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Abstract

We improve the Hyers - Ulam stability result for isometries of real
Hilbert spaces by removing the surjectivity assumption.

AMS classification: 46B04

Keywords: Hilbert space, isometry, approximate isometry.

1 Introduction and statement of the main result

Throughout the paper all Hilbert spaces will be over the real field. Let H and
K be Hilbert spaces and ε > 0. A map f : H → K is called an ε-isometry if

| ‖f(x)− f(y)‖ − ‖x− y‖ | ≤ ε

for all x, y ∈ H. Note that when studying approximate isometries there is
no loss of generality in assuming that they map the origin of H to the origin
of K. Indeed, a map f : H → K is an ε-isometry if and only if the map
x 7→ f(x) − f(0), x ∈ H, is an ε-isometry from H to K. In 1945 Hyers and
Ulam proved the stability result for isometries of Hilbert spaces.

Theorem 1.1. [14, Theorem 4] Let H be a Hilbert space and f : H → H a
surjective ε-isometry satisfying f(0) = 0. Then the map U : H → H defined by

Ux = lim
n→∞

1

2n
f (2nx)

is a linear bijective isometry (an orthogonal operator) and we have

‖f(x)− Ux‖ ≤ 10ε (1)

for every x ∈ H.
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Hyers and Ulam gave an example showing that the surjectivity assumption
is indispensable in their theorem. The above result was the beginning of a quite
intensive study of approximate isometries not only on Hilbert spaces but on
more general real Banach spaces, see for example [2, 3, 4, 5, 12, 13, 15]. It took
until 1995 for finding the optimal bound in (1) which is 2ε [17, Main Theorem].
It should be mentioned that in this result the surjectivity assumption can be
replaced by the weaker approximate surjectivity condition [19]. And in the
special case when dimH = dimK < ∞ the stability result holds true even in
the absence of the surjectivity assumption [10]. Some more details including the
generalizations to arbitrary real Banach spaces can be found in [1, Chapter 15].

Qian [18] was the first who considered approximate isometries on arbitrary
Bancah spaces in the absence of the surjectivity assumption. Let us recall
the famous Mazur-Ulam theorem [16] stating that every surjective isometry f
between two real Banach spaces satisfying f(0) = 0 is linear. A nonsurjective
extension of this classical theorem was obtained by Figiel (see [11] or [1, 14.2]).
He proved that for any isometry f : X → Y between two real Banach spaces
with f(0) = 0 there is a linear operator T of norm one mapping the closure of
the linear span of the range of f onto X such that the product Tf is the identity
on X. As observed by Qian the approximate version of Figiel’s theorem does
not hold for general Banach spaces. We will formulate here a result from [19]
that links Figiel’s theorem with Theorem 1.1.

Theorem 1.2. [19, Theorem 2.6] Let H,K be Hilbert spaces and f : H → K an
ε-isometry with f(0) = 0. Then there is a continuous linear operator T : K → H
with ‖T‖ = 1 such that

‖Tf(x)− x‖ ≤ 2ε (2)

for every x ∈ H.

For similar results we refer to [6, 7, 8, 9, 18].
At first glance Theorem 1.2 looks as the optimal nonsurjective extension of

Theorem 1.1. But after thinking for a while it seems natural to ask if we can
get something more. Namely, the geometry of Hilbert spaces is much simpler
than in general Banach spaces. In particular, every isometry (not necessarily
surjective) acting between Hilbert spaces H and K and sending the origin of H
to the origin of K is linear. Indeed, let x, y ∈ H. Then the only metric midpoint
between x and y is the algebraic midpoint x+y

2 , and therefore every isometry
f : H → K satisfies

f

(
x+ y

2

)
=

1

2
(f(x) + f(y))

for all pairs of vectors x, y. It follows easily that f must be linear.
Hence, when specializing to real Hilbert spaces we do not need the surjec-

tivity assumption in the Mazur-Ulam theorem. But on the other hand, already
Hyers and Ulam observed that the surjectivity assumption is an essential as-
sumption in Theorem 1.1. Thus, the situation with approximate isometries is
definitely more involved than with isometries.
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Nevertheless, one may argue that when dealing with approximate isometries
of Hilbert spaces it is not natural to formulate the stability result in the form
suggested by Figiel’s theorem as in (2). We will present a result that explains
the stability of non-surjective approximate isometries acting on Hilbert spaces
much better than Theorem 1.2. Roughly speaking we will show that there
exists a linear isometry U : H → K approximating f in the sense that when
decomposing K into the orthogonal direct sum K = ImU ⊕ (ImU)⊥ and when
restricting our attention to the first summand we have the same situation as in
Theorem 1.1 with the optimal bound 2ε instead of 10ε, while the projection of
f on the second summand is small. Here, ImU denotes the image of U .

Theorem 1.3. Let H,K be Hilbert spaces and f : H → K an ε-isometry with
f(0) = 0. Then there exists a linear isometry U : H → K such that

‖Pf(x)− Ux‖ ≤ 2ε (3)

and
‖(I − P )f(x)‖ ≤

√
6ε‖x‖+ ε2 (4)

for every x ∈ H. Here, P : K → K is the orthogonal projection of K onto the
image of U .

Clearly, this is an improvement of Theorem 1.2. Indeed, let U−1 denote the
inverse of a bijective linear isometry U : H → ImU . The inequality (3) yields
‖U−1(Pf(x) − Ux)‖ ≤ 2ε, x ∈ H, which further implies ‖Tf(x) − x‖ ≤ 2ε,
x ∈ H, where T = U−1P is a bounded linear operator of norm one. Let us
write f as f = Pf + (I − P )f . The new ingredient is the estimate (4) showing
that the orthogonal projection of f onto the orthogonal complement of the image
of U is small.

In the next section we will discuss the optimality of the bounds given in (3)
and (4). The last section will be devoted to the proof of Theorem 1.3.

2 The optimality of the main theorem

The inequality (3) is known to be sharp even in the special case when f is
surjective - in this case U is bijective and P is the identity on K.

Next, we turn to the optimality of (4). On the right hand side of the inequal-
ity we have the estimate of the form

√
A‖x‖+B and we would like to know

what are the optimal values of the constants A and B. Let R2 be equipped with
the Euclidean norm. It is easy to check that the map f : R→ R2 defined by

f(t) =

{
(t, 0) : t ≤ 0

(t,
√

2εt) : t ≥ 0

is an ε-isometry. Every linear isometry W : R→ R2 is of the form Wt = t(p, q),
t ∈ R, where (p, q) is some vector of norm one. If (p, q) 6= (±1, 0) and P : R2 →
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R2 is the orthogonal projection onto the image of W then obviously there exists
a negative real number s such that

‖Pf(s)‖ = ‖P (s, 0)‖ < |s| − 2ε,

and therefore,

‖Pf(s)−Ws‖ ≥ ‖Ws‖ − ‖Pf(s)‖ > |s| − (|s| − 2ε) = 2ε.

When (p, q) = (−1, 0) we have ‖Pf(s) −Ws‖ = 2|s| > 2ε for every negative
s ∈ R with |s| > ε.

Hence, the isometry U appearing in the conclusion of Theorem 1.3 for our
particular ε-isometry f is defined by Ut = (t, 0), t ∈ R. If we denote by P the
orthogonal projection onto the image of U then ‖(I − P )f(t)‖ = ‖(0,

√
2εt)‖ =√

2εt, t > 0, showing that the best possible value of A is no smaller than 2ε.
We were unable to find the sharp value of A ∈ [2ε, 6ε].

The next example shows that the value B = ε2 in (4) is optimal. Let δ > 0.
It is trivial to verify that the map f : R→ R2 defined by

f(t) =

{
(t, 0) : t 6= δ
(δ, ε) : t = δ

is an ε-isometry and as above we can easily see that the unique isometry U
appearing in the conclusion of the above theorem for our particular ε-isometry
f is defined by Ut = (t, 0), t ∈ R. By our theorem we know that

‖(I − P )f(t)‖ ≤
√
A|t|+B

for some positive constants A ≤ 6ε and B ≤ ε2 and we want to verify that B
cannot be smaller than ε2. If we insert t = δ in the above inequality we arrive
at

ε ≤
√
Aδ +B.

This has to be true for every positive δ and sending δ to zero we easily conclude
that B must be equal to ε2.

3 Proof of the stability result for nonsurjective
approximate isometries of Hilbert spaces

In this section we will prove Theorem 1.3.

Proof of Theorem 1.3. We first recall Theorem 1 from the Hyers-Ulam paper
[14]: Let H,K be Hilbert spaces and f : H → K an ε-isometry satisfying
f(0) = 0. Then the limit

Ux = lim
n→∞

1

2n
f (2nx)
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exists for every x ∈ H. The map x→ Ux is an isometry.
In fact, Hyers and Ulam have considered only ε-isometries mapping H into

itself. But exactly the same proof works also for ε-isometries mapping H into
some other Hilbert space K.

Let U be as above and T as in Theorem 1.2. Then for every z ∈ H and
every positive integer n we have

‖Tf(2nz)− 2nz‖ ≤ 2ε.

Dividing by 2n, sending n to infinity, and using linearity and continuity of T we
conclude that

(TU)z = z

for every z ∈ H.
Now we apply the fact that U is linear. In particular, if we denote the image

of U by K1, then K1 is a closed subspace of K. Let K2 denote its orthogonal
complement. By U−1 : K1 → H we will denote the inverse of the linear isometry
U considered as a bijective isometry from H onto K1.

If x + y, x ∈ K1, y ∈ K2, is an arbitrary vector in K, then because of
(TU)z = z, z ∈ H, we have

Tx = U−1x.

In the next step we will verify that Ty = 0.
Assume on the contrary that Tu = w 6= 0 for some unit vector u ∈ K2.

Denote a = ‖w‖ > 0. For every positive real t we have

T (t(Uw) + u) = (t+ 1)w.

If we choose a positive real number t such that

t >
1− a2

2a2
,

then a straightforward calculation shows that

1 <
(t+ 1)a√
t2a2 + 1

=
‖T (t(Uw) + u)‖
‖t(Uw) + u‖

,

contradicting the fact that ‖T‖ = 1.
Hence, for every x+ y ∈ K1 ⊕K2 = K we have

T (x+ y) = U−1x. (5)

Let z ∈ H be any vector. Then there are unique vectors f1(z) ∈ K1 and
k(z) ∈ K2 such that

f(z) = f1(z) + k(z).

We define a map h : H → K1 by h(z) = f1(z) − Uz, z ∈ H. From (2) we
conclude that

‖T (Uz + h(z) + k(z))− z‖ ≤ 2ε
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which together with (5) yields that ‖(z + U−1h(z)) − z‖ ≤ 2ε. Applying the
fact that U is an isometry we arrive at

‖h(z)‖ ≤ 2ε (6)

for every z ∈ H.
We denote by P : K → K the orthogonal projection onto K1. Then clearly,

Pf = f1 and (I − P )f = k.

Thus, (3) follows directly from (6), and we only need to check that

‖k(x)‖ ≤
√

6ε‖x‖+ ε2

for every x ∈ H. Because I−P is the orthogonal projection onto the orthogonal
complement of ImU it is enough to show that

‖f(x)− Ux‖ ≤
√

6ε‖x‖+ ε2 (7)

for every x ∈ H.
Let x ∈ H be any nonzero vector and k any positive integer. Set ‖x‖ = r.

Since f(0) = 0 and f is an ε-isometry we have

| ‖f(x)‖ − r | ≤ ε, (8)

| ‖f(kx)− f(x)‖ − (k − 1)r | ≤ ε, (9)

and
| ‖f(kx)‖ − kr | ≤ ε. (10)

We denote
B1 = {y ∈ K : ‖y‖ ≤ r + ε}

and
B2 = {y ∈ K : ‖y − f(kx)‖ ≤ (k − 1)r + ε}.

From (8) and (9) we get that f(x) ∈ B1 ∩B2.
For an arbitrary vector y ∈ B1 ∩B2 we have

‖y − f(kx)‖2 = ‖y‖2 + ‖f(kx)‖2 − 2〈y, f(kx)〉 ≤ ((k − 1)r + ε)2

and therefore,∥∥∥∥y − 1

k
f(kx)

∥∥∥∥2 = ‖y‖2 +
1

k2
‖f(kx)‖2 − 2

k
〈y, f(kx)〉

=
1

k
(‖y‖2 + ‖f(kx)‖2 − 2〈y, f(kx)〉) +

k − 1

k
‖y‖2 +

1− k
k2
‖f(kx)‖2

≤ 1

k
((k − 1)r + ε)2 +

k − 1

k
‖y‖2 − k − 1

k2
‖f(kx)‖2.
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Assume that the positive integer k satisfies kr − ε > 0. Applying ‖y‖ ≤ r + ε
and (10) which yields that ‖f(kx)‖ ≥ kr − ε we obtain after a straightforward
computation that∥∥∥∥y − 1

k
f(kx)

∥∥∥∥2 ≤ 6εr

(
1− 1

k

)
+ ε2

(
1− 1

k
+

1

k2

)
.

Putting into the last inequality y = f(x) ∈ B1 ∩ B2, k = 2n, and sending n to
infinity we get the desired inequaltiy (7).
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