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1 Introduction

In this paper we shall study an aspect of the system of ordinary differential equations

Ṫi +
1

2

∑
εi,j,k[Tj, Tk] = 0, i = 1, 2, 3 ,

where Ti: I → g, i = 1, 2, 3 are functions from an interval into a Lie algebra g. These
equations are called Nahm’s equations and they originate in Yang-Mills theory. They first
appeared in [22] as a rewriting of the Bogomolny equation for the magnetic monopoles on
R3 and were subsequently used in the study of these monopoles by Hitchin in [13] and by
Donaldson in [8]. There is also a more straightforward connection between Nahm’s equations
and Yang-Mills theory, namely Nahm’s system is a three dimensional reduction of the anti-
self-dual equation on a trivial G-bundle over R4, where Lie G = g.

Here we shall consider an interpretation of Nahm’s equations as a Hamiltonian system. In
Section 1 we prove the following. Let GC be a complex Lie group with the Lie algebra
Lie(GC) = gC. The solutions of Nahm’s equations for functions Ti: I → gC yield solutions of
the Hamiltonian system (T ∗GC, ω,H). The form ω is the holomorphic cotangent symplectic
form on the cotangent bundle T ∗GC. The Hamiltonian H is given by

H(q, p) =
1

2
‖p‖2

GC −K(Ad∗q(α0), γ0) ,

where K is the Killing form, ‖p‖2
GC = K(p, p) and α0, γ0 ∈ (gC)∗ are constant. The cor-

respondence between the solutions of Nahm’s equations and the solutions of the system
(T ∗GC, ω,H) is one-to-one. The systems (T ∗GC, ω,H), being complex, do not have an im-
mediate mechanical meaning, but they do enable us to produce an interesting family of real
Hamiltonian systems. In Section 3 we show that the imposition of suitable pairs of real
involutions on (T ∗GC, ω,H) and on Nahm’s equations leads to the following result. Let M
be an arbitrary Riemannian symmetric space, and g = u ⊕ p the corresponding Cartan de-
composition of the Lie algebra g. This means that M = G/U and Lie(G) = g , Lie(U) = u.
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Then every solution of Nahm’s equations for the functions T1, T3: I → ip, T2: I → u yields a
solution of the Hamiltonian system (T ∗M,ω,HM) which describes the motion of a particle
on M under the influence of a certain force potential. We show in Section 5 that in the case
where M is the standard n-sphere this system turns out to be C. Neumann’s system describ-
ing harmonic motion constrained to the sphere. Therefore we call the family (T ∗M,ω,HM)
generalized C. Neumann system. The case where M is the hyperbolic space Hn yields a
Minkowskian version of C. Neumann’s system. This describes a particle in the Minkowski
space R1,n which moves under the influence of a quadratic force potential and is constrained
to the unit sphere Hn in R1,n. Other concrete examples of (T ∗M,ω,HM) that we mention
are a many-body Neumann problem, and motions on coadjoint orbits under the influence of
certain potential and magnetic forces. In [8] Donaldson showed that the solutions of Nahm’s
equations for Ti: I → su(2) yield solutions of the mechanical system describing the motion
on the hyperbolic space H3 under the influence of the potential V (q) = Tr(Ad∗q(α0) · α∗0).
This discovery served as the starting point for the work presented in this paper.

The systems (T ∗GC, ω,H) and (T ∗M,ω,HM) turn out to be completely integrable in the
Liouville-Arnold sense. For (T ∗GC, ω,H) this means that there exist n = dimGC holomor-
phic functions Hi:T

∗GC → C which Poisson-commute with each other and with H and are
functionally independent. We construct such functions in Section 2. Complete integrability
of the systems (T ∗M,ω,HM) follows easily. The integrability of (T ∗GC, ω,H) stems from the
fact that the corresponding equation of motion can be expressed as a Lax equation. The use
of the Lax equation in the description of integrable systems similar to ours was developed
by Moser ([19], [20]), Adler and van Moerbeke ([4], [5]), Mishchenko and Fomenko ([18])
Mumford ([21]), Reyman and Semenov-Tian-Shansky ([24] and references therein), Adams,
Harnad, Hurtubise, Previato ([3], [1], [2]) and many others.

A very important and interesting family of finite dimensional integrable systems was pro-
vided by Hitchin in [13]. We show that the system (T ∗GC, ω,H) can be represented as a
certain degeneration of Hitchin’s system. Let M denote the moduli space of holomorphic
structures on P , where π:P → C is a principal GC-bundle over a complex curve C. Hitchin’s
integrable system is a system of n = dimM holomorphic functionally independent functions
Hi:T

∗M → C which Poisson-commute with respect to the natural holomorphic symplec-
tic structure on T ∗M. A rather straightforward generalization of this construction gives
systems on T ∗Mpar and on T ∗MD. Here MD denotes the moduli space of holomorphic
structures with framings at the points {p1, . . . , pk} = D ⊂ C, and Mpar the moduli space
of corresponding parabolic structures. These were discussed by Markman in [16], and by
the author in [25]. The special case where C = CP1 was studied by Beauville in [7]. If
we let some points in D coalesce, the framed bundles will give rise to bundles with higher
order framings. We give a short description of moduli spaces of bundles with higher order
framings in the Appendix of this paper. In Section 1 we show that our system (T ∗GC, ω,H)
is essentially Hitchin’s system on T ∗MDd , where MDd is the moduli space of GC-bundles
over CP1 with second-order framings over two points p1, p2 ∈ CP1. The geometry of MDd

enables us to prove the integrability of (T ∗GC, ω,H) in a fairly straightforward way.

Hitchin’s systems on suitable moduli spaces M of bundles over the curve C are algebraically
integrable. This means that for a generic Φ ∈ M the Liouville torus V containing Φ is
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an Abelian variety related to a certain algebraic curve. Usually functional independence of
integrals Hi is established by proving that dimV = dimM. This is feasible if gC is a classical
semi-simple Lie algebra or G2, (see [15]), but even then it requires a careful case-by-case
approach for each type of algebra. In this paper we prove the independence of integrals in a
different way using a result of Mishchenko and Fomenko [18] combined with an asymptotic
argument. This approach works “in one go” for all semi-simple Lie algebras including the
exceptional ones.

The family of integrable systems that we obtain in this paper is similar and indeed overlaps
with the systems studied by Reyman and Semenov-Tian-Shansky in [24]. In their seminal
paper Reyman and Semenov-Tian-Shansky obtain systems on Lie groups and on different
coadjoint orbits. However, not all symmetric spaces are coadjoint orbits. The approach in
[24] is also different from ours. In particular we use the representation of our system as a
case of Hitchin’s system to prove its integrability, while in [24] the authors use an R-matrix
argument for this purpose. While working on the material presented in this paper the author
was not aware of the work of Reyman and Semenov-Tian-Shansky.

I would like to express my gratitude to Professor Simon K. Donaldson for his constant help
and support while I was working on this paper.

2 Nahm’s equations as a Hamiltonian system

2.1 Nahm’s equations and Hitchin’s systems

In this section we will show how solutions of Nahm’s equations yield solutions of a Hamil-
tonian system. We begin by representing Nahm’s equations a a special case of Hitchin’s
system. First we have to provide the appropriate moduli space. Let π:P → C be a holo-
morphic GC-bundle over a Riemann surface C and let D = {p1, . . . , pk} be a divisor on C.
A framing of P at pi is a GC-equivariant holomorphic map φi: π

−1(pi) → GC. This map can
be thought of as a 0-jet of a trivialization of P at pi. Let two points, say p1, p2 coalesce.
Then the two 0-jets will give rise to a single 1-jet of a trivialization. We will call a k-jet
of a holomorphic trivialization at a given point p a k-framing of the bundle at p. Let Dd

be a divisor in C consisting of points {p1, . . . , pk} with orders ord(pi) = di. We will denote
the moduli space of stable holomorphic bundles with di-framings over pi, i = 1, . . . , k by
MDd . Let (A, φ) ∈ MDd , where A is a complex structure on P and φ denotes a choice of
a di-framing over each pi holomorphic with respect to A. In the Appendix we prove the
following proposition.

Proposition 1 Let adP → C denote the vector bundle with the fibre gC = Lie(GC) asso-
ciated to P via the adjoint representation. Then T ∗(A,φ)MDd = H0

A(C; adP ⊗K(Dd)), where

K(Dd) = K ⊗ [Dd] is the canonical bundle twisted by [Dd]. In other words, an element
Φ ∈ T ∗(A,φ)MDd is a meromorphic section of ad P ⊗K with poles of degrees di at the points
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pi. In addition
k∑
i=1

K(ResΦ(pi),Ψ(pi)) = 0

for every holomorphic section in Ψ ∈ H0(C; ad P ). Here K is the metric on adP⊗K induced
by the Killing form on gC.

We will be interested in a very simple case of MDd . Let π:P → CP1 be a trivial GC-
bundle and let the divisor D consist of two double points p1,p2. By Grothendieck’s theorem
there is only one trivial holomorphic GC-bundle over CP1. The 1-framings over a point are
parametrized by the tangent bundle TGC, so we have

MDd = (TGC × TGC)/GC,

where GC = Aut(P ) acts diagonally from the left. It follows from Proposition (1) that for
every P ∈MDd the space T ∗PMDd consists of the elements of the form

Φ =
α

(z − p1)2
+

β

(z − p1)
+

−β
(z − p2)

+
γ

(z − p2)2
(1)

for some α, β, γ ∈ gC. Here z ∈ CP1 is an affine coordinate.

Let [: gC → (gC)∗ be the map defined by [(α) = K(α,−) and introduce a Lie bracket [−,−]∗

on (gC)∗ such that the map [ is a Lie algebra isomorphism. From now on we will work
exclusively with the dual Lie algebra ((gC)∗, [−,−]∗). Since no confusion can arise, we shall
denote the bracket [−,−]∗ simply by [−,−].

Let Ti: I → (gC)∗, i = 1, 2, 3 be maps from an interval into a complex semi-simple Lie algebra
which satisfy Nahm’s system

Ṫi +
1

2

∑
εijk [Tj, Tk] , i = 1, 2, 3 . (2)

Define new maps α.β, γ: I → (gC)∗ by α = T2 + iT3, β = −2iT1, and γ = T2 − iT3. The
system

α̇ =
1

2
[β, α] , γ̇ =

1

2
[−β, γ] , β̇ = [γ, α] (3)

is equivalent to the system (2). The solutions of (3) can be interpreted as paths

Φ(t) =
α(t)

(z − p1)2
+

β(t)

(z − p1)
+

−β(t)

(z − p2)
+

γ(t)

(z − p2)2
: I −→ T ∗MDd

in T ∗MDd . Let r = rk(gC) be the rank of gC, and let {Q1, . . . , Qr} be a basis of the ring of
AdGC-invariant polynomials on gC. For every i = 1, . . . , r we haveQi(Φ) ∈ H0(CP1;K(D)di) =
H0(CP1;O(2di)), where di = deg(Qi). Hitchin’s map

H : T ∗MDd −→
r⊕
i=1

H0(CP1;O(2di)) (4)

is given by H(Φ) = (Q1(Φ), . . . , Qr(Φ)).
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Proposition 2 Let Φ(t): I → T ∗MDd be a solution of the system (3). Then H(Φ(t)) is
constant with respect to t ∈ I. In other words, the components of Hitchin’s map are the first
integrals of the system (3).

Proof. Multiplying by (z − p1)
2(z − p2)

2 gives a one-to-one correspondence between the
meromorphic maps of the form (1) and the elements of H0(CP1;O(2) ⊗ gC) represented
as polynomials of degree two with coefficients in gC. The projective transformation z 7→
(z − p2)/(z − p1) sends the marked points p1 and p2 into 0 and ∞ respectively, and the
element Φ(z) assumes the form

Φ(z) = α+ z β + z2γ . (5)

In terms of (5) the system (3) becomes the Lax equation

Φ̇t(z) =
1

2
[
d

dz
Φt(z),Φt(z)] . (6)

This tells us that for every z0 ∈ CP1 and every t0 ∈ I the velocity Φ̇t0(z0) is tangent to the
coadjoint orbit OΦt(z0) through Φt(z0) ∈ gC∗. Therefore the solution path Φt(z0) lies on that
orbit and thus for every AdGC-invariant Qi the map

Qi(Φt(z)) : I −→ H0(CP1;O(2di))

is constant along the solutions of (6). In other words, the components of Hitchin’s map are
the first integrals of the system (3). 2

2.2 A Hamiltonian system on T ∗GC

Using left trivializations we see that

T ∗MDd = T ∗(TGC × TGC/GC) ∼= T ∗(gC × gC)× T ∗(GC ×GC)/GC .

Let π:T ∗MDd → T ∗(GC ×GC)/GC be the projection, and q:T ∗(GC ×GC)/GC → T ∗GC the
lifting of the map [g1, g2] 7→ g−1

2 g1 to the cotangent bundles. Let t 7→ Φ(t) be a solution of
the system (3). In this subsection we shall describe a Hamiltonian system on T ∗GC whose
solutions are the paths t 7→ γ(t) = (q ◦ π)(Φ(t)).

First we rewrite the system (3) in such a form that part of it is the canonical system for H.
Define new maps

A = (α, γ) = (T2, T2) + (iT3, iT3) : I −→ (gC × gC)∗

B = (β,−β) = (−2iT1, 2iT1) : I −→ (gC × gC)∗ .

Then (3) becomes

Ȧ =
1

2
[B,A] (7)

Ḃ = [τ(A),A] , (8)
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where τ : (gC× gC)∗ → (gC× gC)∗ is given by τ(x, y) = (−y,−x). The general solution of (7)
is

A = Ad∗(g1,g2)(α0, γ0) , B =
1

2
(ġ1g

−1
1 , ġ2g

−1
2 ) =

1

2
(ġ1g

−1
1 ,−ġ1g

−1
1 ) ,

where α0, γ0 ∈ (gC)∗ are constant. Here ġig
−1
i , for i = 1, 2, denotes appropriate elements in

(gC)∗. The paths Φt: I → T ∗MDd that satisfy (7) are of the form

Φt = Ad∗g1(t)(α0) + zġ1(t)g
−1
1 (t) + z2Ad∗g2(t)(γ0) . (9)

Racall that Hitchin’s map is given by H(Φ) = (Q1(Φ), . . . , Qr(Φ)). We can take Q1(Φ) =
K(Φ,Φ). Write again Φ(z) = α + zβ + z2γ. Taking the coefficient of z2 in K(Φ,Φ) gives

H̃(Φ) = K(β, β) + 2K(α, γ). This yields the function H̃:T ∗(GC ×GC)/GC → C given by

H̃([g1, g2], (ġ1g
−1
1 , ġ2g

−1
2 )) =

1

2
K(ġ1g

−1
1 , ġ1g

−1
1 )−K(Ad∗g1(α0),Ad∗g2(γ0)) .

Write g = g−1
2 g1. Then the map q:T ∗(GC ×GC)/GC → T ∗GC gives

q([g1, g2], (ġ1g
−1
1 , ġ2g

−1
2 )) = (g−1

2 g1 , Ad∗
g−1
2

(ġ1g
−1
1 − ġ2g

−1
2 )) = (g, ġg−1) . (10)

The Ad∗-invariance of K yields the function H:T ∗GC → C which satisfies the condition
H̃ = H ◦ q, and is given by the formula

H(g, ġg−1) =
1

2
‖ġg−1‖2

GC −K(Ad∗g(α0), γ0) , (11)

where ‖α‖2
GC = 1

4
K(α, α) for α ∈ gC∗.

Proposition 3 Let ω be the natural complex symplectic form on the cotangent bundle T ∗GC

and let the Hamiltonian H:T ∗GC → C be given by (11). Rewritten in terms of (g, ġg−1) ∈
T ∗GC, equation (8) assumes the form

d

dt
(ġg−1) = [Ad∗g−1(γ0), α0] . (12)

This equation is the non-trivial part of the canonical system of equations for the Hamiltonian
system (T ∗GC, ω,H).

Proof. We get the above form of equation (8) immediately from (10). Let U be a neigh-
bourhood of g ∈ GC equipped with local coordinates (q1, . . . , qn), centered at g and let
(q1, . . . , qn, p1, . . . , pn) be canonical coordinates on T ∗U with respect to the natural symplec-
tic structure ω. Let {α1 . . . , αn} be a basis of (gC)∗ = T ∗eG

C such that K(βg−1, αi) = pi(β)
for every β ∈ T ∗gG

C. Choose a curve t 7→ x(t) ∈ GC given by qj(x(t)) = 0 for j 6= i and

qi(x(t)) = t. Then [( d
dt
|t=0 xi(t)) = g αi. The i-th equation of the system (12) has the form

K(
d

dt
(ġg−1) , αi) = K([Ad∗g−1(γ0), α0] , αi) (13)
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On the other hand we have

∂H

∂qi
=

d

dt
|t=0K(Ad∗x(t)(α0), γ0) = K([Ad∗g(αi),Ad∗g(α0)], γ0) = −K([Ad∗g−1(γ0), α0] , αi)

from which we see that the equation (13) is indeed the i-th non-trivial canonical equation

ṗi = −∂H
∂qi

.

2

As a corollary of the above proposition and the connection between Nahm’s equations and
our Hamiltonian system we get the following theorem.

Theorem 1 Let T1, T2, T3: I → (gC)∗ be a solution of Nahm’s system (2) and let this solution
be given in the form

(T2 + iT3)(t) = Ad∗g1(t)(α0) , (T2 − iT3)(t) = Ad∗g2(t)(γ0) , iT1(t) = ġ1g
−1
1 (t) = −ġ2g

−1
2 (t)

via the rewriting (3).Then the path γ: I → T ∗GC given by

t −→ γ(t) =
(
g−1
2 (t)g1(t), 2ġ1g

−1
1 (t)

)
is a solution of the complex Hamiltonian system (T ∗GC, ω,H). 2

3 Integrability

In this section we shall prove that the Hamiltonian system (T ∗GC, ω,H) introduced above
is integrable in the Liouville-Arnold sense. To this end we will use the representation of our
system as a Hitchin system on T ∗MDd . First we define functions on T ∗GC which will turn
out to be the Poisson-commuting integrals of our system. Let the element Φ ∈ T ∗MDd be
of the form

Φ =
Ad∗g1(α0)

(z − p1)2
+

ġ1g
−1
1

(z − p1)
+

ġ2g
−1
2

(z − p2)
+

Ad∗g2(γ0)

(z − p2)2
. (14)

Hitchin’s map H:T ∗MDd →
⊕r

i=1H
0(CP1;O(2di)) is Ad∗GC-invariant. Therefore formula

(10) and the fact that ġ1g
−1
1 = −ġ2g

−1
2 yield the map

HG : T ∗GC −→
r⊕
i=1

H0(CP1;O(2di))

defined by

HG(g, ġg−1) = H(Φ) = H
(Ad∗g(α0)

(z − p)2
+

1
2
ġg−1

(z − p1)
−

1
2
ġg−1

(z − p2)
+

γ0

(z − p2)2

)
. (15)

Let now {ei} be an arbitrary basis of
⊕r

i=1H
0(CP1;O(2di)) and let the functionsHi:T

∗GC →
C be given by

Hi(g, ġg
−1) = 〈HG(g, ġg−1), e1〉 . (16)
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Theorem 2 The Hamiltonian system (T ∗GC, ω,H) is completely integrable in the Liouville-
Arnold sense. The n = dimGC Poisson commuting integrals of this system can be chosen
from the functions defined in (16).

The proof of this theorem is given in the following two subsections, more precisely in Corollary
1 and in Proposition 19.

3.1 Poisson-commutation of integrals

First we observe that the space T ∗MDd is a symplectic quotient of T ∗(TGC × TGC) with
respect to the natural action of GC. Trivializing by the right translations we can write

T ∗(TGC × TGC) = {
(
((g1, g2), (a1, a2)) , (t1, t2, t3, t4)

)
} ,

where {((g1, g2), (a1, a2))} = TGC × TGC, and ti are the coordinates of cotangents. In this
set of coordinates the moment map of the GC-action is given by

µ
((

(g1, g2), (a1, a2), (t1, t2, t3, t4)
))

= Ad∗g1(t1) + Ad∗g2(t2) ,

so the elements Φ ∈ T ∗MDd = µ−1(0)/GC are of the form

Φ =
Ad∗g1(t3)

(z − p1)2
+

Ad∗g1(t1)

(z − p1)
+

Ad∗g2(t2)

(z − p2)
+

Ad∗g2(t4)

(z − p2)2
,

where Ad∗g1(t1) = −Ad∗g2(t2). The paths satisfying the equation (7) lie in the subspace of
T ∗MDd which contains the elements Φ ∈ T ∗MDd with t3 and t4 fixed. In addition they do
not depend on the variables (a1, a2). Therefore these paths actually lie in the subspace

{
((

[g1, g2], (0, 0)
)
, (t1, t2, α0, γ0)

)
} ⊂ T ∗MDd .

The space T ∗MDd can be written as

T ∗MDd = T ∗(gC × gC)× T ∗(GC ×GC)/GC = T ∗N1 × T ∗N2 ,

and the symplectic structure ω on T ∗MDd is the sum of cotangent symplectic structures ω1

and ω2 on T ∗N1 and T ∗N2, respectively. Let H̃i:T
∗MDd → C be the components of Hitchin’s

map (4) with respect to the basis {ei} used in (16) and let T ∗MDd = T ∗N1×T ∗N2 = {(x, y)}.
Then

{H̃i, H̃j}(x0, y0) = {H̃i(x, y0), H̃j(x, y0)}1(x0) + {H̃i(x0, y), H̃j(x0, y)}2(y0) . (17)

Define the map K:T ∗(TGC × TGC) →
⊕r

i=1H
0(CP1;O(2d)) by

K
((

(g1, g2)(a1, a2)
)
, (t3, t1, t2, t4)

)
= (Q1(Ψ), . . . , Qr(Ψ)) ,
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where Ψ = t3
(z−p1)2

+ t1
(z−p1)

+ t2
(z−p2)

+ t4
(z−p)2 and let Ki be the components of K with re-

spect to the basis {ei}. The functions Ki do not depend on the base space variables, so
they Poisson commute. But since the functions Hi are induced from Ki by the symplec-
tic quotient construction T ∗MDd = µ−1(0)/GC, they also Poisson commute. In addition

{H̃i(x, y0), H̃j(x, y0)}1 = 0, since the functions H̃i(x, y0) do not depend on the relevant base
coordinates. Thus we get

{H̃i(x0, y), H̃j(x0, y)} = 0

for all pairs i, j. This proves the following proposition.

Proposition 4 The functions H̃i(x0, y):T
∗(GC ×GC)/GC → C Poisson commute with re-

spect to the canonical symplectic form ω on T ∗(GC ×GC)/GC. 2

Corollary 1 The functions Hi:T
∗GC → C defined by (16) Poisson-commute with respect

to the natural symplectic structure on T ∗GC.

Proof. The map q:T ∗(GC × GC)/GC → T ∗GC is symplectic, since it is a lifting of a map

defined on the base spaces. From the definition we have H̃i(x0, y) = H̃i(y) = q∗(Hi)(y) and
therefore

{H̃i, H̃j} = {q∗(Hi), q
∗(Hj)} = q∗({Hi, Hj}) = 0

for the appropriate Poisson brackets. From the formula (10) it is easily seen that q∗(f) = 0
if and only if f = 0. 2

3.2 Completeness of integrals

First we shall count the functions Hi:T
∗GC → C. Let the element Φ ∈ T ∗MDd be written

in the form Φ(z) = Ad∗g1(α0) + zġ1g
−1
1 + z2Ad∗g2(γ0) , where z is the affine coordinate on

CP1, and let Qk: g
C → C be an element of a basis of the AdGC-invariant polynomials with

deg Qk = dk. Then we can define the functions Hi by

Qk(Φ(z)) = Qk(Ad∗
g−1
2 g1

(α0) + zAd∗
g−1
2

(ġ1g
−1
1 ) + γ0) =

2dk∑
i=0

Hi+l(g, ġg
−1) zi , (18)

where l =
∑k−1

j=1(2dj + 1). This definition amounts to a particular choice of the basis {ei}
mentioned previously. From the well known equation

∑r
j=1(2dj − 1) = dim gC (see e.g.

[14]) we get that the number of functions Hi is
∑r

j=1(2dj + 1) = dim gC + 2r. For every
k = 1, . . . , r we have

Qk(Φ(0)) = Qk(Ad∗g(α0)) = const. , Qk(Φ(∞)) = Qk(Ad∗g−1(γ0)) = const.

which means that 2r of our functions are constant. Below we will prove that the remaining
integrals Hi:G

C → C are functionally independent, that is, dH1 ∧ . . .∧ dHn 6= 0 generically.
This is obviously equivalent to the following proposition.
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Proposition 5 Let HG:T ∗GC →
⊕r

i=1H
0(CP1;O(2di)) be the map given by (15). Then

its derivative

d(HG)(g,ġg−1):T(g,ġg−1)(T
∗GC) →

r⊕
i=1

H0(CP1;O(2di)) (19)

has rank n = dim gC.

Proof. We will show that already the restriction of d(HG)(g,ġg−1) to the vertical subspace
Tġg−1gC∗ = gC∗ of T(g,ġg−1)(T

∗GC) has rank n for a generic choice of (g, ġg−1). Let Φ ∈ T ∗MDd

be written in the affine coordinate in the form Φ = 1
z
α+β+zγ. Clearly, for a suitable choice

of Φ, the functions H i,j given by the expansions

Qj(Φ(z)) =

di∑
i=−di

H i,j(α, β, γ) zi (20)

are the (reindexed) system of functions Hj given by (18). Let us introduce another indeter-
minate w and define

Ψ(z, w) =
1

w
α+ β + zγ .

Then we have Φ(z) = Ψ(z, z). For every Ad∗GC-invariant Qi the expansion gives

Qi(Ψ(z, w)) =

di∑
j=0

(di−j∑
k=0

hji,k · w
−k

)
·zj (21)

Qi(Ψ(z, w)) =

di∑
j=0

(di−j∑
k=0

hki,j · zk
)
w−j . (22)

Let Qi(δ + zε) =
∑di

i=0 f
i,j
ε (δ)zi, where ε, δ ∈ gC and ε is constant. In their paper [18]

Mishchenko and Fomenko proved that 1-forms df i,jδ (the differentiation is taken with respect
to δ) span a subspace of dimension b = 1

2
(dimgC + r) in gC∗. Since Ψ(z,∞) = β + zγ and

Ψ(0, w) = β + 1
w
α, this tells us that the forms dh0

i,j and dhji,0 span b-dimensional subspaces

E(β,γ) and F(β,α) of gC∗, respectively. For generic choices of α, β and γ these two spaces
intersect transversally and therefore span gC∗. The r-dimensional intersection is spanned by
dh0

i,0. From Qi(Ψ(z, z)) = Qi(Φ(z)) and from (22) we get

dH i,j =

di−j∑
k=0

dhk−ji,j for j ≤ 0 , dH i,j =

di−j∑
k=0

dhki,k+j for j > 0 , (23)

where the H i,j are given by (20). Let τ be the real structure of gC, corresponding to the
compact real form, and let, as usual, K denote the Killing form on gC. Then α→ K(α, τ(α))
defines a norm ‖ · ‖ on gC and it also induces one on (gC)∗. The forms dhki,j are polynomial

functions of (α, β, γ) ∈ ((gC)∗)3. More precisely, components of α occur in dhki,j with the
power j, those of γ with the power k, and the components of β have the power di − j − k.
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Therefore, in each sum in (23) the first summand has the highest degree in β. In all other
summands β occurs with degree at least two less than in the first. From this we see

lim
‖β‖→∞

dH i,j

‖dH i,j‖
=

dhji,0

‖dhji,0‖
for j ≤ 0 , lim

‖β‖→∞

dH i,j

‖dH i,j‖
=

dh0
i,j

‖dh0
i,j‖

for j > 0 .

Therefore for a generic choice of (α, β, γ), and provided β is large enough, the forms dH i,j

span the same space as the forms {dhji,0 , dh0
i,j}, that is, the whole (gC)∗. Choose a basis

in (gC)∗ and n 1-forms dH i,j that span (gC)∗. Form the n × n matrix which has the dH i,j

as columns, and denote its determinant by F (α, β, γ). Then F is a polynomial function of
(α, β, γ) which is different from zero on an open set in ((gC)∗)3. Therefore it is different from
zero for a generic choice of (α, β, γ). 2

4 Integrable systems on symmetric spaces

4.1 Symmetric spaces and real structures on GC

Our aim in this subsection is to represent an arbitrary Riemannian symmetric space as the
common fixed point set of two involutions on a complex Lie group GC. First we recall some
facts about symmetric spaces. Details and proofs can be found in [11]

A Riemannian manifold M is called a globally symmetric Riemannian space if every point
p ∈M is a fixed point of an involutive isometry of M which takes any geodesic through p into
itself as a curve, but reverses its parametrization. Every symmetric space is homogeneous.
Let M = G/U , where U ⊂ G is a subgroup of the Lie group G and let g = Lie(G),
u = Lie(U) be the respective Lie algebras. Then M is symmetric if and only if there exists
a vector subspace p ⊂ g such that g = u⊕ p and

[u, u] ⊂ u , [u, p] ⊂ p , [p, p] ⊂ u .

A Direct sum decomposition g = u⊕ p satisfying the above condition is called a symmetric
decomposition. It can be seen immediately that g̃ = u ⊕ ip is a Lie algebra if and only if
g = u ⊕ p is a symmetric decomposition. Clearly, g̃ = u ⊕ ip is a symmetric decomposition
as well.

Every Riemannian symmetric space is a cartesian product of irreducible Riemannian sym-
metric spaces. These fall into four types and were classified by E. Cartan. Let g = u⊕ p be
a symmetric decomposition of a simple real algebra g. Then either g or g̃ is compact. The
compact member of the pair (M = G/U , M̃ = G̃/U), where Lie(G̃) = g̃, is an irreducible
symmetric space of type I, while the non-compact one is called its non-compact dual and
is of type III. An elementary example of this duality is the pair (S2,H2), where S2 is the
2-sphere, and H2 the hyperbolic 2-plane. Let now g = f × f for some compact simple real
Lie algebra f, and let g = u ⊕ p be the decomposition of g into +1 and −1 eigenspaces of
the involution θ : g → g given by θ(x, y) = (y, x). Denote again g̃ = g⊕ ip and let F be the
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simple Lie group having f as its Lie algebra. Then M = G/U ∼= F is a symmetric space of

type II, while M̃ = G̃/U ∼= FC/F is its non-compact dual of type IV. The procedures de-

scribed above yield all the irreducible symmetric spaces. Let GC G, and G̃ be the Lie groups
corresponding to the Lie algebras gC, g and g̃, respectively. Here gC denotes the common
complexification of g and g̃. Let τG, τ eG : GC −→ GC be the real structures of the complex

Lie group GC having G and G̃ as their real forms. Call the Lie groups G and G̃ related with
respect to U if their respective Lie algebras are of the form g = u ⊕ p and g̃ = u ⊕ ip and
these decompositions are symmetric.

Proposition 6 Let G be a real semi-simple Lie group and M = G/U an irreducible Rie-

mannian globally symetric space and let G̃ be related to G with respect to U . Then

M = {a ∈ G ; τ
eG(a−1) = a} .

In other words, the symmetric space M is the simultaneous fixed-point set of two involutions
in GC, namely τG and σ

eG, where σ
eG(g) = τ

eG(g−1).

Proof. Let H̃ = GC/G̃. Observe that H̃ = {g ∈ GC; τ
eG(g−1) = g}. Suppose first that M

is of type I and let g = u ⊕ p be the corresponding symmetric decomposition. It is proved
in [11] that M = exp(p) ⊂ H̃. Since G is compact, every element gc ∈ GC has a unique

factorization gc = g · h, where g ∈ G and h ∈ H ∼= GC/G. In the case of gc ∈ H̃ this
factorization gives gc = gp · hiu for gp ∈ M and hiu ∈ exp(iu). Since τG(gc) = gp · h−1

iu , the
fixed-point set of τG/ eH is indeed M .

Let now M be of type III. Again M = exp(p) ⊂ H̃. In this case the map exp : (iu⊕ p) → H̃
is a diffeomorphism. Define an involution ϑ : H̃ → H̃ by ϑ(h) = exp(−αiu + αp), where
exp−1(h) = αiu + αp is the decomposition of exp−1(h) into its iu and p components. The
fixed-point set of ϑ is M . Since dτGe = dϑe, we have ϑ = τG/ eH which proves the proposition
for M of type III. Similar considerations provide the proof for types II and IV. 2

4.2 Real structures on (T ∗GC, ω,H)

Using Proposition 6, we shall now construct an integrable system on an arbitrary symmetric
space M = G/U . We will also specify the form of Nahm’s equations whose solutions give
rise to the solutions of our new systems.

Let τ :GC → GC be the real structure corresponding to the real form G ⊂ GC and let
C: CP1 → CP1 be the real form of CP1 which in the affine coordinate z is given by conjugation
C(z) = z. If p1, p2 ∈ supp(D) are real, we can define an involution

C = C ⊗ τ : T ∗MDd −→ T ∗MDd (24)

which on the subspace (GC × GC)/GC is given by C[g1, g2] = [τ(g1), τ(g2)]. Let T ∗MC
Dd ⊂

T ∗MDd be the fixed-point set of C. Its elements satisfy the condition C(Φ(z)) = dτ(Φ(z)),
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where dτ : gC → gC is the derivative of τ at e ∈ GC. If in addition the element Φ lies on some
solution of the equation (7), then it is of the form

Φ = Ad∗g1(α0) + zġ1g
−1
1 + z2Ad∗g2(γ0) ,

where g1, g2 ∈ G and α0, γ0, (ġ1g
−1
1 ) ∈ g = Lie(G).

Next, we consider a different real involution of T ∗MDd . Let p1, p2 be antipodal, for example,
p1 = 0, p2 = ∞ and denote by A: CP1 → CP1 the antipodal map. Then we can define the
involution

A = A⊗ τ̃ : T ∗MDd −→ T ∗MDd ,

where τ̃ :GC → GC is a real structure corresponding to another real form G̃ ⊂ GC. On the
subspace (GC×GC)/GC we now have A[g1, g2] = [(g∗2)

−1, (g∗1)
−1], where g∗ = τ̃(g−1). In this

case a solution Φ of (7) satisfies A(Φ) = Φ if it is of the form

Φ = Ad∗g(α0) + zġg−1 + z2Ad∗(g∗)−1(dτ̃(α0))

and ġg−1 = −dτ̃(ġg−1) = (ġg−1)∗. Choose now a Riemannian symmetric space M = G/U .

Let the real forms G and G̃ of GC be related with respect to U , as defined in the Subsection
4.1, and let τ, τ̃ :GC → GC be the corresponding real structures with derivatives dτ, dτ̃ : gC →
gC. In the previous subsection we have seen that the symmetic space M is determined by
the Cartan decomposition g = u⊕ p of the Lie algebra g = Lie(G).

Theorem 3 Let the Hamiltonian function HM :T ∗M → R be given by

HM(h, p) =
1

2
‖p‖2

M +K(Ad∗h(α0), α
∗
0) , (25)

where p ∈ T ∗hM and ‖ · ‖M is the natural norm on M , and α ∈ g.

(i) Let a solution T1, T2, T3: I → (gC)∗ of Nahm’s system yield a solution γ(t): I → T ∗GC of
the Hamiltonian system (T ∗GC, ω,H), as explained in Theorem (1). Then γ(t) is a solution
of the Hamiltonian system (T ∗M,ω,HM) if and only if

T1(I) ⊂ ip , T2(I) ⊂ u , T3(I) ⊂ ip .

(ii) The Hamiltonian system (T ∗M,ω,HM) is completely integrable in the Liouville-Arnold
sense.

Proof. Denote by T ∗MM
Dd the simultaneous fixed-point set of the involutions C = C ⊗ τ

and A = A⊗ τ̃ defined above. First we will show that the system (T ∗M,ω,HM) is obtained
from the system on T ∗MM

Dd in the same way as the system (T ∗GC, ω,H) was obtained
from Hitchin’s system on T ∗MDd . As before let π:T ∗MDd → T ∗(GC × GC)/GC be the
natural projection and q:T ∗(GC × GC)GC → T ∗GC the map given by (10). Consider the
restriction of (q ◦ π) : T ∗MDd −→ T ∗GC to the subspace T ∗MM

Dd ⊂ T ∗MDd . We observe
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that π(T ∗MM
Dd) is the subspace of T ∗(GC × GC)/GC consisting of the elements of the form(

[g, (g∗)−1], (ġg−1,−ġg−1)
)

with ġg−1 = (ġg−1)∗. From this we get

q
(
[g, (g∗)−1], (ġg−1, (ġg−1)∗)

)
=

(
g∗g, Ad∗g∗(ġg

−1 + (ġg−1)∗)
)

= (h, p)

Since g∗g ∈ G and since τ(g∗g) = τ(gτ̃(g−1)) = g∗g, Proposition 6 tells us that h = g∗g ∈M .
It is then easily checked that p is dual to dLh−1(ḣ) ∈ T[e]M via the natural metric on M .
Here dLh−1 :T[h]M → T[e]M is the derivative of the left translation of M by h = g∗g ∈ G.
Let H be the restriction of Hitchin’s map (4) to T ∗MM

Dd . The Ad-invariance of H allows us
to define the map

HM : T ∗M −→
r⊕
i=1

H0(CP1;O(2di))

by the formula

HM(h, p) = H(Adh(α0) +
1

2
zp− z2α∗0) . (26)

The coefficient of z2 in Q1(x, y) = K(x, y) yields the Hamiltonian HM given by the expression
(25) as expected.

We now prove (i) . Observe that Φ = (T2 + iT3) − 2ziT1 + z2(T2 + iT3) and suppose that
Φ ∈ T ∗MC

Dd . From (T2 + iT3), (T2 − iT3) ∈ g we get T2 ∈ g and T3 ∈ ig. Obviously,
T1 ∈ ig. Now let Φ also be also an element of T ∗MA

Dd . This gives dτ̃(T2 + iT3) = (T2− iT3).
The real structure dτ̃ : gC → gC restricted to g = u ⊕ p is the involution having u as its +1
eigenspace and p as its −1 eigenspace. From this we see that T2(I) ⊂ u and T3(I) ⊂ ip.
From dτ̃(iT1) = −iT1 we finally get T1(I) ⊂ ip.

To prove (ii) we have to find dim(M) integrals of the system (T ∗M,ω,HM) which Poisson-
commute. From the construction of the map HM given by (26) and from the discussion in
Section 3 it is clear that the components of HM are n = dim(G) real Poisson-commuting
functions, one of them being HM. Since dim(M) < n, they are not functionally independent
therefore the only thing we have to prove is that the reduction to T ∗M imposes only dim(G)−
dim(M) = dim(U) relations among our functions and not more. This is equivalent to the
map

d(H)(h,p) : T(h,p)(T
∗M) −→

r⊕
i=1

H0(CP1;O(2di))

having rank rk(d(H)Φ) equal to dim(M) for a generic Φ ∈ T ∗MM
Dd . But this in turn is a

direct corollary of Proposition 5, where we showed that the map d(H)GC restricted to the
vertical subspace has no kernel. 2
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5 Examples

5.1 C. Neumann system

First we will describe the example that justifies the title of this paper. The variational
problem describing the harmonic motion on Sn is known as C. Neumann’s problem since it
was first described by Carl Neumann in [23]. More recently, this system was studied by many
authors, see e.g. [19], [20], [4], [5], [3] and [21]. In Hamiltonian terms, the C. Neumann
problem is given by the system (T ∗R(n+1), ω,HN), where

HN(q, p) =
1

2
‖p‖2 − 〈Aq, q〉 ,

and by the constraints ‖q‖ = 1, 〈q, p〉 = 0. Here A is a symmetric (n + 1)× (n + 1)-matrix
which we can assume to be diagonal without loss of generality.

For every n we have Sn = SO(n+1)/SO(n). The complexification of SO(n+1) is the group
SO(n+ 1; C). According to Proposition 6 the sphere Sn is the simultaneous fixed point set

of the involutions τ, σ̃:SO(n+1; C) → SO(n+1; C) given by τ(h) = h, σ̃(h) = Jh
>
J , where

J = diag(−1, 1, . . . , 1). Thus Sn ∼= S = {h ∈ SO(n+ 1); JhJ = h>}.

Proposition 7 Let the Riemannian symmetric space M from Theorem 3 be the sphere S.
Then the Hamiltonian system (T ∗S, ω,HS) is the classical C. Neumann system.

Proof. Each row hi of the matrix h ∈ S is a vector in R(n+1) with unit norm. Moreover, for
each i the map πi:S → Sn given by πi(h) = hi is an isometry, provided we have multiplied
the metric on the target Sn by

√
n+ 1 which is the radius of S. (For every h ∈ SO(n + 1)

we have Tr(hh>) = Tr(hh−1) ≡ n + 1.) We give an explicit formula for π1:S → Sn. Let
p ⊂ so(n+ 1) be the subspace whose elements are matrices of the form

α =

(
0 a
−aT 0

)
, (27)

and a = (a1, . . . an). Then S = exp(p). For h = exp(α) we have

π1(h) =
(
cos ‖a‖, a1

‖a‖
sin ‖a‖, . . . , an

‖a‖
sin ‖a‖

)
.

The motion h(t): I → S is therefore uniquely determined by the motion hi(t): I → Sn for
arbitrary i = 1, . . . , n. The opposite is of course also true. We shall show that hi(t): I → Sn
is the harmonic motion on the sphere if and only if h(t): I → S is a solution of the system
(T ∗S, ω,HS). Since the Killing form on SO(n + 1; C) is given by K(x, y) = Tr(x · y>), we
have

HS =
1

2
‖p‖2 − Tr(Adh(β) · Jβ>J) .

Suppose β is a diagonal matrix. Then for the potential function V (h) we have

V (h) = Tr(Adh(β) · Jβ>J) = Tr
(
(βhβ) · h>

)
,
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since h−1 = h> = JhJ . Denoting β = diag(b0, . . . , bn) and h = (hij), we get

V (h) =
n∑
i=0

bi 〈β · hi, hi〉 ,

where 〈−,−〉 is the usual Euclidean scalar product on R(n+1). From this we see that each hi
moves as a C. Neumann system and, since the motion of h on S is completely determined
by the motion of any hi on Sn, the proposition is proved. 2

The above construction differs slightly from that in Theorem 3. For the sake of simplicity the
matrix β was taken to be diagonal and is not an element of the appropriate g. Nevertheless
the theorem and its proof apply to the above example with a slight modification. The
involution A = A ⊗ τ̃ :T ∗MDd → T ∗MDd has to be replaced by A = (−A) ⊗ τ̃ . As a
result we get that in this case T1(I), T3(I) ⊂ p and T2(I) ⊂ u. A longer calculation (see
[25]) shows that a faithfull application of the construction of Theorem 3 also yields the C.
Neumann system. The same remark applies to the next two examples.

5.2 C. Neumann systems on hyperbolic spaces

We have mentioned in Section 4.1 that symmetric spaces appear in dual pairs. The non-
compact symmetric space dual to the sphere Sn is the hyperbolic space Hn = SO0(1, n)/SO(n).
Here SO0(1, n) denotes the unit component of the group SO(1, n) and SO(1, n) consists of
those elements h ∈ SL(n; R) which preserve the quadratic form −x2

0 +x2
1 + . . .+x2

n in Rn+1.
It is therefore reasonable to expect that the C. Neuman system will have a non-compact
analogue on Hn.

We proceed following the scheme described in Section 4.1. First we define the Lie algebra
s̃o(n + 1) = so(n) ⊕ ip, where the subspace p consists of the elements of the form (27).
Clearly we have s̃o(n + 1)C = so(n + 1; C), and s̃o(n + 1) is the fixed-point set of the
involution dτ : α 7→ JαJ with J = diag(−1, 1, . . . , 1). The subspace ip is the fixed-point
set of the involution dσ̃: s̃o(n + 1) → s̃o(n + 1) given by dσ̃(α) = −α = α>. The Lie
algebra s̃o(n + 1) is isomorphic to so(1, n) via the map κ: s̃o(n + 1) → so(1, n) given by
κ(α) = K ·α ·K, where K = diag(i, 1, . . . 1). On the subalgebra so(n) ⊂ s̃o(n+1) the map κ
is equal to the identity. From this we see, that the hyperbolic space Hn = SO0(1, n)/SO(n)
is isometric to the simultaneous fixed-point set Hyp ⊂ SO(n + 1; C) of the involutions

τ, σ̃:SO(n+ 1; C) → SO(n+ 1,C) given by τ(h) = JhJ and σ̃(h) = h
>
.

Denote by R1,n the (n + 1)-dimensional real space equipped with the Minkowski metric
〈x, x〉1,n = −x1

0 + x2
1 + . . . + x2

n for x = (x0, x1, . . . xn). It is well known that the space Hn

can be thought of as the unit sphere Hn = {x ∈ R1,n; 〈x, x〉1,n = 1} in R1,n.

Proposition 8 Let the space M from Theorem 3 be the hyperbolic space Hyp. Then the
Hamiltonian system (T ∗Hyp, ω,HHyp) describes the motion of a particle in R1,n confined to
the Minkowski unit sphere Hn ⊂ R1,n and under the influence of the force potential

Vhyp(x) = 〈B(x), x〉1,n ,
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where B is a symmetric (n+1)×(n+1) matrix. In other words, the system (T ∗Hyp, ω,HHyp)
is the Minkowskian version of C. Neumann’s system.

Proof. Obviously, we only have to adapt the proof of Proposition 7. Let the map π:Hyp →
Rn+1 assign to the element h ∈ Hyp its first row. Due to Hyp = exp(ip) we have

π(h) =
(
cosh ‖a‖, ia1

‖a‖
sinh ‖a‖, . . . , ian

‖a‖
sinh ‖a‖

)
for some a = (a1, . . . an). Let L = diag(1,−i, . . . ,−i) and denote by π̃ the composition L◦π.
Dividing the metric Tr(hh>) on Hyp by

√
n+ 1 turns the map π̃:Hyp → Hn ⊂ R1,n into

an isometry. The rest of the proof is the same as that of Proposition 7, the only difference
being that we have to replace the scalar product 〈−,−〉 by the product 〈−,−〉1,n. 2

5.3 A many-body C. Neumann system

The Grassmannian manifold Grp,q(R) is a Riemannian symmetric space and it can be ob-
tained as the quotient Grp,q(R) = SO(n)/SO(p) × SO(q), where p + q = n. The space
Gr = Grp,q(R) is the fixed-point set of the real involutions τ, σ̃:SO(n; C) → SO(n; C) given

by τ(h) = h and σ̃(h) = Jph
>
Jp, where Jp = diag(−1, . . . ,−1, 1, . . . 1) contains p negative

entries. The rows hi of a h ∈ Gr are orthonormal. Suppose p < [n
2
]. Then the element h is

determined by the choice of the first p rows h1, . . . , hp, while the choice of these is arbitrary
as long as they are orthonormal. Let β = (b1, . . . bn) again be diagonal. Then, as before, we
have

V (h) =
n∑
i=0

bi〈β(hi), hi〉 . (28)

Let h(t): I → T ∗Gr be a solution of the Hamiltonian system (T ∗Gr, ω,HGr). From (28) we
see that each component hi(t) of h(t) moves as a C. Neumann system. Suppose that the
particle on Sn represented by hi has charge bi. Than all these particles move as harmonic
oscillators on Sn under the influence of the potential V (x) = 〈β(x), x〉. This proves the
following proposition.

Proposition 9 The Hamiltonian system (T ∗Gr, ω,HGr) describes the motion of p particles
h1, . . . hp on the unit sphere Sn under the influence of the harmonic potential

V (x) = 〈β(x), x〉 ,

where β = diag(b1, . . . bn). The particle hi has charge bi. In addition, the system obeys the

constraints given by hi ∈
(
span(h1, . . . , hi−1)

)⊥
for i = 1, . . . , r. 2

The system (T ∗Gr, ωHGr) has its Minkowskian counterpart as well. Instead of the Grass-
mannian we have to take the symmetric space SO0(p, q)/SO(p) × SO(q). Then we get a
system of p particles h1, . . . hp of different charges moving on the hyperbolic space Hn, where

n = p + q. They are constrained by the relations hi ∈ (span(h1, . . . hi−1))
⊥. Here h ⊥ k

means that the two vectors are perpendicular with respect to the Minkowskian scalar product
〈−,−〉1,n.
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5.4 Magnetic terms, coadjoint orbits and the spherical pendulum

Let G be a real semi-simple Lie group and let τ :GC → GC be the real structure of GC

whose fixed point set is G. Then G is obviously the simultaneous fixed-point set of τ and σ̃,
where σ̃:GC × GC → GC × GC is given by τ̃(g1, g2) = (g2, g1). If we put M = G, then the
system (T ∗G,ω,HG) describes the motion of a particle on G under the influence of the force
potential V (g) = K(Ad∗g(β), τ(β))

Denote by T ⊂ G the stabilizer of β ∈ g with respect to the coadjoint action of G on g. Then
T acts on (T ∗G,ω,HG). Let µ:T ∗G→ t∗ be the moment map of this action. The T -action
enables us to take two different symplectic quotients of T ∗G, namely µ−1(0)/T and µ−1(α)/T
for some nonzero α ∈ t∗. Both quotients are diffeomorphic to T ∗O, where O ∼= G/T is the
coadjoint orbit containing β. They differ in their symplectic structures. The symplectic
structure of µ−1(0)/T is the usual cotangent structure ωctg on T ∗O, while the structure
ωα on µ−1(α)/T contains an additional magnetic term. More about this can be found in
[17]. Application of the symplectic quotient construction of the system (T ∗G,ω,HG) yields

the systems (T ∗O, ωctg, HO) and (T ∗O, ωctg + ωmg, H̃O), where µ−1(0)/T ∼= (T ∗O, ωctg) and

µ−1(α)/T ∼= (T ∗O, ωctg + ωmg) symplectically. By HO and H̃O we denoted the induced
Hamiltonians. From Theorem (3) and the discussion in [17] we get the following result.

Proposition 10 The system (T ∗O, ωctg, HO) describes the motion of a particle on the coad-
joint orbit under the influence of a potential force. The particle governed by the system
(T ∗O, ωctg +ωmg, H̃O) is additionally influenced by a magnetic force. Both systems are inte-
grable in the Liouville-Arnold sense.

We now take a closer look at the simplest case of the above proposition. The spherical
pendulum is a classical mechanical system which describes the motion of a particle confined
to the sphere S2 ∈ R3 under the influence of the gravitational force. This system was studied
already by Huyghens and more recently by Duistermaat in [9]. The spherical pendulum is
given by the Hamiltonian

H(q, p) = ‖p‖2 + q3

on the phase space T ∗R3 = {(q1, q2, q3, p1, p2, p3)} and by the constraints ‖q‖ = 1 and
〈q, p〉 = 0. Let the group G be the group of rotations SO(3). There is an isometry I :
(so(3),K) → (R3, 〈·, ·〉) , where K is the Killing form on the Lie algebra so(3) and 〈·, ·〉 the
standard Euclidean structure on R3. Let β ∈ so(3) correspond to the point e3 = (0, 0, 1)
under this isometry.

Proposition 11 Let U(1)β ⊂ SO(3) be the stabiliser of β ∈ so(3)∗. Then the action of
U(1)β on T ∗SO(3) preserves the Hamiltonian H. Let µ : T ∗SO(3) → iR be the corresponding

moment map. The reduced system (µ−1(0)/U(1)β, ω̃, H̃) is the spherical pendulum. Let

α ∈ iR be nonzero. The system (µ−1(α)/U(1)β, ω̃α, H̃α) describes the motion of a spherical
pendulum in the field of a magnetic monopole lying in the centre of the sphere.

Proof. Since SO(3)/U(1)β = S2 and since µ−1(0)/U(1)β = T ∗(SO(3)/U(1)β), we see that
the phase space of the reduced space is indeed T ∗S2. What remains to be shown is that
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the potential part Ṽ of the reduced Hamiltonian H̃ is equal to Vsp(q) = q3. Under the
isometry I the adjoint action of SO(3) on so(3) translates into the usual action of SO(3)
as the rotations on R3. From this we see that the 2-sphere {q = A(e3) ∈ R3;A ∈ SO(3)} is
precisely the quotient SO(3)/U(1)β. Moreover,

K(AdA(β), β) = 〈A(e3), e3〉 = 〈q, e3〉 = q3 ,

which proves the proposition. 2

Appendix: Bundles with higher order framings

In this Appendix we give a brief description of the moduli spaces with higher order framings.
In particular we shall prove Proposition 1 from the page 3.

Let Dd be a divisor of C with supp(Dd) = {p1, . . . , pk} and let deg(pi) = di. Denote
δ =

∑k
i=1 di. A holomorphic structure A on P is given by the differential operator

∂A : Ω0(C; adP ) −→ Ω0,1(C; adP )

which satisfies the usual Leibnitz rule. Here ad(P ) → C is the vector bundle associated to
P via the Ad-representation; its fibre is gC. The holomorphic structure A is by definition
δ-stable if for every holomorphic subbundle F of ad(P ) we have

degF

rkF
<

deg(ad(P ))

rk(ad(P ))
+ δ(

1

rkF
− 1

rk(ad(P ))
) .

Denote by Aδs the space of all δ-stable holomorphic structures on P and let GDd ⊂ G =
Aut(P ) be given by

GDd = {g ∈ G; g(pi) = id, (dg)(l)(pi) = 0, l = 1. . . . , di, i = 1, . . . , k} ,

where dg(l) is the l-th derivative of the map g. The moduli space MDd of stable holomorphic
structures with di-framings at the points pi ∈ supp(Dd) is the quotient

MDd = Aδs/GDd .

Proof of Proposition 1: First we prove that for every P ∈MDd the cotangent space T ∗MDd

can be identified with H0(C; ad(P ) ⊗K(Dd)) whose elements are meromorphic sections of
adP ⊗K with poles of degree di at the points pi. For every A ∈ Aδs the tangent space TAAδs

is isomorphic to Ω0,1(C; ad(P )). The natural pairing betwen the spaces Ω0,1(C; ad(P ) and
Ω1,0(C; ad(P ) = Ω0(C; ad(P ) ⊗K) is given by 〈Φ,Ψ〉 =

∫
C
K(Φ(z)dz ∧ Ψ(z)dz). Therefore

T ∗Aδs = D(C; ad(P ) ⊗ K) × Aδs , where D(C; ad(P ) ⊗ K) is the space of distributions on
C with values in ad(P ) ⊗ K. Let µ : T ∗Aδs −→ Lie(GDd)∗ be the moment map of the
GDd-action on T ∗Aδs . Then T ∗MDd = µ−1(0)/GDd . Let ψ ∈ Lie(GDd) be arbitrary and
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let fψ:T ∗Aδs → C denote the Hamiltonian function belonging to the vector field on T ∗Aδs

whose infinitesimal generator is ψ. As shown in [12] we have

fψ(A,Φ) = 〈µ(A,Φ), ψ〉 =

∫
C

K(∂Aψ ∧ Φ) .

Since Φ ∈ T ∗MDd if and only if fψ(A,Φ) = 0 for every ψ ∈ Lie(GDd), we see from [12] that
Φ is holomorphic with respect to A away from supp(Dd).

Let z be a local coordinate centered at p and suppose that ψ(0) = 0. We can assume that ψ
vanishes outside some neighbourhood U of p. Then from Stokes’ theorem and the condition
fψ(A,Φ) = 0 we get

fψ(A,Φ) =

∫
U

K(∂ψ ∧ Φ) =

∫
U

K(ψ ∧ ∂(Φ)) = ψ(0) = 0

for every suitable ψ. This implies that ∂(Φ) = aδ(0) and therefore Φ(z) = a
z

+ hol(z). It
now follows easily that in the case where deg(p) = d the element Φ(z) is of the form

Φ(z) =
d∑
i=1

ai
zi

+ hol(z) .

(ii) It remains to prove the condition of the Mittag-Leffler type that the elements of the
space T ∗[P ]MDd must satisfy. Let O(ad(P ) ⊗K) be the sheaf of A-holomorphic sections of

ad(P ) ⊗ K and let ODd(ad(P ) ⊗ K) be the sheaf of meromorphic sections with poles of
degrees di at pi. By PP we denote the skyscraper sheaf of the principal parts at Dd. Then
the exact sequence

0 → O(ad(P )⊗K) → ODd(ad(P )⊗K) → PP → 0

gives rise to the following exact sequence on the cohomological level:

. . .
ı→ H0(ad(P )⊗K(Dd))

p→ H0(PP)
δ→ H1(ad(P )⊗K) → . . . . (29)

A principal part λ̃ ∈ H0(PP) is in the image of the map p of the sequence (29) if and only

if δ(λ̃) = 0. Let Ui be a neighbourhood of pi for i = 1, . . . , k and let {U0, U1, . . . , Uk} be a

covering of C. The smooth (1, 1)-form δ(λ̃) is given by

δ(λ̃) =
k∑
i=1

∂
(
fi ·

di∑
j=1

λji
zji

)
, (30)

where zi ∈ Ui is a local coordinate centred at pi. Let fi be a smooth function equal to 1 on
the disc ∆ε ⊂ Ui with radius ε

2
and center pi and to 0 on C \Ui. Suppose that the diameters
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of Ui are equal to ε. Since ∂A(Ψ) = 0 for every Ψ ∈ H0
A(C; ad(P )) the Leibnitz rule, Stokes’

theorem, and the expression (30) give us∫
C

K(δ(λ̃) , Ψ) = lim
ε→0

∫
C\∪Ui

dK
( k∑
i=1

(

deg(pi)∑
j=1

λji
(zi)j

) , Ψ
)

=
k∑
i=1

∫
∂Ui

K
(deg(pi)∑

j=1

λji
(zi)j

, Ψ
)
.

From the Cauchy theorem we finally get
∫
C
K(δ(λ̃),Ψ) =

∑k
i=1K(δ(λ̃),Ψ(pi)). Since by

Serre duality δ(λ̃) = 0 if and only if
∫
C
K(δ(λ̃),Ψ) = 0 for every Ψ ∈ H0

A(C; ad(P ), the
proposition is proved. 2
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