(t): [c, d] → S2 be a path such that q(0) = q. Differentiation of the

identity q(t)q(t)θ = e tells us that qtq
−1 ∈ pq. Thus, the right trivialization yields the

identification TqS2 ∼= pq ⊂ su(2). If we denote by p∗q the annihilator of u(1), then for

every pq ∈ T ∗
q S2 we have pqq

−1 ∈ p∗q ⊂ su(2)∗.

Let now the 1-form α̃q on S2 be defined by

α̃q(Xq) = 〈Adq(σ), Xq〉 = −〈σ, Xq〉, Xq ∈ pq
∼= TqS2.

In the second equality above we have used the facts that θq(X) = −X, σθ = σ and that

θq is an isometry. This form is obviously the pull-back by i: S2 → SU(2) of the right

invariant 1-form α̃g on SU(2) which takes the value σ at the identity. Using formula

(13), the relation di∗(α̃g) = i∗(dα̃g) and the right invariance of α̃g we get

ω̃h(Xq, Yq) = dα̃q(Xq, Yq) = 〈Adq(σ), [Xq, Yq]〉, Xq, Yq ∈ pq
∼= TqS2. (22)

In the proof of the next proposition we shall need the expression of the natural

transitive SU(2)-action on SU(2)/U(1) in terms of the Cartan model S2. Observe

that S2 is the image of the map g 7→ g(gθ)−1 of SU(2) into itself. (This map is another
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realization of the Hopf fibration Uσ(1) ↪→ SU(2) → S2.) Therefore the natural transitive

left action of SU(2) on S2 is given by

ρg(q) = g · q · (gθ)−1. (23)

Proposition 4 Let the motion of a particle with the charge P on the sphere S2 ⊂ R3

be governed by the homogeneous magnetic field Bh(q) = (1, 0, 0). Then this motion is

described by the Hamiltonian system (T ∗S2, ωc + Pωh, Hh), where

Hh(q, pq) =
1

2
‖pq‖2

and ωh is the pull-back on T ∗S2 of the form ω̃h, given by (22).

The Hamiltonian systems (T ∗S2, ωc + Pωh, Hh) and (T ∗S2, ωc, Ht), where

Ht(q, pq) =
1

2
‖pq‖2 + P 〈pqq−1, Adq(σ)〉

are equivalent in the sense that the Hamiltonian vector field of Hh with respect to ωc+Pωh
is equal to the Hamiltonian vector field of Ht with respect to ωc.

The equation of motion of the system (T ∗S2, ωc + Pωh, Hh) is

(qtq
−1)t = P [qtq

−1, Adq(σ) + σ]. (24)

Proof: We have to show that the 2-form ωh gives rise to the magnetic field Bh(q) =

(1, 0, 0). Let h: S2 → R be the function such that (ωh)q = h(q) · dvol, where dvol is

the volume 2-form on S2. Let Xq, Yq ∈ pq
∼= TqS2 be arbitrary. It is easily checked

that dvol(Xq, Yq) = ±‖[Xq, Yq]‖. To see this, we identify R3 with su(2) via the map

(x1, x2, x3) 7→ i
∑3

j=1 xjσj. Under this identification the bracket on su(2) corresponds

to the cross product on R3. Using the expression (22), we have

h(q) = 〈Adq(σ),
[Xq, Yq]

‖[Xq, Yq]‖
〉 = 〈θq(Adq(σ)), θq(

[Xq, Yq]

‖[Xq, Yq]‖
)〉 = 〈σ,

[Xq, Yq]

‖[Xq, Yq]‖
〉,

where θq is defined by (20). The second equality holds, because θq is an isometry. The

third equality follows from the fact that [Xq, Yq] ∈ uq whenever Xq, Yq ∈ pq, as stated in

the relations (21). Thus, besides θq(Adq(σ)) = σ, we also have θq([Xq, Yq]) = [Xq, Yq].

Let ϑ, ϕ be the spherical coordinates on S2 and let Xq = qϑq
−1 and Yq = qϕq

−1. The

expression (19) then gives

[Xq, Yq]

‖[Xq, Yq]‖
=

(
i cos(ϑ) −ieiϕ sin(ϑ)

−ie−iϕ sin(ϑ) −i cos(ϑ)

)
.

Recalling that σ = diag(i,−i), we get h(q(ϕ, ϑ)) = cos ϑ. Therefore,

(ω̃h)q(ϕ,ϑ) = cos ϑ · dvol.

Let Bh be a magnetic field in R3 and let Nq be the outward unit normal of S2 at q ∈ S2.

The form ω̃h = h · dvol corresponds to Bh, if h(q) = 〈Bh(q), Nq〉. The simplest field

Bh such that 〈Bh(q(ϑ, ϕ)), Nq(ϕ,ϑ)〉 = cos ϑ is the restriction to S2 ⊂ R3 of the field

Bh(q) = (1, 0, 0).
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Note that the form ωh is exact. From (22) we see that ωh = dα, where α is the

pull-back of α̃ by π: T ∗S2 → S2. Consider the map

tα: T
∗S2 → T ∗S2, tα(q, pq) = (q, pq − Pαq),

where P is an arbitrary real constant. Let βq be the tautological 1-form on T ∗S2, given

by β(q,pq)(X
b
q , X

ct
(q,pq)) = 〈pq, Xq〉 for arbitrary (Xb

q , X
ct
(q,pq)) ∈ T(q,pq)(T

∗S2). Then we

obviously have t∗α(−β) = −β + Pα. Thus,

t∗α(ωc) = dt∗α(−β) = d(−β + Pα) = ωc + Pωh.

On the other hand

t∗α(Ht) = Hh

which proves the second part of the proposition. For more information on the argument

used above, we refer the reader to [4] and [21].

It remains to prove that the equation (24) is the equation of motion of our system

By means of the Legendre transformation we see that the solutions of (T ∗S2, ωc, Ht) are

the extremals q(t): [c, d] → S2 of the Lagrangian

Lh(q(t)) =

∫ d

c

(1

2
‖qtq−1‖ − P 〈qtq−1, Adq(σ)〉

)
dt.

Let a(t, s): [c, d]×(−ε, ε) → SU(2) be a smooth map such that a(t, 0) ≡ e, a(c, s) ≡ q(a)

and a(d, s) ≡ q(b). Then q(t, s) = ρa(t,s)(q(t)) = a(s, t)q(t)(a(s, t)θ)−1 is a family of paths

in S2 connecting q(a) and q(b). From the transitivity of the action (23) it follows that

every such family is of this form for some a(t, s). In a similar way as in Proposition 2

we get

d

ds
|s=0Lh(q(t, s)) =

∫ d

c

(
〈E − Adq(t)(Eθ) , δa〉

)
dt,

where

E = (qtq
−1)t − P [qtq

−1, Adq(σ)]

and δa = d
ds

a(t, s)a(s, t)−1|s=0 is the variation. Therefore, for q(t) to be an extremal,

πq(E) = E − Adq(Eθ) has to be equal to zero. For every q ∈ S2, the expression

πq(E) is the orthogonal projection of E on pq
∼= TqS2 ⊂ su(2). The fact that

S2 is a totally geodesic submanifold of SU(2) and a simple calculation show that

πq(E) = (qtq
−1)t − [qtq

−1, Adq(σ) + σ], which proves that (24) is indeed the equation of

motion of our system. 2

We now come to the description, first in the Lagrangian terms, of the Neumann

system perturbed by the quasimagnetic field B described in the introduction.

Proposition 5 Let the quadratic potential V (q): S2 → R have arbitrary eigenvalues

{α, β, γ}. Let the motion of a charged particle on the sphere S2 ⊂ R3 be governed

by the potential force F (q) = grad(V (q)) and by the Lorentz-type force L(q, qt) =

〈qt × q, (1, 0, 0)〉 · (qt × (1, 0, 0)). Then the Lagrangian of this system is

Lm(q(t)) =

∫ b

a

(1

2
(‖qtq−1‖2 − 〈qtq−1, Adq(σ)〉2)− 〈λ, Adq(σ)〉

)
dt (25)
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for a suitably chosen λ ∈ su(2).

Proof: Let us find the Euler-Lagrange equation of the Lagrangian Lm. As in the

proof of Proposition 4, let a(t, s): [c, d] × (−ε, ε) → SU(2) be a smooth map such that

a(t, 0) ≡ e, a(c, s) ≡ q(a) and a(d, s) ≡ q(b). Let again q(t, s) = a(s, t)q(t)(a(s, t)θ)−1

be a family of paths joining q(a) and q(b). This time the variation gives

d

ds
|s=0Lm(q(t, s)) =

∫ d

c

(
〈G − Adq(t)(Gθ) , δa〉

)
dt,

where

G = (qtq
−1)t − 〈qtq−1, Adq(σ)〉 · [qtq−1, Adq(σ)]− [λ, Adq(σ]

Similarly as before, we see that

πq(〈qtq−1, Adq(σ)〉 · [qtq−1, Adq(σ)]) = 〈qtq−1, Adq(σ)〉 · [qtq−1, Adq(σ) + σ].

Let

K =

 1 0 0

0 0 1

0 −1 0

 .

The representation (19) of S2 as the Cartan model S2 ⊂ SU(2) sends the vector K(qt×q)

into the matrix qtq
−1. Recall that 〈qtq−1, Adq(σ)〉 = −〈qtq−1, σ〉, since θq is an isometry.

It follows now from the third part of Proposition 4 that the Lorentz-type force of the

system given by Lm is indeed equal to 〈q̇ × q, (1, 0, 0)〉(q̇ × (1, 0, 0)).

Finally we have to show that for a suitably chosen λ ∈ su(2) the gradient field of the

function 〈λ, Adq(σ)〉 = −1
2
Tr(λ ·Adq(σ) is equal to the gradient field grad(V (q)), where

V (q): S2 → R is a quadratic form with arbitrary eigenvalues {α, β, γ}. If δ = −1
2
(β +γ),

then the quadratic form V (q)+δ(q2
1 +q2

2 +q2
3) has eigenvalues {a, b,−b}, where a = α+δ

and b = β + δ. The function δ(q2
1 + q2

2 + q2
3) is constant on S2, therefore its gradient

is equal to zero. We can assume, without the loss of generality, that the eigenvalues

of the potential V (q) are a set of the form {a, b,−b}. Since q ∈ S2 ⊂ SU(2), we have

q−1 = qθ = AdJ(q) . Matrix multiplication and evaluation of the trace then give

〈λ, Adq(σ)〉 = λ1(q
2
1 − q2

2 − q2
3)− 2λ3q1q2 + 2λ2q1q3,

where again λ = i(λ1σ1+λ2σ2+λ3σ3) and σi are Pauli matrices. Let A be the symmetric

3× 3 matrix of the quadratic form 〈λ, Adq(σ)〉. The characteristic equation of A is

det(A− zI) = −(λ1 + z) · (z2 − (λ2
1 + 4λ2

2 + 4λ2
3)) = 0.

From this we see that λ ∈ su(2) will yield the quadratic form with the desired

eigenvalues, if λ1 = a and λ2
1 + 4λ2

2 + 4λ2
3 = b2. 2

We shall now describe the relation between the system given by Lm and the special

Neumann system on S3 = SU(2). We shall use a projection method similar to the

one described by Olshanetsky and Perelomov in [22]. First observe that every element
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g ∈ SU(2) can be written in the form g = q · u, where q ∈ S2 and u ∈ Uσ(1). For

elements g which are not of the form

g =

(
0 a

−a 0

)
(26)

there are precisely two such decompositions, namely g = q · u = (−q) · (−u). Elements

of the form (26) comprise an equatorial 1-sphere in S2. For every such element g and

every u ∈ Uσ(1) there exists qu ∈ S2 such that g = qu · u. In other words, for a general

g ∈ SU(2) the fibre {gu; u ∈ Uσ(1)} ∼= S1 of the Hopf map g 7→ Adg(σ) intersects the

Cartan model S2 in two antipodal points, while for g of the form (26) the whole fibre

lies in S2. For a proof of an analogous claim for a general Cartan model, see [19].

Let g: [c, d] → SU(2) be a path and let

g(t) = q(t) · u(t), q(t): [c, d] → S2, u(t): [c, d] → Uσ(1) (27)

be its decomposition in the sense described above. Since utu
−1 = r(t)σ and Adg(σ) =

Adq(σ), we have

gtg
−1 = qtq

−1 + Adq(utu
−1) = qtq

−1 + rt Adq(σ), (28)

where r(t): [c, d] → R is a real function.

Proposition 6 Let g(t): [a, d] → SU(2) be a solution of the special Neumann system

(T ∗SU(2), ωc, H). Let g(t) = q(t)u(t) be its decomposition of the form (27). Then the

path q(t): [c, d] → S2 is an extremal of the Lagrangian Lm given by (25).

Proof: In the proof of Proposition 2 we have seen that the Lagrangian of the special

Neumann system is

L(g(t)) =

∫ d

c

(1

2
‖gtg−1‖2 − 〈λ, Adg(σ)〉

)
dt.

In terms of the decomposition (28) this gives

L(q(t), r(t)) =

∫ d

c

(1

2
‖qtq−1 + rt Adq(σ)‖2 − 〈λ, Adq(σ)〉

)
dt. (29)

Recall that the function M : T ∗SU(2) → R given by (4) is an integral of the special

Neumann system. This means that, along a solution g(t) of this system, we have

〈gtg−1, Adg(σ)〉 = 〈qtq−1 + rtAdq(σ), Adq(σ)〉 = 〈qtq−1, Adq(σ)〉+ rt = P, (30)

where P is a constant. If we put rt = P − 〈qtq−1, Adq(σ)〉 into the expression (29), a

short calculation shows that the path q(t): S2 → R is an extremal of the Lagrangian

Lm + P 2, whenever the path g(t) = q(t)u(t) is an extremal for L, for a suitable u(t).

2

We shall now describe the system given by Lm in the Hamiltonian terms and prove

its integrability. For this purpose we shall derive a new expression of the equation

of the motion by means of the projection method. Let, as before, pq = (qt)
[, where

[: TqS2 → T ∗
q S2 is the map given by (qt)

[ = 〈qt,−〉 and 〈−,−〉 is the natural metric

on S2. The formulae (28) and (30) show immediately that the extremals of the
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Lagrangian Lm + P 2 are the solutions of the Hamiltonian system (T ∗S2, ωc, Hm), where

the Hamiltonian Hm is given by

Hm(q, pq) =
1

2
‖pqq−1 + (P − 〈pqq−1, Adq(σ))(Adq(σ))[‖2 + 〈λ, Adq(σ)〉.

We have already noted on page 13 that qtq
−1 = K(qt × q). Using this and the relation

〈qtq−1, Adq(σ)〉 = −〈qtq−1, σ〉, we see that Hm can indeed be written in the form (1).

Theorem 2 The equation of the motion of the system (T ∗S2, ωc, Hm) can be given in

the form

(qtq
−1)t =

〈(qtq−1)t, Adq(σ)〉Adq(σ) + (〈qtq−1, Adq(σ)〉 − P )[qtq
−1, Adq(σ)] + [λ, Adq(σ)].

(31)

This equation is equivalent to the Lax equation

Lt = [A, L],

where the Lax pair (L(z), A(z)) is given by

L(z) = Adq(σ) + z(qtq
−1 + (P − 〈qtq−1, Adq(σ)〉)Adq(σ)) + z2λ

A(z) = (qtq
−1 + (P − 〈qtq−1, Adq(σ)〉)Adq(σ)) + zλ.

(32)

The function F : T ∗S2 → R given by

F (q, pq) = 〈pqq−1, λ〉+ (〈pqq−1, σ〉+ P )〈λ, Adq(σ)〉) (33)

is an integral of (T ∗S2, ωc, Hm). If we put l = (λ1,−λ3, λ2), then the expression (33) is

equal to the integral (2).

Proof: The solutions of the system (T ∗S2, ωc, Hm) are the extremals q(t): T ∗S2 → R
of the Lagrangian Lm + P 2. These, in turn, are the projections of the extremals of

L: TSU(2) → R to S2 ⊂ SU(2), as we have seen in Proposition 6. The Euler-Lagrange

equation of L is (gtg
−1)t = [λ, Adg(σ)]. Suppose the integral M(g, pg): T

∗SU(2) → R
takes the value P along our solution. Then, in the decomposition gtg

−1 = qtq
−1 +

rtAdq(σ), we have rt = P −〈qtq−1, Adq(σ)〉. Putting this into the above Euler-Lagrange

equation yields the equation (31).

A straightforward check shows that the Lax equation for the Lax pair (32) is

equivalent to the equation (31). The same argument as in the proof of Proposition

2 shows that the coefficients of the polynomial 〈L(z), L(z), 〉 are integrals of the motion

of (T ∗S2, ωc + Pωh, Hn). The z3-coefficient is the function given by (33).

In the proof of Proposition 5 we have seen that the representation (19) sends the

vector K(pq × q) into the element pqq
−1 ∈ su(2)∗. Since λ = σ1λ1 + σ2λ2 + σ3λ3, it is

now clear that the expressions (33) and (2) indeed represent the same function. 2

Proposition 7 Let g(t): [c, d] → SU(2) be a solution of the system (T ∗SU(2), ωc, H)

such that

M(g(t), pg(t)) = P, E(g(t), pg(t)) = C t ∈ [c, d].

Let g(t) = q(t)u(t) be its decomposition of the form (27). Then q(t): [c, d] → S2 is a

solution of the system (T ∗S2, ωc, Hm) such that

F (q(t), (qt(t))
[) = C t ∈ [c, d].
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Proof: Let g(t): [c, d] → SU(2) be our solution. Then g(t) is a solution of equation

(5). We have seen in the proposition above that the S2-part of the decomposition

g(t) = q(t)u(t) solves the equation (31) and is therefore a solution of the system

(T ∗S2, ωc, Hm).

By definition we have E(g(t), (gt(t))
[) = 〈gtg−1, λ〉. Using the expression gtg

−1 =

qtq
−1 + rtAdq(σ) and the relation rt = P − 〈qtq−1, Adq(σ)〉 again, we finally get

E(g(t), pg(t)) = 〈qtq−1, λ〉+ (P − 〈qtq−1, Adq(σ)〉)〈λ, Adq(σ)〉).

Since 〈qtq−1, Adq(σ)〉 = −〈qtq−1, σ〉, we have E(g(t), pg(t)) = F (q(t), (qt(t))
[), which

concludes the proof of the proposition. 2

Proof of Theorem 1: Let (Q(t), PQ(t)): [c, d] → T ∗S2 be a solution of the magnetic

spherical pendulum (T ∗S2, ωc + Pωd, Hsp) such that

G(Q(t), PQ(t)) = C, t ∈ [c, d].

In Proposition 3 we have seen that the symplectic reconstruction (g(t), pg(t)): [c, d] →
SU(2) with a chosen initial point in the fibre F−1(Q(c), PQ(c)) is a solution of the system

(T ∗SU(2), ωc, H) such that

M(g(t), pg(t)) = P, E(g(t), pg(t)) = C, t ∈ [c, d].

In the spherical coordinates the decomposition g(t) = q(t)u(t) has the form

g(t) =

(
eiψ(t) cos ϑ(t)eiϕ(t) sin ϑ(t)

−e−iϕ(t) sin ϑ(t)e−iψ(t) cos ϑ(t)

)

=

(
cos ϑ(t) ei(ϕ(t)+ψ(t)) sin ϑ(t)

−e−i(ϕ(t)+ψ(t)) sin ϑ(t) cos ϑ(t)

)
·
(

eiψ(t) 0

0 e−iψ(t)

)
.

(34)

We have shown in Proposition 7 that the first factor above is a solution q(t): [c, d] →
T ∗S2 of (T ∗S2, ωc + Pωh, Hn) such that

F (q(t), (q̇(t))[) = C, t ∈ [c, d].

If we compare the formula (8) which relates the expressions of g(t) and

Q(t) in spherical coordinates to the formula (34) above, we see that the path

(q(t), (qt(t))
[): [c, d] → T ∗S2, where

q(t) = (cos(
1

2
ϑ), ei(ϕ(t)−π

2
) sin(

1

2
ϑ(t)))

is indeed a solution of (T ∗S2, ωc, Hm), if

Q(t) = (cos ϑ(t), eiϕ(t) sin(ϑ(t))).

2

Remark 1 The Hamiltonian (1) can be expressed in the form

H(q, pq) =
1

2
(‖pq‖2 − 〈pq × σ〉2 + P 2) + V (q).

Let U0 be the total energy of a solution (q(t), pq(t)) of (T ∗S2, ωc, Hm) obtained from a

solution of the magnetic spherical pendulum with zero charge and let UP be the energy
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of the solution (q̃(t), p̃q(t)) of (T ∗S2, ωc, Hm) obtained from a solution of the magnetic

spherical pendulum with charge P . Suppose (q(t), pq(t)) and (q̃(t), p̃q(t)) have the same

initial conditions. The above expression of Hm shows that UP = U0 + P 2.

We conclude the paper by a brief description of the special case, where the potential

V : S2 → R is axially symmetric, say of the form V (q) = aq2
1 + bq2

2 + bq2
3. It follows from

the proof of Proposition 5 that in suitable coordinates and in terms of the Cartan model

such potential can be written in the form V (q) = 〈σ, Adq(σ)〉 up to an irrelevant additive

constant.

Let (T ∗SU(2), ωc, Hs) be the special Neumann system on SU(2) with the

Hamiltonian Hs(g, pg) = 1
2
‖pg‖2 + 〈σ, Adg(σ)〉. The integrals of this system are

Ms(g, pg) = 〈pgg−1, Adg(σ)〉, Es(g, pg) = 〈pgg−1, σ〉. (35)

Let, as before, Uσ(1) = {Exp(tσ), t ∈ [0, 2π))} ⊂ SU(2) act on (T ∗SU(2), ωc, Hs).

Recall that the symplectic reduction at the level P is the magnetic spherical pendulum

(T ∗S2, ωc + Pωd, Hsp), where

Hsp(Q,PQ) =
1

2
‖PQ‖2 + 〈Q,S〉, S = (1, 0, 0).

An additional integral of this system is

Gs(Q,PQ) = −〈Pq ×Q,S〉+ P 〈Q,S〉.

The additional symmetry does not change much here.

On the other hand the projection procedure from the system on SU(2) to the

system on the Cartan model S2 ⊂ SU(2) simplifies considerably. The Hamiltonian

Hsm: T ∗S2 → R of the quasimagnetic system obtained by projection on T ∗S2 has the

form

Hsm(q, pq) =
1

2
‖pqq−1 + (P − 〈pqq−1, Adq(σ))〉(Adq(σ))[‖2 + 〈σ, Adq(σ)〉.

The action ρ of the group Uσ(1) on the Cartan model S2 is given by ρu(q) =

u · q · (uθ)−1 = Adu(q). The Hamiltonian Hsm is invariant with respect to this action.

The corresponding moment map µ: T ∗S2 → R is

µ(q, pq) = 〈pqq−1, Adq(σ)〉.

Proposition 8 Let the Hamiltonian function Hhm: T ∗S2 → R be given by

Hhm(q, pq) =
1

2
‖pq‖2 + R〈pqq−1, Adq(σ)〉+ 〈σ, Adq(σ)〉

The set of solutions γ(t): [c, d] → T ∗S2 such that µ(γ(t)) ≡ D coincides with the set of

solutions of (T ∗S2, ωc, Hhm), where R = P −D.

Proof: Clearly the Hamiltonian Hhm: T ∗S2 → R is also invariant with respect to the

action ρ. Let D ∈ µ(T ∗S2). After restricting to the level set µ−1(D) ⊂ T ∗S2 the

Hamiltonian Hsm: T ∗S2 → R becomes

Hsm(q, pq) =
1

2
‖pqq−1 + (P −D)Adq(σ)[‖2 + 〈σ, Adq(σ)〉.
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If we set R = P −D, a short calculation shows that we have

Hsm(q, pq) = Hhm(q, pq)−R2, for every (q, pq) ∈ µ−1(D) ⊂ T ∗S2.

Thus the symplectic quotient (µ−1(D)/Uσ(1), ωsq, H
q
sm) of (T ∗S2, ωc, Hsm) is equal to

the symplectic quotient (µ−1(D)/Uσ(1), ωsq, H
q
hm) of (T ∗S2, ωc, Hhm).

Let, as before

q =

(
cos ϑ eiϕ sin ϑ

−e−iϕ sin ϑ cos ϑ

)
be the parametrisation of S2 with the spherical coordinates. In this coordinates the

action ρ of Uσ(1) is given by ρs(ϕ, ϑ) = (ϕ+ s, ϑ). Observe that the symplectic quotient

space (µ−1(D)/Uσ(1), ωsq) is equal to the cotangent bundle (T ∗K, ωc) of the interval

K = {ϑ; ϑ ∈ [0, π]} and ωc is the canonical cotangent form.

Let the path

β(t) = (ϑ(t), pϑ(t)): [c, d] → T ∗K

be a solution of the system (µ−1(D)/Uσ(1), ωsq, H
q
sm) = (µ−1(D)/Uσ(1), ωsq, H

q
hm)

with the initial condition (ϑ(c), pϑ(c)) = (a1, b1). We will construct the symplectic

reconstruction of β(t) with respect to (T ∗S2, ωc, Hsm) with the initial condition

(a1, a2, b1, b2) ∈ µ−1(D) ⊂ T ∗S2. In terms of the spherical coordinates the moment

map µ: T ∗S2 → R has the expression

µ(ϕ, ϑ, pϕ, pϑ) = −2pϕ sin2 ϑ. (36)

Since pϕ = ϕ̇, the symplectic reconstruction γ(t) is given by

γ(t) = (ϕ(t), ϑ(t), pϕ(t), pϑ(t)) =
(
−D

2

∫
1

sin2 ϑ(t)
dt, ϑ(t), − D

2 sin2 ϑ(t)
, pϑ(t)

)
, (37)

where (ϑ(t), pϑ(t)) = β(t). Obviously the reconstruction of β(t) with respect to the

system (T ∗S2, ωc, Hhm) is given by the same formula. Let (a1, a2, b1, b2) ∈ µ−1(D) ⊂
T ∗S2 be arbitrary. Let γ(t) be the solution of (T ∗S2, ωc, Hsm) such that γ(c) =

(a1, a2, b1, b2) and let γ̃(t) be a solution of (T ∗S2, ωc, Hhm) such that γ̃(c) = γ(c). Then

we have γ̃(t) ≡ γ(t). Since the choice of the initial condition (a1, a2, b1, b2) ∈ µ−1(D)

was arbitrary, the proposition is proved. 2

Remark 2 In spite of its appearence the solution (37) is not singular. Let γ(t) =

(ϕ(t), ϑ(t), pϕ(t), pϑ(t)) be a solution such that µ(γ(t)) ≡ D 6= 0. Suppose ϑ(t) could

approach 0 or π. Then the expression(36) shows that ‖pϕ(t)‖ should grow to infinity.

This would also push the Hamiltonian Hhm to infinity. Since Hhm is constant along the

solution γ(t), the value ϑ(t) can approach 0 or π only if D = 0.

It follows from Proposition 4 that the system (T ∗S2, ωc, Hhm) is equivalent to the system

(T ∗S2, ωc + Rωh, Hc), where the form ωh is given by (22) and

Hc(q, pq) =
1

2
‖pq‖2 + 〈σ, Adq(σ)〉.

It also follows from Proposition 4 that the system (T ∗S2, ωc, Hc) describes the motion

of a particle with charge R under the influence of the potential V (q) = aq2
1 + bq2

2 + bq2
3
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and the homogeneous magnetic field Bh(q) = (1, 0, 0). The above discussion proves the

following corollary of Theorem 1.

Corollary 1 Let the curve (Q(t), PQ(t)): [c, d] → T ∗S3 be a solution of the magnetic

spherical pendulum (T ∗S2, ωc + Pωd, Hsp) such that G(Q(t), PQ(t)) = C for every

t ∈ [c, d]. If

Q(t) = (cos(ϑ(t)), eiϕ(t) sin(ϑ(t)),

then the curve

q(t) = (cos(
1

2
ϑ(t)), ei(ϕ(t)−π

2
) sin(

1

2
ϑ(t)))

is a solution of the axisymmetric Neumann system (T ∗S2, ωc + Pωh, Hc) describing

a particle with charge P moving under the influence of the potential V (q) and the

homogeneous magnetic field Bh(q) = (1, 0, 0). We have F (q(t), (qt(t))
[) = C along

this solution.

5. Summary

In this paper we established a relation between the charged spherical pendulum in the

magnetic field of the Dirac monopole and a quasimagnetic perturbation of the Neumann

system. Claims analogous to Theorems 1 and 2 should hold, if we replace S2 by an

arbitrary Hermitian symmetric space, compact or non-compact. The essential part of

our construction is the fact that the sphere S2 can be represented as the adjoint orbit

in su(2) and as the Cartan model in SU(2). The Riemannian manifolds which can be

represented in these two ways are precisely the Hermitian symmetric spaces. Of course,

in that general setting one loses the advantage of the easy use of coordinates.

The relation between the magnetic spherical pendulum and the perturbed Neumann

system is particularly simple in the case, where the quadratic Neumann potential is

axially symmetric. In this case we obtained the relation between the magnetic spherical

pendulum and the Neumann system perturbed by the topologically trivial homogeneous

magnetic field Bh(1, 0, 0). In their paper [23] the authors give a thorough description of

the geometric quantization of the axially symmetric Neumann system. It seems that it

would be quite easy to extend their results to the axially symmetric Neumann system

with the homogeneous magnetic field. Our construction could therefore be used to shed

some new light on the geometric quantization of the charged spherical pendulum in the

field of the magnetic monopole.
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