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Abstract

We introduce a family of new non-linear many-body dynamical systems
which we call the Neumann lattices. These are lattices of N interacting Neu-
mann oscillators. The interactions are of magnetic type. We construct large
families of conserved quantities for the Neumann lattices. For this purpose
we develop a new method of constructing the first integrals which we call the
reduced curvature condition. Certain Neumann lattices are natural partial
discretizations of the Maxwell-Bloch equations. The Maxwell-Bloch equations
have a natural Hamiltonian structure whose discretizations yields a twisted
Poisson structures (in the sense of P. Ševera and A. Weinstein) for the Neu-
mann lattices. Thus the Neumann lattices are candidates for integrable systems
with twisted Poisson structures.

1 Introduction

The Neumann oscillator is a point particle moving on a sphere Sn under the influence
of a force whose potential is quadratic. This is one of the best-known classical non-
linear integrable systems. It was first studied by Carl Neumann in the mid 19th
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century and more recently by J. Moser, D. Mumford, and by many other authors
(See e.g. [1], [2], [3], [4]). In this paper we shall study a certain type of lattices of
interacting Neumann oscillators.

Let g: I → SU(2) be a solution of the ordinary differential equation

(gtg
−1)t = [σ,Adg(τ)] (1)

where σ and τ are arbitrary elements in the Lie algebra su(2). Then g(t) is the
evolution of the Neumann oscillator on S3 = SU(2) with the force potential V (g) =
〈σ,Adg(τ)〉. Let now N be a positive integer and let us arrange N copies of the
three-sphere S3 on the vertices of the regular N -sided polygon inscribed in the unit
circle S1. The system of 3N ordinary non-linear differential equations(

(gi)t(gi)
−1

)
t
=

N∑
k=1

ψi,k(gk)t(gk)
−1 + [σ,Adgi

(τi)], i = 1, . . . , N (2)

describes a lattice of N interacting Neumann oscillators given by the equation (1).
The interaction is of magnetic type in the sense that the acceleration of each oscillator
in the lattice depends on the velocities (gi)t(gi)

−1(t) of the other oscillators and not
on their positions gi(t) .

As we mentioned above, the Neumann systems are integrable. A natural question
is, whether the lattice (2) is an integrable system for some choice of non-zero ψi,k. In
this paper we make the first and probably the most important step towards answer-
ing this question. We show that the equation (2) has a large number of conserved

quantities, if the N ×N -matrix D̃ = (ψi,k)i,k=1,...,N satisfies two conditions:

(i) D̃ is an element of the special orthogonal Lie algebra so(N).

(ii) The kernel of D̃ contains the vector w = (1, . . . , 1)T .

Our construction of the conserved quantities of (2) stems from the relation between
the system (2) and the Maxwell-Bloch equations.

The Maxwell-Bloch equations are a system of partial differential equations which
plays an important role in non-linear optics. It describes the resonant interaction be-
tween light and an active optical medium consisting of two-level atoms. The Maxwell-
Bloch equations, without broadening and pumping, have the following form:

Et + Ex = P − αE, Pt = EN − βP, Nt = −1

2
(EP + EP )− γ(N − 1). (3)

The independent variables x and t parametrize one spatial dimension and the time, the
complex valued functions E(t, x) and P (t, x) describe the slowly varying envelopes of
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the electric field and the polarization of the medium, respectively, and the real valued
function N is the level inversion. The constant α represents the losses of the electric
field, while β is the longitudinal and γ the transverse relaxation rate in the medium.
We shall assume that α = γ = 0 and will concetrate on the spatialy periodic case of
(3).

The Maxwell-Bloch equations can be represented as the equation of motion for a
continuous lattice of Neumann oscillators given by (1). The system (3) with α = γ = 0
is equivalent to the equation

(gtg
−1)t + (gtg

−1)x = [σ,Adg(τ(x))] (4)

for the unknown function g(t, x): I × S1 → SU(2). Above, σ = diag(i,−i) ∈ su(2)
and τ(x):S1 → su(2) is an arbitrary loop in the Lie algebra su(2). The comparison
of the equations (4) and (1) suggests that the Maxwell-Bloch equations can be under-
stood as the equation of motion for a continuous lattice of the Neumann oscillators,
parametrized by x ∈ S1. The term (gtg

−1)x in (4) is responsible for the interaction
of magnetic type among the oscillators.

For suitable choices of D̃ = (ψi,k), the system (2) can be considered as a discretiza-
tion of the equation (4) with respect to the spatial variable x. The circle S1 is replaced
by the N -sided polygon whose vertices are labeled by i ∈ {1, . . . , N} and the operator
∂
∂x

is replaced by the N ×N matrix D̃ = (ψi,k)i,k=1,...,N . The Maxwell-Bloch system
is integrable, it satisfies the zero-curvature condition. One could therefore hope that
the lattice (2) will ”inherit” the integrability from the Maxwell-Bloch system. The
discretization of integrable systems is a very active field of current research. Many
different approaches to this subject have been invented by Ablowitz, Ladik, Fadeev,
Takhtajan, Nijhoff, Hirota, Suris and others (See [5] for an excellent survey). The
existing discretization schemes keep track of some structure that a system in ques-
tion is endowed with due to its integrability (e.g., Lax equation or R-matrix). Our
discretization is a näıve one and takes for the starting point the equation itself rather
then some manifestation of the integrability structure. Therefore, the integrability of
our discretization is not guaranteed in advance. In particular, the equation (2) does
not have a Lax pair.

The construction of the first integrals of the Neumann lattices requires a new ap-
proach. The tool that we propose for this purpose will be called the reduced curvature
condition. The geometric foundation of the reduced curvature condition is given in
theorem 1. A differential equation satisfies the zero curvature condition, if there ex-
ists a family of connections A(z) such that the vanishing of the curvature FA(z) = 0
for every z is equivalent to the equation. An equation satisfies the reduced curvature
condition if there exists a family of connections B(z) such that the curvature FB(z)
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takes values in a suitable proper subalgebra of the Lie algebra of the structure group.
Like the zero curvature condition, the reduced curvature condition can provide inte-
grals of motion in certain cases. One class of such cases are the Neumann lattices
of the form (2). The construction of the integrals of a Neumann lattice is given in
theorem 2 and the explicit formulae for the calculation of these integrals in theorem
3. We note that the integrals given by the reduced curvature condition are rather
natural. In particular, the three physically obvious integrals, the total energy and
the two total angular momenta of the lattice appear explicitly.

The Neumann lattices are not Hamiltonian systems. They are endowed in a
natural way by the twisted Poisson structures. These structures were recently studied
by P. Ševera, A. Weinstein, Y. Kosmann-Schwarzbach, and other authors (See [6],
[7], [8]). Since, at least in certain cases, the Neumann lattices possess as many
integrals of motion as they have degrees of freedom, they provide examples for what
finite dimensional integrable systems with twisted Poisson structures should be. This
observation gives rise to many further questions. The most immediate one is: what
can be said about the twisted Poisson commutativity of the integrals on the one
hand and the Lie commutativity of their respective (twisted) Hamiltonian fields on
the other. In the context of the twisted Poisson geometry these two notions do not
coincide. A related question is, what are the level sets of the integrals. Another
important topic which we do not consider here is the question of the number of
functionally independent integrals. We intend to address these and some other issues
in another paper.

2 Maxwell-Bloch equations and Neumann oscilla-

tor

We begin by rewriting the Maxwell-Bloch equations in a form which will reveal their
connection with the Neumann system. Consider the Maxwell-Bloch equations

Et + Ex = P, Pt = EN − βP, Nt = −1

2
(EP + EP ) (5)

with spatially periodic boundary conditions:

E(t, x+ 2π) = E(t, x), P (t, x+ 2π) = P (t, x), N (t, x+ 2π) = N (t, x). (6)

Let the Lie algebra valued maps ρ(t, x), F (t, x): I × S1 → su(2) be defined as

ρ(t, x) =

(
iN (t, x) iP (t, x)
−iP (t, x) −iN (t, x)

)
, F (t, x) =

1

2

(
iβ E(t, x)

−E(t, x) −iβ

)
. (7)
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In terms of ρ and F , the system (5) assumes the form

ρt = [ρ, F ], Ft + Fx = [ρ, σ] (8)

where

σ =
1

2

(
i 0
0 −i

)
.

The first equation in (8) is of Lax form, therefore

ρ(t, x) = Adg(t,x)(τ(x)), F (t, x) = −gt(t, x) · g−1(t, x) (9)

where τ(x):S1 → su(2) and g(t, x): R× S1 → SU(2) are smooth matrix-valued func-
tions. By inserting the above into the second equation of (8), we obtain the following
second-order partial differential equation for g(t, x): R× S1 → SU(2):

(gtg
−1)t + (gtg

−1)x = [σ,Adg(τ(x))]. (10)

This equation, together with the additional stipulation 〈gtg
−1, σ〉 = const. = −β, is

equivalent to the system (5).

Consider now the equation

(ftf
−1)t = [σ,Adf (τ)] (11)

where f(t): I → SU(2), and σ, τ ∈ su(2) are arbitrary elements. It is shown in
[9] that the equation (11) is the equation of motion for the Hamiltonian system
(T ∗SU(2), ωc, Hn), where ωc is the canonical cotangent symplectic form and the
Hamiltonian is given by

Hn(g, pg) =
1

2
‖pg‖2 + 〈σ,Adg(τ)〉.

Throughout the paper, the bracket 〈−,−〉 denotes the Killing form on su(2). This
Hamiltonian system is the Neumann oscillator on the three-sphere S3 = SU(2) and
the quadratic force potential is given by V (g) = 〈σ,Adg(τ)〉. This is not a generic
quadratic potential. If has two circular symmetries. One is given by the left action
of the group Uσ(1) = {s · σ; s ∈ [0, 2π]} ⊂ SU(2) and the other by the right action of
Uτ (1) = {s · τ ; s ∈ [0, 2π]}. The quadratic form V (g) has two double eigenvalues. In
the diagonalizing coordinates ~q = (q1, q2, q3, q4) on R4, we have

V (g(~q)) = λ(q2
1 + q2

2)− λ(q2
3 + q2

4)

where 1
2
λ is equal to the norm of τ ∈ su(2) with respect to the Killing metric.

The Hamiltonian system (T ∗SU(2), ωc, Hn) is a special case of a family of integrable
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system which was studied by man authors. (See e.g. [10], [11] and also [12] for the
connection with the Nahm’s equations of the Yang-Mills theory.)

Let us now write the equation (10) in the form

(gtg
−1)t(t, x) = [σ,Adg(t,x)] +

1

2ε

(
(gtg

−1)(t, x− ε)− (gtg
−1)(t, x+ ε)

)
|ε→0 . (12)

Comparison of this expression with the equation (11) shows that the equation (10) is
the equation of motion for the continuous lattice of interacting Neumann oscillators
parametrized by x ∈ S1. For every x0 ∈ S1, the function g(t, x0): I → SU(2) gives
the evolution of the oscillator at the x-th place. The acceleration of the oscillator
g(t, x0) is influenced by the momenta gtg

−1(t, x0 ± ε) of its neighbours. Therefore we
say that the interaction between the oscillators is of magnetic type.

The above observations suggest a natural Hamiltonian structure for the Maxwell-
Bloch equations. If we take into account the periodicity conditions (6), then the
configuration space of a continuous lattice of Neumann oscillators is the loop group
LSU(2) = {g(x):S2 → SU(2)}. Thus the phase space of the Maxwell-Bloch equa-
tions is the cotangent bundle T ∗LSU(2). The natural choice for the Hamiltonian is
the total energy of all the oscillators in the lattice:

Hmb(g(x), pg(x)) =

∫
S1

(1

2
‖pg(x)‖2 + 〈σ,Adg(x)(τ(x))〉

)
dx. (13)

The interaction term (gtg
−1)x is magnetic in nature, therefore it will be encoded in the

symplectic structure. The presence of (gtg
−1)x gives rise to the perturbation ωc +ωm

of the canonical cotangent form ωc on T ∗LSU(2). Let ω̃m be the right-invariant
two-form on LSU(2) whose value at the identity is given by

(ω̃m)e(ξ(x), η(x)) =

∫
S1

〈ξ′(x), η(x)〉dx, ξ(x), η(x) ∈ Lsu(2). (14)

The magnetic perturbation term ωm is the pull-back π∗(ω̃m) of ω̃m ∈ Ω2(LSU(2))
with respect to the natural projection π:T ∗LSU(2) → LSU(2). In [9] the following
theorem is proved.

Theorem The equation of motion for the Hamiltonian system (T ∗LSU(2), ωc +
ωm, Hmb) is the Maxwell-Bloch equation (10).

The form (ω̃m)e is the cocycle of the central extension R → L̃su(2) → Lsu(2) of the
loop Lie algebra Lsu(2). The right-invariant form ω̃m ∈ Ω2(LSU(2)) is closed but
not exact, so its deRham class is non-zero. It is the first Chern class of the non-trivial
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U(1)-bundle U(1) → L̃SU(2) → LSU(2), where L̃SU(2) is the central extension of
the loop group LSU(2) (See [13], [14]).

In more detail the Hamiltonian and the Lagrangian structures of the Maxwell-
Bloch equations are treated in [9].

3 Neumann lattices and discretizations of Maxwell-

Bloch equations

In this section we shall discretize the equation (10) with respect to the spatial variable
x ∈ S1. This will give us natural examples of the Neumann lattices.

We replace the circle S1 by the ”discrete circle” ZN = {ek 2πi
N ; k = 1, . . . , N}

and the configutation space LSU(2) by the space of discrete loops LNSU(2) =
{g(k): ZN → SU(2)}. Clearly, LNSU(2) is just the Cartesian product SU(2)N . We
shall use the following notation:

q = (g1, . . . , gN)T ∈
N︷ ︸︸ ︷

SU(2)× . . .× SU(2) = SU(2)N = LNSU(2).

The element gk ∈ SU(2) represents the position of the k-th Neumann oscillator in
the lattice which consists of N oscillators.

Now we have to discretize the derivation with respect to x. In (10) this derivation
acts on gtg

−1 which takes values in the Lie algebra Lsu(2). Thus we have to replace
the derivation operator ∂x:Lsu(2) → Lsu(2) by a suitable operator

D : su(2)N −→ su(2)N

where su(2)N is the Lie algebra of SU(2)N . Let the 2N×2N -matrix R be the operator
of cyclic permutation on su(2)N given by the block matrix

R =


0 0 . . . Id2

Id2 0 . . . 0
0 Id2 . . . 0
... . . .

. . .
...

0 0 . . . Id2 0

 , Id2 =

(
1 0
0 1

)
. (15)

A possible discretization of the Maxwell-Bloch equations is the system

(qtq
−1)t + (R−R−1)(qtq

−1) = [~σ,Adq(~τ)] (16)
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where ~σ = (σ, . . . , σ)T ∈ su(2)N is a ”constant” su(2)-valued vector and ~τ = (τ1, . . . , τN)T ∈
su(2)N is arbitrary. Here the derivation ∂x is replaced by the operator

Dl = (R−R−1): su(2)N −→ su(2)N .

The equation (16) is the system of N ordinary su(2)-valued differential equations of
the form(

(gi)t(gi)
−1

)
t
= (g[i+1])t(g[i+1])

−1 − (g[i−1])t(g[i−1])
−1 + [σ,Adgi

(τi)], i = 1, . . . , N

(17)
where [i±1] = (i±1) mod N . This is a Neumann lattice in which the acceleration of
the i-th oscillator is influenced by the force [σ,Adgi

(τi)] and by the velocities of the
two neighbouring particles.

Other, more faithful discretizations are possible. Note that the derivation ∂x is
the infinitesimal rotation of the loops from Lsu(2). This is equivalent to the equation
exp (s · ∂x)(α(x)) = Rs(α(x)) = α(x + s). Thus we can write ∂x = 1

s
log (Rs), and

with this in mind we define

Dg =
N

2π
logR

where R is given by (15). We note that the operators Dl and Dg both have 2×2-block
structure. The blocks are scalar 2× 2 matrices. Thus

Dl = D̃l ⊗ Id2, Dg = D̃g ⊗ Id2; Id2 = diag(1, 1)

where D̃l and D̃g are real scallar N ×N matrices.

In the following proposition we collect some properties of the matrix D̃g. By R̃

we shall denote the N × N cyclic permutation matrix such that R = R̃ ⊗ Id2. We
shall assume that N = 2m + 1 is an odd number and we shall index the matrix D̃g

somewhat more symmetrically: D̃g = (di,k)i,k=−m,...,0,...,m.

Proposition 1 (i) The elements of the matrix D̃g = (di,k)i,k=−m,...,m are given by

dk,l =
m∑

n=−m

n sin (2π
n(k + l)

N
). (18)

(ii) Let x ∈ R and R(x) = exp(x · D̃g). Then for every integer k we have

R(k
2π

N
) = R̃

k
.

8



(iii) For every k we have
m∑

l=−m

dk,l = 0. (19)

Thus 0 is an eigenvalue of D̃g and w = (1, . . . , 1)T is the corresponding eigenvector.

Proof: (i) We have to compute the logarithm of R̃. This matrix is unitary and

therefore diagonalizable. We shall first diagonalize R̃, find the logarithm of the diag-
onalization and then express the result in the original basis. The eigenvalues of the
cyclic permutation R̃ are clearly the N -th roots of unity. More concretely, we have
R̃ = Q−1 ·Rf ·Q, where

Rf = diag(e
−2πim

N , e
−2πi(m−1)

N , . . . , . . . , e
2πi(m−1)

N , e
2πim

N )

and Q = (e2πi j·k
N )j,k=−m,...,m. We note that the unitary matrix Q is the matrix of the

discrete Fourier transform 1. The logarithm of Rf is clearly the diagonal matrix

Df = diag(−2πi
m

N
,−2πi

m− 1

N
, . . . , 0, . . . 2πi

m− 1

N
, 2πi

m

N
).

Then a straightforward calculation shows that the (k, l)-th element dk,l of D̃g =
Q ·Df ·Q−1 is given by the formula

dk,l = i
m∑

n=−m

ne2πi
n(k+l)

N =
m∑

n=−m

n sin 2π
n(k + l)

N
+ i

m∑
n=−m

n cos 2π
n(k + l)

N
.

A moment of inspection reveals that, due to the evenness of the cosine, the imaginary
part of the above expression is equal to zero. Thus, we indeed have

dk,l =
m∑

n=−m

n sin 2π
n(k + l)

N
.

(ii) The equation R(2kπ
N

) = Exp(2kπ
N
· D̃g) = R̃

k
is an obvious consequence of the

definition Dg = N
2π

logR of the operator Dg.

(iii) It is easily seen that
m∑

l=−m

dk,l =
m∑

l=−m

dk,0.

1Therein lies the reason for N being odd and for our indexation of D̃g. The finite real Fourier
series are of the form f(x) =

∑m
n=−m aneinx and a−n = −a∗n.
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Indeed, the k + 1-st row of D̃g is obtained from the k-th by the cyclic one step
permutation. Now the oddness of the sine function and the formula (18) give (19),
which concludes the proof of our proposition.

2

In a sense, the operator Dg is the best approximation of ∂x on the N -sided poly-

gon ZN ⊂ S1. The l-th row of the matrix D̃g can be interpreted as the function
fl(k): ZN −→ R given by the formula

fl(k) =
m∑

n=−m

n sin (
2π(k + l)

N
n).

Recall that the δ function on the circle S1 is given by δa(x) =
∑∞

n=−∞ e
in(x−a). Its

derivative is therefore

δ′a(x) =
∞∑

n=−∞

inein(x−a) =
∞∑

n=−∞

n sinn(x− a).

We can obtain fl(k) from the derivative of δ 2πl
N

(x) by truncating the sum and by

evaluating only at the points (2πk)/N . (The change of sign from + in fl(k) = f0(l+k)
to to − in δa(x) = δ0(x − a) comes from the fact that in a matrix the ”vertical
coordinate” is measured in the reverse order.)

The above observations show that the Neumann lattice

(qtq
−1)t +Dg(qtq

−1) = [~σ,Adq(~τ)] (20)

is the most faithful discretization of the Maxwell-Bloch equation. More explicitely,
the above system can be written in the form(

(gi)t(gi)
−1

)
t
= −

m∑
k=−m

di,k(gk)t(gk)
−1 + [σ,Adgi

(τi)], i = −m, . . . ,m (21)

where di,k =
∑m

n=−m n sin (2π n(i+k)
N

). In this Neumann lattice the i-th oscillator is
influenced by the velocities of all the other oscillators. The influence of the closest
pair on the positions i− 1 and i + 1 is the strongest, the pair one step further away
influences roughly half as much, and so on in an approximatelly harmonic succession.

The systems (17) and (21) are only the most natural examples of the Neumann
lattices. In section 5 we shall construct integrals of motion for every Neumann lattice(

(gi)t(gi)
−1

)
t
=

m∑
k=−m

ψi,k(gk)t(gk)
−1 + [σ,Adgi

(τi)], i = −m, . . . ,m
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for which the N ×N -matrix D̃ = (ψi,k)i,k=−m,...,m is an element of the special orthog-
onal Lie algebra so(N) and has the vector w = (1, . . . , 1)T in its kernel. Such general
Neumann lattices cannot be considered as sensible discretizations of the Maxwell-
Bloch equations. Nevertheless, our construction of the integrals of motion for the
general Neumann lattice uses a generalization of the Maxwell-Bloch equations in an
essential way.

Remark 1 Let all the oscillators in a Neumann lattice of N oscillators be of the same
type so that the magnetic interaction between any given pair of oscillators depends only
on their mutual distance within the lattice. Then the corresponding matrix D̃ is of
the form

D̃t =
m∑

n=0

an(R̃
n
− R̃

−n
), R̃ − the cyclic permutation

where an are arbitrary real numbers. Above, m = N−2
2

, if N is even and m = N−1
2

, if
N is odd. Such matrices are elements of so(N) and their kernels contain the vector

w = (1, . . . , 1)T . Matrices D̃t are the Toeplitz matrices whose entries are given by

ψi,j = sign(j − i) ·


0 j − i = 0

a(j−i) j − i < N/2
−a(N−(j−i)) j − i > N/2

0 j − i = N/2

.

The matrices D̃l and D̃g are of this type. In the case of D̃l the only non-zero aj is

a1 = 1. In the case of D̃g all aj are non-zero, and

aj =
m∑

n=−m

n sin (2π
n · j
N

), j = 0, . . . ,m.

We conclude this section with a short discussion about the Hamiltonian nature
of the Neumann lattices. Recall the theorem cited at the end of the previous sec-
tion which states that the Maxwell-Bloch equations are Hamiltonian and that their
Hamiltonian structure is (T ∗LSU(2), ωc+ωm, Hmb). The Hamiltonian function Hmb is
given by the formula (13) and the canonical symplectic structure is perturbed by the
right-invariant magnetic term ωm given by (14). Since certain Neumann lattices arise
as discretizations of the Maxwell-Bloch equations, the sensible candidates for their
Hamiltonian structures should be the appropriate discretizations of the Hamiltonian
system (T ∗LSU(2), ωc + ωm, Hmb).

Let
(qtq

−1)t +D(qtq
−1) = [~σ,Adq(~τ)], D = D̃ ⊕ Id2 ∈ so(2N) (22)
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be an arbitrary Neumann lattice. Its phase space is the cotangent bundle T ∗SU(2)N .
Let us choose the Hamiltonian Hnl:T

∗SU(2)N → R to be the total energy of all the
oscillators in the lattice

Hnl(q, pq) =
1

2

m∑
i=−m

‖(pq)i‖2 +
m∑

i=−m

〈σ,Adqi
(τi)〉. (23)

The magnetic term responsible for the interaction among the oscillators will be the
two form ωdm on T ∗SU(2)N given as follows. Let ω̃dm be the right-invariant two-form
on SU(2)N whose value at the identity is given by the formula

ω̃dm(~ξ, ~η) =
N∑

i=1

〈(D~ξ)i, ηi〉, ~ξ, ~η ∈ su(2)N . (24)

Then ωdm is the pull-back ωdm = π∗(ω̃dm), where π:T ∗SU(2)N → SU(2)N is the
natural projection. Since D ∈ so(2N), the tensors ω̃dm and ωdm are indeed anti-
symmetric and are therefore well-defined differential two-forms. But the form ωdm is
not closed for any sensible choice of D ∈ so(2N). For example, in the case D = Dl

we get

dω̃dm( ~X, ~Y , ~Z) =
N∑

i=1

〈(Xi −Xi+1), [(Yi − Yi+i), (Zi − Zi+1)]〉

where ~X, ~Y , ~Z ∈ Γ(SU(2)N) are given in the right trivializaton. Thus ωc + ωdm is
not a symplectic structure. The form ωc + ωdm equips the space T ∗SU(2)N with a
so-called twisted Poisson structure. Let M be a smooth manifold and let C∞(M) be
the space of smooth functions of M . Then a bracket {−,−} on C∞(M) is a twisted
Poisson structure, if it is anti-commutative and if

{f, {g, h}}+ {h, {f, g}}+ {g, {h, f}} = Ω(Xf , Xg, Xh)

where Ω is a closed three-form on M . Here Xf , Xg, Xh are the (twisted) Hamiltonian
vector fields of f , g, h, respectively. The form Ω is called the background form. In
our case we have

{f, {g, h}}+ {h, {f, g}}+ {g, {h, f}} = dωdm(Xf , Xg, Xh).

For more information on the twisted Poisson structures, see [6], [7], [8] and references
therein.

Now we will show that (T ∗SU(2)N , ωc + ωdm, Hnl) can be thought of as a twisted
Hamiltonian structure of the Neumann lattice (22).
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Proposition 2 Let the vector fileld XHcn on T ∗SU(2)N be given by the condition

dHnl = i(XHnl
)(ωc + ωdm)

and let γ(t) = (q(t), pg(t)): I → T ∗LSU(2) be an integral curve of the field XHcn. Then
the curve q(t) is a solution of the Neumann lattice (22) and (pg)i(t) = 〈(qtq−1)i(t),−〉
for every i = 1, . . . , N .

Proof: Let ~ξ, ~η ∈ su(2)N be arbitrary. The formula

〈〈~ξ, ~η〉〉 =
m∑

i=−m

〈ξi, ηi〉

defines a natural Ad-invariant inner product on su(2)N . By the same symbol we shall
denote the induced inner product on the dual space (su(2)N)∗ and also the evaluation

〈〈~α, ~ξ〉〉 of an element ~α ∈ (su(2)N)∗ at ~ξ ∈ su(2)N , and this should cause no confusion.
Thus, we can rewrite the Hamiltonian (23) in the form

Hnl(q, pq) =
1

2
‖pq‖2 + 〈〈~σ,Adq(~τ)〉〉

where ‖pq‖2 = 〈〈pq, pq〉〉. The canonical cotangent form on T ∗SU(2)N is given by

(ωc)(q,pq)

(
(Xb, Xct), (Yb, Ycn)

)
= −〈〈Xct, Yb〉〉+ 〈〈Yct, Xb〉〉+ 〈〈pg, [Xb, Yb]〉〉

where the tangent vectors (Xb, Xct), (Yb, Yct) ∈ T(q,pq)(T
∗SU(2)N) are expressed in the

right trivialization. For the proof see [15]. Thus for the form ωc + ωdm we have

(ωc + ωm)(g,pg)

(
(Xb, Xct), (Yb, Yct)

)
= −〈〈Xct, Yb〉〉+ 〈〈Yct, Xb〉〉

+〈〈pg, [Xb, Yb]〉〉 − 〈〈D(Xb), Yb〉〉.
Derivation of the Hamiltonian in the direction (δb, δct) gives

〈〈dHnl, (δb, δct)〉〉 = −〈〈[~σ,Adq(~τ)]
at, δb〉〉+ 〈〈δct, p]

q〉〉.
Putting (Yb, Yct) = (δb, δct) and comparing the above two equations gives the following
expression for the Hamiltonian field XHnl

= (Xb, Xct) given in the right trivialization:

Xb = p]
q, Xct +D(Xb)

at = [~σ,Adq(~τ)]
at. (25)

Let ~γ(t) = (q(t), pq(t)): I → T ∗SU(2)N be an integral curve of the field XHnl
=

(Xb, Xct). Then (qtq
−1, (pq)t) = (Xb, Xct). If we insert this into (25), we finally see

that the curve q(t) is a solution of the equation (22), which concludes the proof.

2

Next two sections are devoted to the construction of the integrals of motion of
the Neumann lattice (22) or, equivalently, of the dynamical system with the twisted
Hamiltonian structure (T ∗SU(2)N , ωc + ωdm, Hnl).
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4 Reduced curvature condition

Above we have seen that the Neumann lattices and the Maxwell-Bloch equations are
closely related. Maxwell-Bloch equations are integable, they satisfy the zero-curvature
condition. The zero-curvature condition does not survive our discretization in any
obvious way. It does not induce, for instance, a Lax equation of some sort for the
Neumann lattices. It seems that the Neumann lattices do not have Lax equations
at all, which might be a consequence of the twistedness of their Poisson structures.
Therefore a new method is needed for the construction of the sought-for integrals.
We shall call this method the reduced curvature condition. This name should reflect
the relation of our method to the zero-curvature condition.

The geometric foundation of the zero-curvature condition is the well-known fact
that the holonomies around any two homotopic curves are conjugate. The setting
usually encountered in the theory of integrable systems is the following. Let I ⊂ R
be an interval and let E → I × S1 be a trivial Cn-bundle over the cylinder I × S1 =
{(t, x)}. Denote by A a GL(n,C) connection A(t, x) = U(t, x) dt+ V (t, x) dx on E.
Suppose that this connection is flat,

FA = Vt − Ux + [U, V ].

Denote by M(γ) ∈ GL(n,C) the holonomy of A around a closed loop γ ⊂ I × S1,
and in particular by M(t) the holonomy of A around the loop β(s) = (t, s). Let now
the closed curve κ(s) be the rectangle given by

κ(s) =


κ1(s) = (s, 0) s ∈ [0, t]
κ2(s) = (t, s− t) s ∈ [t, t+ 2π]
κ3(s) = (2t+ 2π − s, 2π) s ∈ [t+ 2π, 2t+ 2π]
κ4(s) = (0, 2t+ 4π − s) s ∈ [2t+ 2π, 2t+ 4π]

. (26)

Then we have M(γ) = M−1(0) · N−1 ·M(t) · N . Here N ∈ GL(n,C) = N(t1), and
N(s) is a lifting of κ2(s) onto E. The lifting N(s) is horizontal with respect to A.
Since the connection A is flat, we have M(γ) = Id and therefore

M(t) = N ·M(0) ·N−1.

The spectrum of the monodromy M(t) around the curve γ(s) = (s, t) is independent
of t ∈ I. This fact enables us to construct the integrals of motion for the systems
which satisfy the zero-curvature condition.

We shall now consider a unitary connection A on the Cn-bundle E → I × S1

which satisfies a condition weaker than the flatness. The following theorem will be
the geometric foundation of our construction of the integrals of the Neumann lattices.
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Theorem 1 Let the bundle E → I × S1 be endowed with a Hermitian metric and
let A be a unitary connection on E. Let wi ∈ Ω0(E), i = 1, . . . , k be an arbitrary
orthonormal system of smooth sections of the bundle E. Choose a trivialization of E.
Suppose that in this (and hence in any) trivialization we have

(FA)m(ξm, ηm) · wi(m) = 0 (27)

for every m ∈ I × S1 and for every pair of tangent vectors ξm, ηm ∈ Tm(I × S1). Let
the k × n-matrix valued function W (m) on I × S1 be given by

W (m) = (w1(m), . . . , wk(m))

where wi are the column-vectors which correspond to our sections in the chosen gauge.
Let M(t) be the holonomy matrix of the connection A along the path β(s) = (t, s).
Then the eigenvalues of the k × k unitary matrix

Mk(t) = W ∗ ·M(t) ·W

are independent of t.

Proof: First we observe that there exists a gauge in which A is a skew-hermitian
matrix and

wi(m) = (ai,1(m), . . . , ai,k(m), . . . , 0)T , i = 1, . . . k.

In this gauge every matrix (FA)m(ξm, ηm) is also skew-hermitian and it is of the form

(FA)m(ξm, ηm) =

(
0 0
0 Fn−k

)
where Fn−k is an element of the Lie algebra su(n− k). The condition (27), together
with the unitarity of A, implies that the curvarture takes values in a proper subalgebra
su(n− k) of the structure algebra su(n).

Let Φ0(A) be the restricted holonomy group of the connection A. (The restricted
holonomy group is generated by the holonomies along all null-homotopic paths in
I × S1.) The holonomy reduction theorem says that the Lie algebra h of Φ0(A) is
equal to the subalgebra of su(n) generated by all the values (FA)m(ξm, ηm) of the
curvature. For the proof see [16] or [17]. In our case the Lie subalgebra h is the a
copy of su(n− k) lying in su(2). In our gauge the holonomy M(γ) of the connection
A along any null-homotopic loop γ is an element of SU(n) of the form
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M(γ) =

(
Idk 0
0 Mn−k

)
where Ik is the k × k identity matrix and Mn−k is an element of SU(n− k).

The above form of the holonomy group implies that, in our gauge, the connection
A is of the form

A(x, t) =

(
α1(t, x)dt+ α2(t, x)dx 0

0 β1(t, x)dt+ β2(t, x)dx

)
(28)

where αi(t, x) ∈ su(k) and βi(t, x) ∈ su(n− k). This is the contents of the reduction
theorem which says the following: If A is a connection on a bundle with the structure
group G, and if the restricted holonomy group of A is a proper subgroup H ⊂ G,
then the connection A is reducible to a connection with the structure group H. For
the precise formulation and for the proof see again [16] or [17].

Let F → I×S1 be the subbundle of E spanned by the sections wi, i = 1 . . . k, and
let F⊥ be its orthogonal complement with respect to our Hermitian metric. Then we
have F ⊕ F⊥ = E. Formula (28) shows that this decomposition of E is actually a
geometric one in the sense that the connection A has a decomposition A = Ak⊕Bn−k

into a connection Ak on F and the connection Bn−k on F⊥.

Since in our case the upper blocks of all the elements of Φ0(A) are equal to Ik,
the connection

Ak = α1(t, x)dt+ α2(t, x)dx

on the rank-k subbundle F ⊂ E is flat. It is also clear that

Ak = W ∗ · A ·W

where W = (w1, . . . , wk). Note that this expression is independent of the choice of
gauge.

Let now the path κ(s) again be given by the formula (26). Again we will denote
the horizontal lift of κ1(s) = (s, 0) by N , and the holonomies around the curves
κ2(s) = (t, s) and κ4(s) = (0, s) by M(t) and M(0), respectively. As before, we have
M(κ) = M−1(0) ·N−1 ·M(t) ·N, but this time, in the gauge used above, we also have

M(τ) =

(
Mk(τ) 0

0 Mn−k(τ)

)
, τ = 0, t and N =

(
Nk 0
0 Nn−k

)

16



due to the fact that A = Ak ⊕Bn−k is reducible, and

M(κ) =

(
Idk 0
0 Mn−k

)
due to the fact that Ak is flat. From this we get

Mk(t) = Nk ·Mk(0) ·N−1
k . (29)

This means that the eigenvalues of the matrix Mk(t) are independent of t.

The matrix Mk(t) is the holonomy of the connection Ak on the subbundle F ⊂ E
around the curve γt(x) = (t, x). Since Ak(γ̇t(x)) = Ak(

∂
∂x

) = α2, the matrix Mk(t) is
equal to Hk(t, 2π), and Hk(t, x) is the solution of the initial value problem

∂

∂x
Hk(t, x) = Ak(t, x)(

∂

∂x
) ·Hk(t, x), Hk(t, 0) = Idk.

The bundle E is trivial, therefore there exists a gauge in which the sections

wi(m) = (ai,1(m), . . . , ai,k(m), 0, . . . , 0)

are constant with respect to the x-variable. If H: I × S1 → SU(n) is the solution of
the initial problem

∂

∂x
H(t, x) = A(t, x)(

∂

∂x
) ·H(t, x), H(t, 0) = Id

then in this gauge we have

∂

∂x
(W ∗ ·H ·W ) = W ∗ · ∂

∂x
H ·W = W ∗ · A(

∂

∂x
) ·H ·W.

Since the sections wi are an orthonormal system, we have

W ·W ∗ =

(
Idk 0
0 0n−k

)
.

Recall also that in our gauge the block structure of the connection A is given by the
formula (28). Thus

∂

∂x
(W ∗ ·H ·W ) = (W ∗ · A(

∂

∂x
) ·W ) · (W ∗ ·H ·W ).

Since W ∗ · A · W = Ak, this means that W ∗ · H(t, x) · H is the lift of the loop
β(x) = (t, x), horizontal with respect to the connection Ak on the subbundle F ⊂ E.
Since also H(t, 0) = Id, we have

W ∗ ·M(t) ·W = Mk(t).
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We have proved the above formula in a gauge in which the sections wi(m) are inde-
pendent on x, but the formula is obviously gauge independent and therefore valid in
any gauge. Since the eigenvalues of Mk(t) are independent of t, the above formula
completes the proof of our theorem.

2

Note that the statement of our theorem is independent of the choice of gauge
and could be therefore easily expressed in a coordinate-free way. But in practice the
condition (27) will usually be given in coordinates.

5 Conserved quantities of Neumann lattices

Consider now the equation for a lattice of N Neumann oscillators:

(qtq
−1)t +D(qtq

−1) = [~σ,Adq(~τ)] (30)

which satisfies the conditions

(a) D = D̃ ⊗ Id2, D̃ ∈ so(N), (b) D̃ · w = 0, for w = (1, . . . , 1)T . (31)

In this section we shall construct a family of integrals for this system. The key element
of our construction will be the reduced curvature condition described in theorem 1.

We shall first rewrite the system (30) in a suitable form. Let us replace the vector
q by the block-diagonal element G in SU(2N):

q = (g1, . . . , gN)T ; G =


g1 0 . . . 0
0 g2 . . . 0
...

...
. . .

...
0 0 . . . gN

 . (32)

Entries gi of the above block-matrix are elements of SU(2). Similarly, we shall replace
the su(2)-valued vectors ~σ and ~τ by the block-diagonal matrices

Σ =


σ 0 . . . 0
0 σ . . . 0
...

...
. . .

...
0 0 . . . σ

 , T =


τ1 0 . . . 0
0 τ2 . . . 0
...

...
. . .

...
0 0 . . . τN

 .

Note that Σ, T ∈ su(2N). Let W = (Id2, . . . , Id2)
T be the 2×2N block matrix whose

blocks are 2× 2 identity matrices Id2.
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Then the equation (30) is equivalent to the equation(
(GtG

−1)t + [D, (GtG
−1)] + [AdG(T ),Σ]

)
·W = 0. (33)

To see this, one only has to observe that D ·W = 0. This follows from part (b) of the
condition (31). We have

[D,GtG
−1] ·W = D · (GtG

−1 ·W )−GtG
−1 · (D ·W ) = D(qtq

−1).

Let now the loop R(x):S1 → SU(2N) be given by

R(x) = Exp(x ·D)

and let the path Q: R → LSU(2N) in the loop group LSU(2N) be defined by the
formula

Q(t, x) = AdR(x)(G(t)) = R(x) ·G(t) · R−1(x).

Proposition 3 The equation (30) for the Neumann lattice of N oscillators is equiv-
alent to the system of partial differential equations(

(QtQ
−1)t + (QtQ

−1)x + [AdQ(T̂ ),Σ]
)
·W = 0 (34)

where Q is the path in LSU(2N) defined above, and T̂ = AdR(x)(T ).

Proof: First we observe

(QtQ
−1)x = (R(x)GtG

−1R(x)−1)x = [R(x)xR(x)−1,R(x)GtG
−1R(x)−1]

= R(x) · [D,GtG
−1] · R(x)−1.

The SU(2N) matrix R(x) is of the form R(x) = R̃(x) ⊗ Id2. This means that it is
composed of 2 × 2-blocks and that these blocks are scalar matrices. Therefore the
blocks commute with all 2× 2-matrices. On the other hand, Σ = diag(σ, . . . , σ) has
a block structure of a scalar matrix. Thus we have

R(x) · Σ · R(x)−1 = Σ.

Finally, from D ·W = 0 it follows that R(x) ·W = R−1(x) ·W = W . It is now clear
that the equation (34) is equivalent to the equation (33), which in turn is equivalent
to (30).

2
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We note that even though the equation (34) is reminiscent of the Maxwell-Bloch
equation, there are two important differences between the two. In a more compact
way, the equation (34) can be written as M(Q) ·W = 0, where M(Q) = 0 is the
”generalized” Maxwell-Bloch equation (10). The first difference lies in the fact that
in M(Q) the path g: I → LSU(2) is replaced by the path Q: I → LSU(2N) in the
larger group LSU(2N). The second difference is the appearance of the matrix W at
the end of the right-hand part of (34). However, the similarity between the Maxwell-
Bloch equation and the equation (34) will enable us to find the reduced curvature
condition for the Neumann lattice (30).

It has been known for some time that the Maxwell-Bloch equations are integrable
(See [18], [19], [20], [21]). In terms of our rewriting (10), the zero-curvature condition
has the following form. Let

A(z) = U(t, x; z) dt+ V(t, x; z) dx

be the family (parametrized by z ∈ R) of unitary connections on the trivial C2-bundle
E → I × S1, where

U(t, x; z) = −(−zσ + gtg
−1)

V(t, x; z) = −zσ + gtg
−1 − 1

z
Adg(τ).

The equation (10) is equivalent to the flatness condition

FA(z) = V(z)t − U(z)x + [U(z),V(z)] = 0

for the curvature FA(z) of the connection A(z) for every z ∈ R. The proof of this
claim is a matter of a straightforward check. We shall use the form of this Lax pair
and the rewriting (34) to show that the Neumann lattice (30) satisfies the reduced
curvature condition.

For the sake of simplicity and clarity, we shall express the conserved quantities as
functions defined on the tangent bundle TSU(2)N and not on the cotangent bundle
T ∗SU(2). Since we have the right-invariant metric 〈〈Xg, Yg〉〉g = 〈〈Xgg

−1, Ygg
−1〉〉 on

SU(2)N , all our claims involving TSU(2) can easily be translated into claims involving
the cotangent bundle T ∗SU(2)N .

The space SU(2)N is a group, therefore we can trivialize the tangent bundle
TSU(2)N by the right translation to obtain the identification TSU(2)N ∼= SU(2)N ×
su(2)N . As before, we assign to every element q ∈ SU(2)N a loop Q(x) ∈ LSU(2N)
given by Q(x) = AdR(x)(G), where G = diag(g1, . . . , gN) is defined by (32). Let
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tq ∈ TqLNSU(2) be a tangent vector. Then tqq
−1 ∈ su(2)N . Taking the derivative of

the map q 7→ Q(x) at q and performing the right translation yields the map

tqq
−1 7→ TQQ

−1 = AdR(x)(diag(t1g
−1
1 , . . . , tNg

−1
N )) ∈ Lsu(2N).

Let us now denote by

L̃su(2N) = {zA+B +
1

z
C; A,B,C ∈ Lsu(2N)}

the space of ”short” Laurent series in the indeterminate z ∈ R with the coefficients
in the loop algebra Lsu(2N). Define the maps

Φ,Θ:TSU(2)N −→ L̃su(2N)

by the formulae

Φ(q,tq)(x) = −zΣ + TQQ
−1 − 1

z
AdQ(T̂ ), Θ(q,tq)(x) = −(−zΣ + TQQ

−1)

where T̂ is defined in proposition 3. Let now β(t) = (q(t), tq(t)) be an arbitrary path
in TSU(2)N and let

β̃: t 7−→ β(t) = (q(t), tq(t)) 7−→ β̃(t)(x) = (Φβ(t)(x),Θβ(t)(x))

be the corresponding path in (L̃su(2N))2. To the path β: I → TSU(2)N we can
assign a family of connections Aβ(z) on the trivial C2N -bundle E → I × S1 by the
formula

Aβ(z) = Φβ(t, x) dt+ Θβ(t, x) dx (35)

where we write Φβ(t, x), Θβ(t, x) for Φβ(t)(x), Θβ(t)(x).

Proposition 4 Let γ(t): I → TLNSU(2) be a solution of the equation (30) for the
Neumann lattice, let the conditions (31) be fulfilled, and let

Aγ(z) = Φγ(t, x)dt+ Θγ(t, x)dx

be the family of connections on the trivial C2N -bundle E → I×S1 assigned to the curve
γ(t) in the manner described above. Then for every z ∈ R the unitary connection
Aγ(z) satisfies the restricted curvature condition with respect to the sections w1, w2

of E given by w1 = (1, 0, . . . , 1, 0)T and w2 = (0, 1, . . . , 0, 1)T in the gauge at hand.
In other words, for every z ∈ R we have

(FAγ(z))m(ξm, ηm) ·W = 0, m ∈ I × S1, ξm, ηm ∈ Tm(I × S1) (36)

where FAγ(z) is the curvature of Aγ(z) and W is the 2 × 2N-matrix with the block
structure given by W = diag(Id2, . . . , Id2)

T .
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Proof: Let γ̃: t 7−→
(
q(t), qtq

−1(t)
)
7−→

(
Q(t), QtQ

−1(t)
)

be the curve in Lsu(2N)

associated to the solution γ(t). Then the components of the connection

Aγ(z) = Φγ(t, x)dt+ Θγ(t, x)dx

have the form

Φγ(t, x) = U(t, x; z) = −(−zΣ +QtQ
−1)

Θγ(t, x) = V (t, x; z) = −zΣ +QtQ
−1 − 1

z
AdQ(T̂ ).

The condition (36) can be written in the form(
Vt − Ux + [U, V ]

)
·W = 0, for every z ∈ R (37)

where U and V are given above. It is now a matter of a straightforward check that
the equation (37) is equivalent to the equation (34), which in turn is equivalent to
the Neumann lattice equation (30).

2

Note that the reduced curvature condition (37) can be easily guessed from the
rewriting (34) of the Neumann lattice equation and the zero-curvature condition for
the Maxwell-Bloch equations.

Consider now the initial value problem

d

dx
N(q,tq)(x) = Φ(q,tq)(x) ·N(q,tq)(x), N(q,tq)(0) = Id2N (38)

associated to every point (q, tq) from the tangent bundle TSU(2)N . Let Lzsu(2N)
denote the space of all finite Laurent series z 7→ α(z) with the coefficients su(2N).
Define the monodromy map M :TSU(2)N −→ Lzsu(2N) by

M(q, tq) = N(q,tq)(2π). (39)

In the following theorem, which is a corollary of proposition 4, the symbol Cz will
denote the space of the Laurent series with coefficients in R.

Theorem 2 Let t 7→ g(t) be a solution of the Neumann lattice equation (30), let the
conditions (31) be satisfied, and let the curve γ: I → TSU(2)N be given by

γ(t) =
(
g(t), gtg

−1(t)
)
.
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Define the map F:TSU(2)N → Cz by the formula

F(q, tq) = Tr(W T ·M(q, tq) ·W )

where M(q, tq) is given by (38) and (39). The map F is constant along the solution
path γ(t), F(γ(t)) ≡ const.

Let the functions Fk:TSU(2)N → R be given by the formula

F(q, tq) =
∞∑

k=−∞

Fk(q, tq) · zk.

Then the functions Fk are first integrals of the Neumann lattice (30).

Proof: Let the family Aγ of connections on the trivial C2N -bundle E → I × S1 be
associated to the solution curve γ(t) by the formula (35). Then by proposition 4 the
family Aγ satisfies the reduced curvature condition with respect to the sections w1,
w2 of E which we collect together into the matrix W . It follows then from theorem
1 that the eigenvalues of the matrix W T ·M(γ(t)) ·W are independent of time t. By
theorem 1 this matrix is an element of the Lie group SU(2). Therefore its eigenvalues
appear in pairs of the form (eia(t), e−ia(t)). But the function t 7→ eia(t) is constant if
and only if the function

t 7−→ Tr(W T ·M(γ(t)) ·W ) = eia(t) + e−ia(t)

is constant. Note that the trace is the only non-trivial coefficient in the characteristic
equation of an SU(2)-matrix. The second part of the theorem now follows immedi-
ately.

2

In order to calculate the integrals Fk of the Neumann lattice one has to solve
the system of linear differential equations (39) for every (q, tq) ∈ TSU(2)N . A linear
system is easily solved only when the matrix of coefficients is constant. In our case
the matrix of coefficients Φ(q,tq)(x) is not constant. But it is not difficult to find the
gauge transformation of the bundle E → I × S1 which will transform the coefficient
matrix Φ(q, tq)(x) into a constant matrix for every (q, tq). Recall that

Φ(q,tq)(x) = −zΣ̂ + TQQ
−1 − 1

z
AdQ(T̂ ) = AdR(x)

(
K(q,tq)

)
where

K(q,tq) = −zΣ + TGG
−1 − 1

z
AdG(T )
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is constant with respect to x. Let N(q,tq)(x) be a solution of the linear equation

d

dx
N(q,tq)(x) = Φ(q,tq)(x) ·N(q,tq)(x)

and let H(q,tq)(x) = R−1(x)N(q,tq)(x). Then H(q,tq)(x) is a solution of the linear differ-
ential equation

d

dx
H(q,tq)(x) = (K(q,tq) −D) ·H(q,tq)(x) (40)

whose coefficient matrix (K(q,tq) −D) is constant with respect to x. If we set

J(q, tq) = H(q,tq)(2π)

then we have J(q, tq) = M(q, tq), since R(2π) = R(0) = Id2N . It now follows that

M(q, tq) = Exp(2π(K(q,tq) −D)).

The above observations give the proof of the following proposition.

Proposition 5 The conserved quantity

F:TSU(2)N −→ Cz, F(q, tq) = Tr(W T ·M(q, tq) ·W )

of the Neumann lattice can be explicitely calculated by means of the formula

F(q, tq) = Tr(W T · Exp(2π(K(q,tq) −D)) ·W ). (41)

2

Clearly, the formula (41) for F also yields an explicit way to compute the first
integrals Fk:TSU(2)N → R of the Neumann lattice. But the integrals obtained in
this way are in a sense not the most natural ones. For example, the total energy
(23) of the Neumann lattice does not appear among the integrals Fk. Now we shall
describe a set of simpler and more natural first integrals which will include the total
energy (23) and also two other obvious conserved quantities. The construction of this
set will rely essentialy on the fact that the coefficient matrix of the linear differential
equation (40) is independent of x.

We shall prove the following theorem.

Theorem 3 Let the Neumann lattice (30) satisfy the conditions (31). Define the
map

Hk : TSU(2)N −→ Cz
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by the fomula
Hk(q, tq) = Tr(W T · (K(q,tq) −D)k ·W ).

Then for every k ∈ N the map Hk is a conserved quantity of the Neumann lattice
(30). The functions

Hk,j : TSU(2)N −→ R (42)

given by the relation

Hk(q, tq) =
k∑

j=−k

Hk,j(q, tq) · zj

are the first integrals of the Neumann lattice (30).

Proof: Let x ∈ S1 be an arbitrary real number from the interval [0, 2π] considered as
a point on S1. We shall prove that the map Fx:TSU(2)N → Cz given by the formula

Fx(q, tq) = Tr(W T · Exp(x · (K(q,tq) −D)) ·W ) (43)

is a conserved quantity of the Neumann lattice. This implies that for every positive
integer k and for every x0 ∈ [0, 2π] the map ∂k

∂xk Fx(q, tq)|x=x0 is also a conserved
quantity. If, in particular, we set x0 = 0, the formula (41) gives

∂k

∂xk
Fx(q, tq)|x=0 = Tr(W T · (K(q,tq) −D)k ·W ) = Hk(q, tq)

which proves the theorem.

We thus have to prove that Fx given by the fomula (43) is indeed a conserved
quantity for every x ∈ S1. Take again a solution t 7→ q(t) of the Neumann lattice and
let γ(t) = (q(t), qtq

−1(t)) be the corresponding path in the tangent bundle TSU(2)N .
As before, we associate to γ the path

γ̃ : t 7−→ (q(t), qtq
−1(t)) 7−→ (Q(t), QtQ

−1(t))

in Lsu(2N), and finally the family A(z) of connections on E → I × S1,

A(z) = Φγdt+ Θγdx

where

Φγ(t, x) = U(t, x; z) = −(−zΣ +QtQ
−1)

Θγ(t, x) = V (t, x; z) = −zΣ +QtQ
−1 − 1

z
AdQ(T̂ ).
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We shall now change the gauge by the gauge transformation R−1(x). In the new
gauge the components of A(z) are given by

UR(t; z) = −(−zΣ +GtG
−1)

VR(t; z) = −zΣ + (GtG
−1 −D)− 1

z
AdG(T ) = K(t)−D

where K(t) = K(q(t),qtq−1(t)). The important point is that in the new gauge the
connections A(z) are independent of x and therefore invariant with respect to the
translations in the x-direction. The curvature matrices of A(z) in the two gauges are
related by

Vt − Ux + [U, V ] = AdR−1(x)

(
(VR)t − (UR)x + [UR, VR]

)
.

We have already seen that R(x) ·W = W , therefore the formula (37) implies(
(VR)t − (UR)x + [UR, VR]

)
·W = 0. (44)

If we consider
AR(z) = UR dt+ VR dx

to be a new family of connections on the bundle E expressed in the original gauge,
then (44) shows that AR(z) satisfies the reduced curvature condition with respect to
the sections w1 = (1, 0, . . . 1, 0) and w2 = (0, 1, . . . , 0, 1) of E which are constant in
our gauge. The connection AR(z) and the sections w1, w2 are invariant with respect
to the translations in the x-direction. We shall see that in such cases the restricted
curvature condition yields a simpler family of conserved quantities.

In the proof of theorem 1 we have seen that the condition (44) ensures the existence
of a gauge transformation

G : I × S1 −→ SU(2N)

of the bundle E → I × S1 such that in the new gauge the gauge connection matrix

ÃR(z) = AdG(AR(z)) + dG · G−1

takes values in the subalgebra su(2)× su(2N − 2) ⊂ su(2N). Since AR(z) and W are
invariant with respect to x, we can take G also to be constant with respect to x. The
connection matrix ÃR(z) therefore has the same invariance property,

ÃR(t, x1; z) = ÃR(t, x2; z), for every pair x1, x2 ∈ S1.
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To summarize, ÃR(z) is of the form

ÃR(t, x; z) = ŨRdt+ ṼRdx =

(
a1(t; z)dt+ a2(t; z)dx 0

0 b1(t; z)dt+ b2(t; z)dx

)
(45)

where ai: I → su(2) and bi: I → su(2N − 2) for i = 1, 2.

Let the closed curve κx0(s) be the rectangle in I × S1 given by

κx0(s) =


κ1(s) = (s, 0) s ∈ [0, t0]
µ1(s) = (t, s− t0) s ∈ [t0, t0 + x0]
κ2(s) = (2t0 + x0 − s, x0) s ∈ [t0 + x0, 2t0 + x0]
µ2(s) = (0, 2t0 + 2x0 − s) s ∈ [2t0 + x0, 2t0 + 2x0]

. (46)

Denote by Ñ1 and Ñ2 the endpoints of the horizontal lifts of the paths κ1 and κ2,
respectively. Then Ñ1 = Ñ(t0), where Ñ1(t) is the solution of the initial value problem

d

dt
Ñi = ŨR(t, 0) · Ñ , Ñi(0) = Id2N .

But ŨR(t, x0) = ŨR(t, 0), therefore Ñ2 = Ñ−1
1 . The endpoints of the horizontal lifts

of µ1(s) and µ2(−s) will be denoted by M̃(0) and M̃(t0), respectively. The matrices

M̃(τ) for τ = 0, t0 are given by M̃(τ) = M̃(τ, x0) and M̃(τ, x) are the solutions of the
initial value problems

d

dx
M̃(τ, x) = ṼR(τ) · M̃(τ, x), M̃(τ, 0) = Id2N .

Let W̃ be the 2N×2 matrix whose block structure is given by W̃ = (Id2, 02, . . . , 02)
T ,

and 02 is the 2× 2 zero matrix. From (44) and (45) we see that

M̃2(t0) = Ñ2 · M̃2(0) · Ñ−1
2 (47)

where
M̃2(τ) = W̃ T ·M(τ) · W̃ , τ = 0, t0 and Ñ2 = W̃ T · Ñ · W̃ .

Returning to the original gauge we have

W = G−1 · W̃ , and M = AdG−1M̃

and thus (47) tells us that the spectrum of W T ·M(t) · W is independent of time
t ∈ I. Finally, we recall that M(t) = M(t, x0), where M(t, x) is the solution of the
initial-value problem

d

dx
M(t, x) =

(
K(t)−D

)
·M(t, x), M(t, 0) = Id2N
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or, explicitely, M(t) = Exp(x0(K(t) −D)). Thus we have proved that the spectrum
of the matrix SU(2)- matrix

W T · Exp
(
x0(K(t)−D)

)
·W = W T · Exp

(
x0(K(q(t),qtq−1(t)) −D)

)
·W

is constant along every solution t 7→ q(t) of the Neumann lattice equation. In other
words, the map

Fx0 : TSU(2)N −→ Cz

given by

Fx0(q, tq) = Tr
(
W T · Exp

(
x0(K(q,tq) −D)

)
·W

)
is indeed constant along the solutions of the Neumann lattice equation as claimed.

2

Let us illustrate the above theorem by calculating the simplest integrals Hk,i given
by (42). The first nontrivial integrals occur, when k = 2. Then

W T · (K −D)2 ·W = W T (K2 −KD −DK +D2) ·W = W T ·K2 ·W

since by the condition (b) of (31) we have K ·W = W T · K = 0. The non-trivial
coefficients of the Laurent polynomial

H2(z) = Tr(W T ·K2
(q,tq)(z) ·W )

are the functions

H2,0(q, tq) = 2
m∑

i=−m

(1

2
‖(tq)i‖2 + 〈σ,Adgi

(τi)〉
)

H2,−1(q, tq) =
m∑

i=−m

〈σ, (tq)i〉

H2,1(q, tq) =
m∑

i=−m

〈Adgi
(τi), (tq)i〉.

The function H2,0 is the total energy of all the oscillators in our lattice. It is also
the Hamiltonian of our twisted Hamiltonian structure. Recall that the Neumann
oscillator (T ∗SU(2), ωc.Hn) with

Hn(g, pg) =
1

2
‖pg‖2 + 〈σ,Adg(τ)〉
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has two rotational symmetries: one with respect to the lifted left action of %u(g)u · g
of Uσ(1) = {exp(s · σ)} ⊂ SU(2) and the other with respect to the lifted right action
ρu(g) = g · u of Uτ (1) = {exp(s · τ)} ⊂ SU(2). The corresponding momenta are

Mσ(g, pg) = 〈σ, pg〉, and Mτ (g, pg) = 〈Adg(τ), pg〉

respectively. Thus the inegrals H2,−1 and H2,1 are the two total rotational momenta
of our Neumann lattice.

The integrals at higher values of k involve the ”discrete derivative” D. We intend
to discuss some cases in another paper.
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