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Abstract. We study lightlikeness preserving mappings from the 4-dimensional

Minkowski spacetimeM4 to itself under no additional regularity assumptions

like continuity, surjectivity, or injectivity. We prove that such a mapping φ
satisfies one of the following three conditions.

(1) The mapping φ can be written as a composition of a Lorentz transfor-

mation, a multiplication by a positive scalar, and a translation.
(2) There is an event r ∈ M4 such that φ(M4 \ {r}) is contained in one

light cone.
(3) There is a lightlike line ` such that φ(M4 \ `) is contained in another

lightlike line.

Here, a line that is contained in some light cone inM4 is called a lightlike line.
We also give several similar results on mappings defined on a certain subset of

M4 or the compactification of M4.
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Part 1. Introduction and preliminaries

1. Introduction

1.1. Concise description of our result. In this paper, we study the standard
Minkowski spacetime M4 of dimension 3 + 1. In the mathematical foundations of
special relativity, we adopt the harmless normalization that the speed of light equals
1. Recall that two spacetime events r1 = (x1, y1, z1, t1), r2 = (x2, y2, z2, t2) ∈ M4

are lightlike if

(x2 − x1)2 + (y2 − y1)2 + (z2 − z1)2 = (t2 − t1)2.

Hence, r1 and r2 are lightlike if the light signal can pass between r1 and r2.
The Lorentz–Minkowski indefinite inner product on M4 is defined by

〈r1, r2〉 = −x1x2 − y1y2 − z1z2 + t1t2

for a pair of spacetime events r1 = (x1, y1, z1, t1), r2 = (x2, y2, z2, t2) ∈ M4. Thus,
r1, r2 are lightlike if and only if

〈r1 − r2, r1 − r2〉 = 0.

For a given spacetime event r, the set of all spacetime events s satisfying 〈s− r, s−
r〉 = 0, that is, the set of all spacetime events s such that s and r are lightlike, is
called the light cone with vertex r.

Recall that a Lorentz matrix is a 4 × 4 real matrix Q satisfying QtMQ = M ,
where

(1.1) M =


−1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 1


and Qt denotes the transpose of Q. A mapping onM4 of the form r 7→ Qr for some
Lorentz matrix Q is called a Lorentz transformation. A Lorentz transformation is
characterized as a linear mapping φ : M4 →M4 satisfying

〈φ(r1), φ(r2)〉 = 〈r1, r2〉
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for every pair r1, r2 ∈ M4. A mapping on M4 of the form r 7→ Qr + a for some
Lorentz matrix Q and a spacetime event a is called a Poincaré transformation.

A map φ : M4 → M4 is said to preserve lightlikeness in both directions if it
satisfies

(1.2) 〈r1 − r2, r1 − r2〉 = 0 ⇐⇒ 〈φ(r1)− φ(r2), φ(r1)− φ(r2)〉 = 0

for every pair of spacetime events r1, r2 ∈M4. Observe that a bijection φ : M4 →
M4 preserves lightlikeness in both directions if and only if the light cone with
vertex r is mapped by φ onto the light cone with vertex φ(r) for every r ∈ M4.
The following theorem is known as the fundamental theorem of chronogeometry.

Theorem 1.1. Every bijective map φ : M4 → M4 satisfying (1.2) for every pair
of spacetime events r1, r2 ∈M4, is of the form

(1.3) φ(r) = cQr + a, r ∈M4,

for some positive real number c, some Lorentz matrix Q, and some spacetime event
a.

Note that linearity or continuity is not assumed in this theorem. Conversely,
it is easily seen that a mapping of the form (1.3) preserves lightlikeness in both
directions. According to [3], the fundamental theorem of chronogeometry was first
given by Alexandrov in 1949 [1] (see also [2], [4], [32]). For a physical interpretation
of this theorem, we refer to [24, p.691].

The fundamental theorem of chronogeometry has been improved in many ways.
The same conclusion as in Theorem 1.1 has been obtained under some weaker as-
sumptions, see [5], [7], [21], [22], [24], [25], [26], and [32]. Our aim is to optimize the
fundamental theorem of chronogeometry. We will assume no regularity conditions
like injectivity or surjectivity. The assumption of preserving lightlikeness in both
directions will be replaced by the following weaker condition. A map φ : M4 →M4

is said to preserve lightlikeness (or more precisely, it preserves lightlikeness in one
direction) if for every pair of spacetime events r1, r2 ∈M4 we have

〈r1 − r2, r1 − r2〉 = 0⇒ 〈φ(r1)− φ(r2), φ(r1)− φ(r2)〉 = 0.

In other words, a mapping φ : M4 → M4 preserves lightlikeness when the light
cone with vertex r is mapped by φ to a (possibly proper) subset of the light cone
with vertex φ(r) for every r ∈ M4. We study a general mapping φ : M4 → M4

that preserves lightlikeness in one direction only. Under such a weak assumption,
not all lightlikeness preserving maps are of the form (1.3).

Now let us state one consequence of our main results. A lightlike line is a subset
of M4 of the form

{(x0 + tx, y0 + ty, z0 + tz, t) : t ∈ R}
for some (x0, y0, z0), (x, y, z) ∈ R3 with x2 + y2 + z2 = 1. Observe that this is a
subset of the light cone with vertex (x0, y0, z0, 0) ∈M4.

Theorem 1.2. Let φ : M4 → M4 preserve lightlikeness in one direction. Then
one of the following holds.

(1) The mapping is of the form (1.3) for some positive real number c, some
Lorentz matrix Q, and some spacetime event a.

(2) There are events r, r′ ∈M4 such that φ(M4 \ {r}) is contained in the light
cone with vertex r′.
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(3) There are lightlike lines `, `′ in M4 such that φ(M4 \ `) is contained in `′.

In fact, we will give a result that applies to a mapping defined on a more general
subset of M4.

1.2. The Minkowski spacetime versus the space of hermitian matrices.
There is another source of motivation from matrix theory to think of lightlikeness
preserving mappings. With H2 we denote the set of all 2 × 2 complex hermitian
matrices. To each spacetime event r = (x, y, z, t) ∈ M4, we associate a 2 × 2
hermitian matrix

(1.4) ξ(r) = A =

[
t− z x+ iy
x− iy t+ z

]
∈ H2.

A straightforward computation shows that the spacetime events r1, r2 are lightlike
if and only if the associated matrices A1 and A2 satisfy

det(A2 −A1) = 0.

For a 2× 2 matrix, its determinant is zero if and only if it is either the zero matrix
or a matrix of rank one. Recall that two matrices A1, A2 are said to be coherent ,
A1 ∼ A2, if

rank (A2 −A1) ≤ 1.

Hence, two spacetime events r1, r2 are lightlike if and only if the associated matrices
A1 and A2 are coherent. There is a vast literature on mappings on the space of
matrices that preserve the coherency relation or some similar relation that involves
rank. See for example Hua’s series of work [10, 11, 12, 13, 14, 15, 16, 17] and related
results [19], [27], [30]. This kind of results have many applications, for example
in the geometry of algebraic homogeneous spaces, see [6], and in the study of
symmetries of certain quantum structures, see [28], [29], and the references therein.

By considering a mapping satisfying the assumption in Theorem 1.2, we get a
mapping ϕ : H2 → H2 satisfying

rank (A−B) ≤ 1⇒ rank (ϕ(A)− ϕ(B)) ≤ 1,

or equivalently,

(1.5) det(A−B) = 0⇒ det(ϕ(A)− ϕ(B)) = 0

for every pair A,B ∈ H2. It is easily seen that this is also equivalent to the condition

rank (ϕ(A)− ϕ(B)) ≤ rank (A−B)

for every pair A,B ∈ H2. Therefore, by considering H2 instead of M4, we get at
least three formulations of this condition.

This paper is basically formulated in terms of 2 × 2 hermitian matrices instead
of the Minkowski spacetime. We avoid using results on the Minkowski spacetime
like Theorem 1.1. Therefore, the reader needs no prerequisite knowledge about the
geometry of Minkowski spacetime. Instead, throughout the paper we freely use
facts about 2 × 2 matrices. We believe that in such a way the results are more
accessible for the general audience.
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1.3. Structure of the paper. In the next section, we will introduce the space
H2 ⊃ H2. We extend the coherency relation ∼ on H2 to H2, and show that the
space H2 endowed with the coherency relation can be identified with the 2 × 2
unitary group U2 via the Cayley transform. We also show that H2 can be identified
with M4, which appears in the literature as a compactification of M4.

Let A ⊂ H2. A mapping ϕ : A → H2 is called a coherency preserver , or it
preserves coherency (in one direction), if it satisfies

A ∼ B ⇒ ϕ(A) ∼ ϕ(B)

for every pair A,B ∈ A. Instead of lightlikeness preserving mappings on M4, we
will think of the equivalent problem of coherency preserving mappings on H2. In
fact, we will study mappings defined on a subset of H2 rather than on H2. An
advantage of working with H2 (or M4) rather than H2 (or M4) derives from the
fact that there are more symmetries in H2 than in H2.

Section 3 collects basic concepts concerning the coherency relation of H2. In
Subsection 3.1 we introduce the concept of an automorphism, that is, a bijective
mapping of H2 that preserves coherency in both directions. We define two spe-
cial classes of automorphisms: affine automorphisms and standard automorphisms
(Definition 3.6). It is known that an automorphism is always standard. For the
sake of completeness, we give a proof of this fact in Subsection 4.2. We remark
here that the concept of standard automorphism coincides with that of conformal
transformation in the literature.

We then introduce basic notions like projections (together with its relation to the
Bloch representation, Subsection 3.2), lines (Subsection 3.4), and surfaces (Subsec-
tion 3.5). We give some properties of such sets. We also study the relative position
of three points in H2 (Subsection 3.6). In the last subsection of that section (Sub-
section 3.7), we collect results about the identity-type theorem in our setting.

The main part of our paper starts in Section 4. We study coherency preserving
mappings from a subset of H2 to H2. Such a map is said to be standard if it extends
to a standard automorphism of H2. The first main result is Theorem A, which
gives a sufficient condition for a coherency preserving mapping to be standard. To
demonstrate the potential of this theorem, we show that the classical version of the
fundamental theorem of chronogeometry can be obtained easily from Theorem A
(Subsection 4.2).

In Section 5, we first introduce two important types of coherency preserving maps
(Definitions 5.6, 5.8) in correspondence with the latter two items in Theorem 1.2.
The key result is Theorem B. Applications of Theorem B are given in Subsection
5.2. We prove that every coherency preserver from U into H2 is either standard or
of one of the two types if U is either a matrix interval in H2 or the whole space
H2. This together with the identity-type theorem in Subsection 3.7 shows that a
coherency preserver defined on an open connected subset of H2 is either standard
or locally degenerate in a certain sense (Theorem 5.18). We also demonstrate that
Theorem 1.2 and the main result in Lester’s article [21] can be obtained easily from
our theorems. In Subsection 5.3, we give a more concrete description of coherency
preservers of the two types. In particular, we study the case where the domain is
either H2 or H2. A rather long proof of Theorem B is given in the last section.
The proof is split into three cases.
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1.4. Further research directions. Before closing the current section, let us men-
tion the possibility of generalizing our work. In this paper, we study everything
in the setting of 4-dimensional Minkowski spacetime or its compactification. Most
of our discussion, after translating the concepts in a suitable manner, is valid for
a mapping from (a subset of the compactification of) the Minkowski spacetime of
arbitrary dimension ≥ 5 to itself, even though the picture in terms of hermitian
matrices does not make sense. In the 3-dimensional case there is at least one point
where the argument in the 4-dimensional space cannot be modified easily. More
precisely, it is Lemma 6.24. We do not know whether the same conclusions as in
the 4-dimensional case hold in the 3-dimensional case.

There are further possible directions of research that seem highly challenging.
For example, what happens if we consider mappings on a space endowed with a
more general symmetric bilinear form instead of the Lorentz–Minkowski indefinite
inner product? Is it possible to give a more general result for coherency preserving
mappings on the space of hermitian matrices of an arbitrary size? How about
mappings satisfying (1.5)?

2. The compactification H2 of H2

Whenever appropriate, matrices will be identified with linear operators. We use
the symbol I for the unit matrix and 0 for the zero matrix. For any complex matrix
A, we denote by At the transpose of A, by A∗ the conjugate transpose of A, and
by trA the trace of A. Let i, j be integers, 1 ≤ i, j ≤ 2. By Eij we denote the 2× 2
matrix whose all entries are zero but the (i, j)-entry which is equal to 1. Vectors
in C2 will be represented by 2× 1 complex matrices. Every 2× 2 complex matrix
of rank one is of the form xy∗ for some nonzero vectors x, y ∈ C2. A projection is
a matrix P satisfying P = P 2 = P ∗. If x = y is a vector of norm one, then xx∗

is a projection of rank one, and every projection of rank one is of this form. Let
{e1, e2} be the standard basis of C2. Then Eij = eie

∗
j .

With ≤ we denote the usual partial order (Loewner order) on H2. That is, A ≤ B
means that both eigenvalues of B − A are at least 0. For A,B ∈ H2 we will write
A < B if B − A is a positive invertible matrix, that is, both eigenvalues of B − A
are positive. Note that the order relation A < B can be interpreted as the following
situation in special relativity under the identification via the mapping ξ as in (1.4):
The spacetime event corresponding to A is in the past of that corresponding to B.

For a 2× 2 matrix A, σ(A) denotes its spectrum, that is, the set of eigenvalues
of A. Let P denote the collection of all rank one projections in H2. For P ∈ P, we
write P⊥ := I−P ∈ P. Let R = R∪{∞} denote the one-point compactification of
R. Later in this paper, we will frequently use the symbols (a,∞] := (a,∞) ∪ {∞},
[a,∞] := [a,∞) ∪ {∞} ⊂ R for a ∈ R.

In this section, we introduce a space H2 ⊃ H2 in a somewhat intuitive manner
that involves only 2× 2 hermitian matrices. Then we endow the space H2 with the
coherency relation ∼ that extends the usual coherency relation in H2. We will show
that the space H2 endowed with the coherency relation can be identified via the
Cayley transform with the 2×2 unitary group U2, and also with the compactification
M4 of M4.

Before we proceed, let us give one easy lemma. Let H++
2 denote the set of all

positive invertible matrices in H2, and let H−−2 denote the set of negative invertible
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matrices in H2. Let H+−
2 denote the set of matrices in H2 having one positive

eigenvalue and one negative eigenvalue.

Lemma 2.1. Let P,Q ∈ P satisfy P 6= Q. Let a, b ∈ R.

• If a, b > 0, then aP + bQ ∈ H++
2 .

• If a, b < 0, then aP + bQ ∈ H−−2 .
• If ab < 0, then aP + bQ ∈ H+−

2 .

More generally, if a, b are nonzero complex numbers, then aP + bQ is an invertible
matrix.

Proof. There is no loss of generality in assuming that P = E11. Then

Q =

[
c eit

√
c− c2

e−it
√
c− c2 1− c

]
for some 0 ≤ c < 1 and some t ∈ [0, 2π). Now the verification of the statement is
easily done by the equation

det(aE11 + bQ) = (a+ bc) · b(1− c)− b2(c− c2) = ab(1− c)

and by looking at the (1, 1)-entry of aE11 + bQ. �

2.1. Definition of H2. We consider the collection H2 of all formal sums aP +bP⊥

for P ∈ P and a, b ∈ R, with the following rules:

• aP + bP⊥ = bP⊥ + aP for any a, b ∈ R and any P ∈ P,
• aP + aP⊥ = aQ+ aQ⊥ for any a ∈ R and any P,Q ∈ P.

Then it is clear that the set H2 embeds into H2 in a natural manner. Using this
embedding, we will always regard elements of H2 as elements of H2. Therefore, for
a ∈ R and P,Q ∈ P, we have aP = aP + 0P⊥ and aI = aP + aP⊥ = aQ + aQ⊥.
We also use the symbols ∞̂ :=∞P +∞P⊥ =∞Q+∞Q⊥ and∞P :=∞P + 0P⊥.
We extend the coherency relation ∼ on H2 to H2 in the following way:

• For A,B ∈ H2, we define ∼ as before, i.e., A ∼ B ⇐⇒ rank (B −A) ≤ 1.
• If a ∈ R, A ∈ H2, and P ∈ P, then ∞P + aP⊥ ∼ A if and only if
P⊥AP⊥ = aP⊥ (note that the condition P⊥AP⊥ = aP⊥ is equivalent to
tr (P⊥A) = a).
• If a, b ∈ R and P,Q ∈ P, then ∞P + aP⊥ ∼ ∞Q + bQ⊥ if and only if
P = Q.
• ∞̂ ∼ ∞P + aP⊥ for every a ∈ R and every P ∈ P, and ∞̂ 6∼ A for every
A ∈ H2.

For A,B ∈ H2, we define d(A,A) = 0, d(A,B) = 1 if A 6= B ∼ A, and d(A,B) = 2
if A 6∼ B. It is easily seen that d satisfies the axioms of distance.

For A ∈ H2, the collection CA of all elements B ∈ H2 satisfying A ∼ B is called
the cone with vertex A. The following are easy to verify.

• If A ∈ H2, then

CA = {B ∈ H2 : A ∼ B} ∪ {∞P + tr (P⊥A)P⊥ : P ∈ P}.

• If P ∈ P and a ∈ R, then

C∞P+aP⊥ = {∞P + bP⊥ : b ∈ R} ∪ {B ∈ H2 : P⊥BP⊥ = aP⊥}.

• C∞̂ = H2 \H2.
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2.2. The relation between H2 and U2. In order to demonstrate that the above
definition of ∼ is natural, we will identify H2 with U2, the group of all 2×2 unitary
matrices. The identification is given by the Cayley transform

(2.1) f(aP + bP⊥) = f(a)P + f(b)P⊥,

where f : R→ T is determined by

(2.2) f(t) =
t− i
t+ i

, t ∈ R, and f(∞) = 1.

Here, T denotes the group of all complex numbers of modulus one. See also
Uhlmann’s article [31].

The coherency relation on U2 is defined in the same way as on the set of hermitian
matrices, that is, unitary matrices U and V are coherent if and only if rank (U−V ) ≤
1. More generally, for an arbitrary pair of 2 × 2 complex matrices A,B, we say A
and B are coherent and write A ∼ B when rank (A−B) ≤ 1.

Lemma 2.2. Let A be a 2 × 2 complex matrix of rank at most one. Then A ∼ I
holds if and only if trA = 1.

Proof. By choosing a suitable orthonormal basis of C2, one may assume that A is
of the form [

trA 0
∗ 0

]
.

It is now easy to get the desired conclusion. �

It is clear that the map A 7→ f(A), A ∈ H2, is a bijection of H2 onto U2.
Moreover, the image f(H2) equals the set of all unitary matrices U ∈ U2 with the
property that 1 6∈ σ(U).

We will show that for any pair A,B ∈ H2 we have A ∼ B if and only if f(A) ∼
f(B). We first note that

(2.3)
t− i
t+ i

= 1− 2i

t+ i
.

Therefore, for any A,B ∈ H2 we have

f(A)− f(B) =
(
I − 2i(A+ iI)−1

)
−
(
I − 2i(B + iI)−1

)
= −2i(A+ iI)−1 + 2i(B + iI)−1

= 2i(A+ iI)−1((A+ iI)− (B + iI))(B + iI)−1

= 2i(A+ iI)−1(A−B)(B + iI)−1.

Hence for A,B ∈ H2, we have A ∼ B if and only if f(A) ∼ f(B).
Let us consider the case A = ∞P + aP⊥ for some a ∈ R and P ∈ P. Then

U := f(A) = P + f(a)P⊥. Note that f(a) ∈ T \ {1}.

Claim 2.3. Let B ∈ H2 and V := f(B) ∈ U2. Then V is coherent to U if and
only if one of the following holds:

• B /∈ H2 and there is λ ∈ T such that V = P + λP⊥.
• B ∈ H2 and P⊥BP⊥ = aP⊥.

Proof. Note that U ∼ V is equivalent to U − I ∼ V − I. Note also that U − I =
(f(a)− 1)P⊥ 6= 0. Assume that B /∈ H2, or equivalently, 1 ∈ σ(V ). Then V − I is
a scalar multiple of a rank one projection. Observe that V − I is a scalar multiple
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of P⊥ if and only if there is λ ∈ T such that V = P + λP⊥. If these conditions
hold, we clearly have U ∼ V . If V − I = bQ for some P⊥ 6= Q ∈ P and 0 6= b ∈ C,
then V − U = bQ− (f(a)− 1)P⊥ is invertible by Lemma 2.1. It follows that U is
not coherent to V in this case.

Assume that B ∈ H2, or equivalently, 1 /∈ σ(V ). We have f(a)−1 = −2i(a+i)−1

and V −I = −2i(B+iI)−1 by (2.3). Thus the condition U−I ∼ V −I is equivalent
to (a+i)−1P⊥ ∼ (B+iI)−1, which is in turn equivalent to (a+i)−1(B+iI)P⊥ ∼ I.
By Lemma 2.2, this is further equivalent to 1 = tr ((a + i)−1(B + iI)P⊥) = (a +
i)−1(tr (BP⊥) + i). This leads to tr (BP⊥) = a, which means P⊥BP⊥ = aP⊥. �

This claim clearly implies that for B ∈ H2 we have A ∼ B if and only if
f(A) ∼ f(B). In the case that A = ∞̂ and B is any element of H2, we have
I = f(A) ∼ f(B) if and only if 1 is an eigenvalue of f(B), which is equivalent to
B = ∞P + aP⊥ for some P ∈ P and some a ∈ R. We have shown that the map
f : H2 → U2 is an isomorphism with respect to the coherency relation.

2.3. The relation between H2 and M4. The compactification M4 of M4 is a
concept studied by both mathematicians and physicists, notably by R. Penrose.
Essentially the same space can be introduced in several ways, and it is called by
different names such as the conformal compactification, the conformal Minkowski
space, the compactified Minkowski space, etc. The space M4 is visualized with
the so-called Penrose’s diagram. Those readers who are familiar with this concept
are encouraged to think of a visual image to see what is going on in each of the
arguments in the subsequent sections. See for example [9, Section 5.1], [23] for more
information about the space M4.

In this subsection, we first introduce the space M4 in accordance with Lester’s
article [20]. The spaceM4 is naturally endowed with a binary relation that extends
the lightlikeness relation in M4. We give a complete proof of the fact that M4

endowed with this binary relation can be identified with H2 endowed with our
coherency relation. The results in the current subsection will not be used in the
rest of this paper, so those readers who are new to the space M4 may skip to
Section 3.

Let us denote by (· , ·) the usual inner product on R6. We further denote

M =


−1 0 0 0 0 0
0 −1 0 0 0 0
0 0 −1 0 0 0
0 0 0 1 0 0
0 0 0 0 0 − 1

2
0 0 0 0 − 1

2 0

 .

The symbol P(R6) stands for the projective space over R6, that is,

P(R6) = {[X] : X ∈ R6 \ {0}}.

Here, [X] denotes the one-dimensional subspace spanned by the nonzero vector X.
Next we introduce the symmetric bilinear form 〈·, ·〉 : R6 × R6 → R defined by

〈X,Y 〉 = (MX,Y ), X, Y ∈ R6,

and the corresponding quadratic form q : R6 → R defined by

q(X) = 〈X,X〉 = (MX,X), X ∈ R6.
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Note that the symbol 〈·, ·〉 has been used before to denote the Lorentz–Minkowski
indefinite inner product on M4. When using this symbol it will be always clear
from the context which of the two bilinear forms is on our mind. Clearly,

(2.4) q(x, y, z, t, h, n) = −x2 − y2 − z2 + t2 − hn, (x, y, z, t, h, n) ∈ R6.

For every nonzero X ∈ R6 and every nonzero real number s we have q(X) = 0 if
and only if q(sX) = 0. We define

M4 = {[X] : [X] ∈ P(R6) and q(X) = 0}.

We say that [X], [Y ] ∈ M4 are coherent, [X] ∼ [Y ], if 〈X,Y 〉 = 0. The set M4

equipped with the coherency relation is called the conformal Minkowski space.
In the next step we will classify points in M4 and at the same time we will

construct a bijective map ξ mapping M4 onto H2 which preserves coherency in
both directions. Let [X] = [(x, y, z, t, h, n)] be a point in M4. We will distinguish
two possibilities.

We start with the possibility that h 6= 0. All points in M4 with this property
will be called finite points. If [X] = [(x, y, z, t, h, n)] is a finite point then we can
assume with no loss of generality that h = 1. It follows from q(X) = 0 that

X = (x, y, z, t, 1,−x2 − y2 − z2 + t2).

If the spacetime event (x, y, z, t) ∈M4 is denoted by r, then we can write shorter

X = (r, 1, 〈r, r〉).

For such a point [X] ∈M4 we define

ξ([X]) =

[
t− z x+ iy
x− iy t+ z

]
.

Clearly, ξ is a bijection of the set of all finite points in M4 onto H2.
It is easy to see that the coherency relation on the set of finite points in the

conformal Minkowski space corresponds to the coherency relation on H2, that is,
to the lightlikeness in Minkowski space. Indeed, let [X], [Y ] ∈M4 be finite points,

X = (r1, 1, 〈r1, r1〉)

and

Y = (r2, 1, 〈r2, r2〉).

Then we have

〈X,Y 〉 = 〈r1, r2〉 −
1

2
(〈r1, r1〉+ 〈r2, r2〉) = −1

2
〈r1 − r2, r1 − r2〉.

Therefore, the map r 7→ [(r, 1, 〈r, r〉)] is an embedding of the space M4 endowed
with the lightlikeness relation into the space M4 endowed with the relation ∼.

When h = 0 we further distinguish two possibilities. The first one is that x =
y = z = t = 0. There is only one such point in the conformal Minkowski space that
will be denoted by [e], where e = (0, 0, 0, 0, 0, 1). We define ξ([e]) = ∞̂. It is clear
that for [X] ∈M4 we have 〈X, e〉 6= 0 if and only if [X] is a finite point in M4.

It remains to consider points [X] = [(x, y, z, t, 0, n)] with the property that at
least one of the coordinates x, y, z, t is nonzero. Then because of q(X) = 0 and
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(2.4) we have t 6= 0 and without loss of generality we can assume that t = 1/2. So
each such point [X] can be represented by

(2.5) X =

(
x, y, z,

1

2
, 0, a

)
,

where x2 + y2 + z2 = 1/4, and we define

ξ([X]) = ξ

([(
x, y, z,

1

2
, 0, a

)])
=∞P + aP⊥,

where

P =

[
1
2 − z x+ iy
x− iy 1

2 + z

]
and P⊥ =

[
1
2 + z −x− iy
−x+ iy 1

2 − z

]
is an orthogonal pair of projections of rank one.

We show that for every X of the form (2.5) and for every [Y ] ∈M4 \ [e] we have
[X] ∼ [Y ] ⇐⇒ ξ([X]) ∼ ξ([Y ]). If both X and Y are of the form (2.5),

X =

(
x1, y1, z1,

1

2
, 0, a1

)
= (r1, 0, a1)

and

Y =

(
x2, y2, z2,

1

2
, 0, a2

)
= (r2, 0, a2)

with rj = (xj , yj , zj , 1/2), j = 1, 2, then 〈X,Y 〉 = 0 ⇐⇒ 〈r1, r2〉 = 0 which by a
straightforward application of the Cauchy–Schwarz inequality for vectors in R3 is
equivalent to r1 = r2, that is, ξ([X]) ∼ ξ([Y ]).

If

X =

(
x1, y1, z1,

1

2
, 0, a1

)
= (r1, 0, a1)

and Y = (r2, 1, n) with r2 = (x2, y2, z2, t2) and n = 〈r2, r2〉, then 〈X,Y 〉 = 〈r1, r2〉−
(1/2)a1. On the other hand, ξ([X]) ∼ ξ([Y ]) if and only if tr (P⊥A) = a1, where

P⊥ =

[
1
2 + z1 −x1 − iy1

−x1 + iy1
1
2 − z1

]
and A =

[
t2 − z2 x2 + iy2

x2 − iy2 t2 + z2

]
.

A straightforward calculation shows that [X] ∼ [Y ] ⇐⇒ ξ([X]) ∼ ξ([Y ]) in this
case as well.

We have shown that H2 can be identified either with the conformal Minkowski
space, or with U2. The subset H2 ⊂ H2 corresponds to the set of all finite points in
M4 that can be further identified with the classical Minkowski space. Alternatively,
the subset H2 ⊂ H2 corresponds to the set of all unitary matrices U ∈ U2 with the
property that 1 6∈ σ(U).

3. Basic concepts

In the current section, we introduce basic concepts in H2 and give their proper-
ties.
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3.1. Automorphisms. An automorphism of H2 is a bijective map ϕ : H2 → H2

that preserves coherency in both directions, i.e.,

(3.1) A ∼ B ⇐⇒ ϕ(A) ∼ ϕ(B)

for every pair A,B ∈ H2. Let c ∈ {−1, 1}, S be an invertible 2×2 complex matrix,
and T ∈ H2. It is easily seen that the mapping ϕ : H2 → H2 given by

(3.2) ϕ(A) = cSAS∗ + T

for every A ∈ H2; or

(3.3) ϕ(A) = cSAtS∗ + T

for every A ∈ H2, is a bijection satisfying (3.1) for every pair A,B ∈ H2.

Remark 3.1. It is known that a bijection ϕ : H2 → H2 satisfying (3.1) for every
pair A,B ∈ H2 needs to be of the form (3.2) or (3.3). For the sake of completeness,
we will give a proof of this fact in Subsection 4.2, which leads to our proof of the
fundamental theorem of chronogeometry. See also [18, Subsection 5.3].

In what follows, we show that a map ϕ : H2 → H2 of the form (3.2) or (3.3)
extends to an automorphism of H2. We first introduce the rule −∞ = ∞ and
define

−(aP + bP⊥) = (−a)P + (−b)P⊥, P ∈ P, a, b ∈ R.
Note that this is well-defined, and that if A ∈ H2 then −A defined in this manner
coincides with −A as a matrix. It is easy to see that the map X 7→ −X, X ∈ H2,
is a bijection of H2 onto itself and for every pair X,Y ∈ H2 we have

X ∼ Y ⇐⇒ −X ∼ −Y.
Thus, the map X 7→ −X, X ∈ H2, is an automorphism of H2. Clearly, this
automorphism is the inverse of itself, that is, −(−X) = X, X ∈ H2.

Secondly, let B ∈ H2. We define

∞̂+B = ∞̂
and

(∞P + aP⊥) +B =∞P + (a+ tr (P⊥B))P⊥, P ∈ P, a ∈ R.
Then A + B is defined for every A ∈ H2 \H2. For A ∈ H2, A + B is defined as a
matrix, as usual.

Claim 3.2. The map X 7→ X +B, X ∈ H2, is an automorphism of H2.

Proof. We need to show that the map preserves coherency in both directions. We
will verify only the special case when X ∈ H2 and Y =∞P + aP⊥ for some real a
and some P ∈ P. (The other cases are easier or similar.) Then X ∼ Y if and only
if P⊥XP⊥ = aP⊥ which is equivalent to tr (P⊥X) = a.

On the other hand, X + B ∼ Y + B = ∞P + (a + tr (P⊥B))P⊥ if and only if
P⊥(X+B)P⊥ = (a+tr (P⊥B))P⊥, which is true if and only if tr (P⊥(X+B)P⊥) =
a+ tr (P⊥B). The last equality is easily seen to be equivalent to tr (P⊥X) = a.

For the verification of bijectivity see the next paragraph. �

A mapping of the form X 7→ X + B will be called a translation. It is trivial to
see that the map X 7→ X + (−B), X ∈ H2, is the inverse of this mapping. We will
write shortly A+ (−B) = A− B, A ∈ H2. Clearly, we have A− B = −(−A+ B)
for every A ∈ H2 and every B ∈ H2. We will occasionally write B + A instead of
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A+B and B−A instead of −A+B for A ∈ H2 and B ∈ H2. For a subset A ⊂ H2

and B ∈ H2, we will sometimes use the symbols like −A = {−A : A ∈ A} and
A+B = {A+B : A ∈ A} etc.

Thirdly, we define

(aP + bP⊥)t = aP t + b(P t)⊥, P ∈ P, a, b ∈ R.

Note that this is well-defined, and that if A ∈ H2 then At defined in this manner
coincides with the usual transpose of the matrix. It is easy to see that X 7→ Xt,
X ∈ H2, is an automorphism of H2 with (Xt)t = X for every X ∈ H2.

Fourthly, let S be any invertible 2× 2 complex matrix. If P is any projection of
rank one, then SPS∗ is a positive rank one matrix. Therefore,

(3.4) Q =
1

tr (SPS∗)
SPS∗

is a projection of rank one. We define

S ∞̂S∗ = ∞̂

and

S(∞P + aP⊥)S∗ =∞Q+ atr (Q⊥SS∗)Q⊥, P ∈ P, a ∈ R,
where Q is defined by (3.4). Then SAS∗ is defined for every A ∈ H2 \ H2. For
A ∈ H2, SAS∗ is defined as a matrix, as usual.

Claim 3.3. The map X 7→ SXS∗, X ∈ H2, is an automorphism of H2.

Proof. We need to verify that for every pair X,Y ∈ H2 we have

(3.5) X ∼ Y ⇐⇒ SXS∗ ∼ SY S∗.

The verification of this equivalence is trivial in the following cases:

• at least one of X and Y is equal to ∞̂,
• both X and Y belong to H2, and
• both X and Y belong to H2 \H2.

Thus, it remains to consider the case when X ∈ H2 and Y =∞P + aP⊥ for some
real a and some P ∈ P. Then X ∼ Y if and only if tr (P⊥X) = a. And we have
SXS∗ ∼ SY S∗ if and only if

tr (Q⊥SXS∗) = atr (Q⊥SS∗),

or equivalently,

tr (S∗Q⊥SX) = atr (S∗Q⊥S).

Note that S∗Q⊥S is a positive matrix of rank one. We show that the equality

tr (P⊥X) =
1

tr (S∗Q⊥S)
tr (S∗Q⊥SX)

holds for all X ∈ H2. It suffices to show that the positive matrix S∗Q⊥S of rank one
is a (positive) scalar multiple of P⊥. This is easily seen by the following equation:

S∗Q⊥SP = S∗Q⊥SPS∗(S∗)−1 = S∗(Q⊥SPS∗)(S∗)−1 = S∗ · 0 · (S∗)−1 = 0.

For the verification of bijectivity see the next claim. �

Claim 3.4. The inverse of the map X 7→ SXS∗, X ∈ H2, is the map X 7→
S−1X(S−1)∗, X ∈ H2.
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Proof. We know that (3.5) holds for every pair X,Y ∈ H2. In the same way, we
see that

X ∼ Y ⇐⇒ S−1X(S−1)∗ ∼ S−1Y (S−1)∗

for every pair X,Y ∈ H2. If we denote by ϕ and ψ the maps from H2 to itself
defined by ϕ(X) = SXS∗ and ψ(X) = S−1X(S−1)∗, X ∈ H2, then we have

X ∼ Y ⇐⇒ ψ(ϕ(X)) ∼ ψ(ϕ(Y ))

for every pair X,Y ∈ H2, and ψ(ϕ(X)) = X for every X ∈ H2 ∪{∞̂}. It is easy to
see that for any pair of points X,Y ∈ H2 \H2 we have

(3.6) CX ∩H2 = CY ∩H2 ⇐⇒ X = Y.

It follows that ψ(ϕ(X)) = X for every X ∈ H2, and in the same way we see
that ϕ(ψ(X)) = X for every X ∈ H2. Hence, the inverse of the automorphism
X 7→ SXS∗ is X 7→ S−1X(S−1)∗. �

We introduce the rules ∞−1 = 0, 0−1 =∞ in R. For A ∈ H2, we define A−1 in
the following manner:

(aP + bP⊥)−1 = a−1P + b−1P⊥, P ∈ P, a, b ∈ R.
Note that this is well-defined and compatible with the usual inverse of matrices
when a, b ∈ R \ {0}.

Claim 3.5. The map X 7→ X−1, X ∈ H2, is an automorphism of H2.

Proof. Let us consider everything inside U2. Let f be defined as in (2.1) and (2.2).
For a unitary matrix U ∈ U2, take a, b ∈ R and P ∈ P such that U = f(a)P +
f(b)P⊥. Then aP + bP⊥ is the corresponding point in H2, and (aP + bP⊥)−1 =
a−1P + b−1P⊥. It follows that f(a−1P + b−1P⊥) = f(a−1)P + f(b−1)P⊥. Since

(2.2) clearly implies f(t−1) = −f(t) for every t ∈ R, we obtain

f(a−1)P + f(b−1)P⊥ = −f(a)P − f(b)P⊥ = −U∗.
Now, we obtain the desired conclusion as a consequence of the following fact. For
every pair of unitaries U, V ∈ U2, we have U ∼ V ⇐⇒ −U∗ ∼ −V ∗. �

The automorphism X 7→ X−1 of H2 will be called the inversion. The inverse
mapping of the inversion is the inversion itself.

Definition 3.6. An automorphism ϕ : H2 → H2 of the form

ϕ(X) = cSXS∗ +B, X ∈ H2;

or

ϕ(X) = cSXtS∗ +B, X ∈ H2

for some c ∈ {−1, 1}, some invertible 2 × 2 complex matrix S, and some B ∈ H2

will be called an affine automorphism. We say that an automorphism of H2 is
standard if it is written as a composition of finitely many affine automorphisms
and inversions.

It is easily seen that the set of standard automorphisms forms a group. It is
known that every automorphism of H2 is standard. For the sake of completeness,
we will give a proof of this fact in Subsection 4.2. We also see the following.

Lemma 3.7. The set of affine automorphisms forms a group.
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Proof. Let ϕ1, ϕ2 be two affine automorphisms. We show that ϕ2 ◦ ϕ1 is an affine
automorphism. Let us consider the case where ϕi is of the form X 7→ SiXS

∗
i +Bi

for some invertible 2× 2 complex matrix Si, and some Bi ∈ H2, i = 1, 2. Let ϕ be
the affine automorphism X 7→ (S2S1)X(S2S1)∗ + S2B1S

∗
2 + B2. It is easily seen

that ϕ−1 ◦ϕ2 ◦ϕ1(X) = X for every X ∈ H2. This leads to ϕ−1 ◦ϕ2 ◦ϕ1(X) = X
for every X ∈ H2 (as in the discussion in the proof of Claim 3.4), hence we get
ϕ2 ◦ϕ1 = ϕ. The other cases can be considered in an analogous manner. Similarly,
we may show that ϕ−1

1 is an affine automorphism. �

In fact, the class of affine automorphisms coincides with the group of symme-
tries on H2, that is, the group of all bijections on H2 that preserve coherency in
both directions (Theorem 4.11 and Corollary 4.12). Clearly, the class of standard
automorphisms is bigger than that of affine automorphisms. This is the reason
why we introduce the space H2. If we work with H2 together with symmetries
on H2 instead of H2, then we cannot obtain most of the results in the subsequent
subsections (particularly in Subsections 3.3, 3.4, 3.5, 3.6).

3.2. Bloch representation. The symbol ‖ · ‖ denotes the usual operator norm.
A matrix A ∈ H2 of trace one with 0 ≤ A is called a density matrix . We first recall
some known facts about the Bloch representation of the set of all density matrices
in H2. The reader will note that the idea is the same as in Introduction where we
have identified spacetime events with 2× 2 hermitian matrices.

It is easy to see that the map given by

(3.7)

[
1/2− z x+ iy
x− iy 1/2 + z

]
7→ (x, y, z) ∈ R3

is a bijection of the set of all density matrices in H2 onto the closed ball in R3

centered at the origin with radius 1/2, which we call the Bloch ball . The sphere of
the Bloch ball is called the Bloch sphere, and we denote it by S2. Observe that the
above mapping sends the set P of 2× 2 projections of rank one onto S2.

Let

A =

[
1/2− z1 x1 + iy1

x1 − iy1 1/2 + z1

]
and B =

[
1/2− z2 x2 + iy2

x2 − iy2 1/2 + z2

]
be any density matrices and u = (x1, y1, z1) and v = (x2, y2, z2) the corresponding
points in the Bloch ball. Because A−B is a 2×2 hermitian matrix with trace zero,
we have

(3.8) ‖A−B‖2 = −det(A−B) = (x2 − x1)2 + (y2 − y1)2 + (z2 − z1)2,

that is, the norm distance between A and B is equal to the Euclidean distance in
the Bloch ball.

If in addition A = P,B = Q are projections, then the right-hand side of (3.8) is
further equal to

(u− v, u− v) =
1

4
+

1

4
− 2(u, v) =

1− cosα

2
= sin2 α

2
,

where α ∈ [0, π] is the angle between u and v in S2, that is, cosα = 4(u, v).
Therefore, arcsin ‖P − Q‖ equals α/2, which is the geodesic distance between u
and v in the Bloch sphere (that is, the length of the shorter arc in the great circle
passing through u and v). We define

(3.9) dg(P,Q) = arcsin ‖P −Q‖
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for P,Q ∈ P. For us, one important fact about this distance function is the following
obvious property.

Lemma 3.8. If P,Q ∈ P with dg(P,Q) = s and n is a positive integer and t a real
number such that nt ≥ s, then there exist points P0 = P, P1, . . . , Pn = Q in P such
that dg(Pj−1, Pj) ≤ t, j = 1, 2, . . . , n.

Proof. This is trivial by thinking about the geodesic distance in S2. �

The following theorem will be used in Section 4.

Theorem 3.9 (Special case of the non-bijective version of Wigner’s theorem). Let
µ : P → P be a mapping satisfying

(3.10) tr (µ(P )µ(Q)) = tr (PQ), P,Q ∈ P.

Then there exists a 2× 2 unitary matrix U such that either

µ(P ) = UPU∗, P ∈ P,

or

µ(P ) = UP tU∗, P ∈ P.

See [8] for an elementary proof of this theorem.

Remark 3.10. Since (P −Q)2 is a scalar multiple of I, we get

‖P −Q‖2 = ‖(P −Q)2‖ =
1

2
tr
(
(P −Q)2

)
=

1

2
tr (P −PQ−QP +Q) = 1−tr (PQ).

From this, we see that (3.10) is equivalent to

‖ϕ(P )− ϕ(Q)‖ = ‖P −Q‖, P,Q ∈ P.

We continue collecting some lemmas concerning P that will be used in Section
4.

Lemma 3.11. Let P,Q ∈ P. Then

‖P −Q‖2 + ‖P⊥ −Q‖2 = 1.

Proof. This is clear from (3.8) and the fact that P and P⊥ correspond to antipodal
points in the Bloch sphere. �

Lemma 3.12. For A ∈ H2, the following are equivalent:

• A ∼ 0 and A ∼ I,
• A ∈ P.

Proof. If A ∈ P, then obviously A ∼ 0 and A ∼ I. If A ∼ 0, then A = tP for some
P ∈ P and some t ∈ R. Clearly, tP ∼ I if and only if t = 1. This completes the
proof. �

For A,B ∈ H2 with d(A,B) = 2, let SA,B denote the set CA ∩ CB .

Lemma 3.13. Let 0 < a ≤ 1 and P ∈ P. Then

(3.11) S(1−a)P,P+aP⊥ = {(1− a)P + aR : R ∈ P}.
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Proof. It is an easy consequence of Lemma 3.12 that

S0,aI = {aR : R ∈ P}.

For any A,B ∈ H2 with d(A,B) = 2 we have

SA+(1−a)P,B+(1−a)P = {X + (1− a)P : X ∈ SA,B}.

Combining the two equalities with A = 0, B = aI, we get (3.11). �

Lemma 3.14. Let P,Q ∈ P and a be a positive real number, a < 1/2. Then the
intersubsection

{(1− a)P + aR : R ∈ P} ∩ {(1− a)Q+ aR : R ∈ P}

is nonempty if and only if

‖P −Q‖ ≤ a

1− a
.

Proof. Since the mapping (3.7) is a restriction of an affine mapping, we see that
the sets {(1− a)P + aR : R ∈ P} and {(1− a)Q + aR : R ∈ P} are sent by this
mapping to spheres with radius a/2 that are both inscribed in S2. Thus we need to
verify that if S1, S2 are spheres of radius a/2 that are inscribed in S2 with contact
points P,Q ∈ S2, respectively, then S1 and S2 intersect if and only if the Euclidean
distance between P and Q is at most a/(1 − a). The proof of this claim is fairly
easy and we omit it. �

3.3. Existence of standard automorphism with certain properties.

Lemma 3.15. Let A,B ∈ H2. If d(A,B) = 2, then there is a standard automor-
phism ϕ : H2 → H2 such that ϕ(A) = 0 and ϕ(B) = ∞̂.

Proof. There exists a standard automorphism ψ : H2 → H2 such that ψ(B) = ∞̂.
Indeed, if B ∈ H2 then take the map X 7→ (X − B)−1. If B = aP +∞P⊥ with
P ∈ P, a ∈ R, then take the map X 7→ ((X + (1− a)P )−1 − P )−1. If B = ∞̂, let
ψ be the identity mapping. From d(ψ(A), ψ(B)) = d(A,B) = 2, we deduce that
ψ(A) ∈ H2. Hence, the standard automorphism

X 7→ ψ(X)− ψ(A), X ∈ H2,

has the desired property. �

Lemma 3.16. Let A,B ∈ H2 with d(A,B) = 2. Then for any X,Y ∈ SA,B we
have either X = Y , or d(X,Y ) = 2.

Proof. Applying Lemma 3.15, we see that there is no loss of generality in assuming
that A = 0 and B = ∞̂. In that case, we have SA,B = {∞P : P ∈ P}, and the
desired conclusion follows trivially. �

Lemma 3.17. Let A,B ∈ H2. If d(A,B) = 1, then there is a standard automor-
phism ϕ : H2 → H2 satisfying

ϕ(A) = 0 and ϕ(B) = E11 =

[
1 0
0 0

]
.
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Proof. Without loss of generality, we may assume that A = 0. Then B = sP for
some rank one projection P and some nonzero s ∈ R. If s 6=∞, then we can find an
invertible 2× 2 matrix T such that T (sP )T ∗ = ±E11 and we are done. In the case
that s = ∞, we can find a standard automorphism ϕ1 of H2 such that ϕ1(0) = 0
and ϕ1(∞̂) = I. Because ϕ1(∞P ) ∼ ϕ1(0) = 0 and ϕ1(∞P ) ∼ ϕ1(∞̂) = I,
Lemma 3.12 implies that ϕ1(B) = Q for some rank one projection Q. Multiplying
ϕ1 with an appropriate unitary similarity, we get a standard automorphism ϕ with
the desired properties. �

Let A,B ∈ H2 and A ≤ B. We denote by [A,B] ⊂ H2 the matrix interval

[A,B] = {X ∈ H2 : A ≤ X ≤ B}.
Further, let (A,B) = {X ∈ H2 : A < X < B} and [A,B) = {X ∈ H2 : A ≤ X <
B}, (A,B] = {X ∈ H2 : A < X ≤ B} when A < B. In the language of special
relativity, these correspond to the set of spacetime events in the future of a fixed
event and in the past of another event, possibly with suitable boundary points.

Lemma 3.18. Let A,B,C,D ∈ H2 satisfy A < B and C < D. Then there is an
affine automorphism ψ of H2 satisfying ψ([A,B]) = [C,D] and

X ≤ Y ⇐⇒ ψ(X) ≤ ψ(Y ), X < Y ⇐⇒ ψ(X) < ψ(Y )

for any pair X,Y ∈ H2.

Proof. Let us define the affine automorphism ψ1 by

ψ1(X) = (B −A)1/2X(B −A)1/2 +A, X ∈ H2.

Then we have ψ1([0, I]) = [A,B] and

X ≤ Y ⇐⇒ ψ1(X) ≤ ψ1(Y ), X < Y ⇐⇒ ψ1(X) < ψ1(Y )

for any pair X,Y ∈ H2. Similarly, we define the affine automorphism ψ2 by

ψ2(X) = (D − C)1/2X(D − C)1/2 + C, X ∈ H2.

We see that the affine automorphism ψ2 ◦ ψ−1
1 satisfies the desired properties. �

Corollary 3.19. Let A,B ∈ H2 satisfy A < B. Then SA,B ⊂ [A,B] ⊂ H2.

Proof. By the preceding lemma, it suffices to consider the case A = 0 and B = I.
In this case, we have S0,I = P ⊂ [0, I] ⊂ H2, as desired. �

Lemma 3.20. Let C ∈ (0, I). There is a standard automorphism ψ of H2 such
that

ψ([0, I]) = [0, I], ψ(0) = 0, ψ(I) = I, and ψ((1/2)I) = C.

Proof. Consider the standard automorphisms ψ1 ofH2 defined by ψ1(X) = X−1−I,
X ∈ H2. It is easily seen by the definition of the mapping that

ψ1(0) = ∞̂, ψ1(I) = 0, ψ1((1/2)I) = I,

ψ1([0, I]) = H+
2 := {aP + bP⊥ : a, b ∈ [0,∞], P ∈ P},

and that ψ1(C) is a positive invertible matrix in H2. Consider another standard
automorphism ψ2 defined by ψ2(X) = ψ1(C)1/2Xψ1(C)1/2, X ∈ H2. It satisfies

ψ2(0) = 0, ψ2(∞̂) = ∞̂, ψ2(I) = ψ1(C), and ψ2(H+
2 ) = H+

2 .

It follows that the composition ψ−1
1 ◦ ψ2 ◦ ψ1 satisfies the desired property. �
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The above two lemmas clearly imply the following.

Corollary 3.21. Let A,B,C,A′, B′, C ′ ∈ H2 satisfy A < C < B and A′ < C ′ <
B′. Then there is a standard automorphism ψ of H2 satisfying

ψ([A,B]) = [A′, B′], ψ(A) = A′, ψ(B) = B′, and ψ(C) = C ′.

3.4. Lines. A subset A ⊂ H2 is said to be coherent if A ∼ B for every pair
A,B ∈ A. A maximal coherent set is called a line. Clearly, if ϕ : H2 → H2 is an
automorphism and ` ⊂ H2 is a line, then ϕ(`) is a line as well.

Lemma 3.22. Let a, b ∈ R \ {0} and P,Q ∈ P. Then aP ∼ bQ if and only if
P = Q.

Proof. It is clear that P = Q implies aP ∼ bQ. Let us prove that aP ∼ bQ implies
P = Q. Lemma 2.1 verifies this when a, b ∈ R \ {0}. Assume that b ∈ R \ {0} and
∞P ∼ bQ. Then we have bP⊥QP⊥ = 0, thus P = Q. Similarly, a ∈ R \ {0} and
aP ∼ ∞Q imply P = Q. Finally, it is trivial that ∞P =∞Q implies P = Q. �

Lemma 3.23. Let ` be a line. Then either there exist A ∈ H2 and P ∈ P such
that

` = {aP +A : a ∈ R}
or there exists P ∈ P such that

` = {∞P + aP⊥ : a ∈ R}.
Proof. We first consider the possibility that there exists A ∈ ` ∩ H2. Then `′ =
`−A = {X −A : X ∈ `} is a line that contains 0. We know that C0 = {aP : P ∈
P, a ∈ R}. Since `′ is a maximal coherent set, the preceding lemma implies that
`′ = {aP : a ∈ R} for some P ∈ P. Hence

` = `′ +A = {aP +A : a ∈ R}.
The remaining possibility is that ` ⊂ H2 \ H2. Since ` is a maximal coherent

set, there exists a point in ` that is different from ∞̂. Thus, there exists P ∈ P
and a0 ∈ R such that ∞P + a0P

⊥ ∈ `. The set of all points in H2 \H2 that are
coherent to ∞P + a0P

⊥ is {∞P + aP⊥ : a ∈ R}. It is easy to see that this is a
maximal coherent set. Hence this set is equal to `. �

Lemma 3.24. Let A,B ∈ H2 and d(A,B) = 1. Then there exists exactly one line
` in H2 such that A,B ∈ `, which equals CA ∩ CB.

Proof. Let ϕ : H2 → H2 be an automorphism. Then there exists exactly one line
passing through A and B if and only if there exists exactly one line passing through
ϕ(A) and ϕ(B). Thus, by Lemma 3.17, with no loss of generality we may assume
that A = 0 and B = E11. In that case, it is obvious from Lemma 3.22 that
CA ∩ CB = {aE11 : a ∈ R} is the unique line that contains both A and B. �

Lemma 3.25. Let ` be a line in H2 and A a point in H2 such that A 6∈ `. Then
there is exactly one point on the line ` that is coherent to A.

Proof. With no loss of generality, we may assume that A = ∞̂. From A = ∞̂ 6∈ `
and Lemma 3.23, we see that there are B ∈ H2 and P ∈ P such that

` = {aP +B : a ∈ R},
and then clearly, ∞P + B = ∞P + tr (P⊥B)P⊥ is the unique point on ` that is
coherent to A = ∞̂. �
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For A,B ∈ H2 with d(A,B) = 1, we denote by `A,B the unique line passing
through A and B. Note that by Lemma 3.24 we have `A,B = CA ∩ CB . Denoting
CA ∩ CB with two different symbols (depending on the distance between A and B)
makes sense because the sets SA,B and `A,B are of completely different shapes.

Remark 3.26. We will quite often use the following observation. Assume that
A,B,C ∈ H2 are points such that d(A,B) = 1 and d(A,C) = 2. Then there is a
unique point D ∈ H2 that is coherent to A and B and C. Indeed, let us denote
by ` the unique line passing through A and B. Then, clearly C 6∈ ` and there is a
unique D ∈ ` such that D ∼ C.

Corollary 3.27. Let s, t be nonzero distinct real numbers and Q ∈ P. Assume
that A ∈ H2 satisfies A ∼ sI, A ∼ tI, and A ∼ sQ. Then A = sQ+ tQ⊥.

Proof. Since the set {sQ, sI,A} is coherent, it is contained in the line `sQ,sI , thus

we have A = sQ+ aQ⊥ for some a ∈ R. By A ∼ tI we obtain a = t. �

Corollary 3.28. Let `1, `2, `3 be pairwise different lines in H2. Assume that `1 ∩
`2 6= ∅, `1 ∩ `3 6= ∅, and `2 ∩ `3 6= ∅. Then there exists A ∈ H2 such that

`1 ∩ `2 = `1 ∩ `3 = `2 ∩ `3 = {A}.

Proof. By Lemma 3.24, the intersubsection of any two of the above three lines is a
singleton. Denote `1 ∩ `2 = {A}, `1 ∩ `3 = {B}, and `2 ∩ `3 = {C}. We need to
show that A = B = C. Assume on the contrary that this is not true, say A 6= B.
Then A,B are two distinct points on `1 and C is coherent to both of them. By
Lemma 3.25, we have C ∈ `1, too. Thus

C ∈ `1 ∩ `2 ∩ `3 = (`1 ∩ `2) ∩ (`1 ∩ `3) = {A} ∩ {B} = ∅,
a contradiction. �

3.5. Surfaces.

Lemma 3.29. Let `1 and `2 be distinct lines in H2.

• If `1∩ `2 6= ∅, then there exists a standard automorphism ϕ of H2 such that

ϕ(`1) = {aE11 : a ∈ R} and ϕ(`2) = {aE22 : a ∈ R}.

• If `1∩ `2 = ∅, then there exists a standard automorphism ϕ of H2 such that

ϕ(`1) = {aE11 : a ∈ R} and ϕ(`2) = {aE11 +∞E22 : a ∈ R}.

Proof. Assume first that `1 ∩ `2 6= ∅. Then, by Lemma 3.24, the intersubsection
of these two lines is a singleton. With no loss of generality, we may assume that
`1 ∩ `2 = {0}. Then there are P,Q ∈ P with P 6= Q and `1 = {aP : a ∈ R} and
`2 = {aQ : a ∈ R}. If u, v are unit vectors spanning the image of P and the image
of Q, respectively, then they are linearly independent and there exists an invertible
linear operator S : C2 → C2 such that Su = e1 and Sv = e2. It follows that

SPS∗ = Suu∗S∗ = (Su)(Su)∗ = e1e
∗
1 = E11

and similarly, SQS∗ = E22. Let ψ denote the automorphism X 7→ SXS∗. Then
ψ(`1) is a line that contains 0 and E11, hence ψ(`1) = {aE11 : a ∈ R}. Similarly,
ψ(`2) = {aE22 : a ∈ R}.

Assume next that `1∩`2 = ∅. Since `1∪`2 is clearly not a coherent set, by Lemma
3.15 we can assume that 0 ∈ `1 and ∞̂ ∈ `2. It follows that there are P,Q ∈ P such
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that `1 = {aP : a ∈ R} and `2 = {∞Q + aQ⊥ : a ∈ R}. We have P 6= Q, since
otherwise∞P =∞Q would belong to the intersubsection of `1 and `2. We see that
there exists an invertible 2×2 matrix such that SPS∗ = E11 and SQS∗ = E22. Let
ψ denote the automorphism X 7→ SXS∗. Then ψ(`1) = {aE11 : a ∈ R} as before.
Since ψ(∞̂) = ∞̂ and ψ(∞Q) =∞E22, we get ψ(`2) = {aE11+∞E22 : a ∈ R}. �

Definition 3.30. Let `1 and `2 be lines in H2 with `1 ∩ `2 = ∅. A surface along
`1 and `2 is the union of all lines ` ⊂ H2 satisfying ` ∩ `1 6= ∅ and ` ∩ `2 6= ∅.

Lemma 3.31. The surface along the lines {aE11 : a ∈ R} and {∞E22 + aE11 :
a ∈ R} is

{aE11 + bE22 : a, b ∈ R}.

Proof. Denote `1 = {aE11 : a ∈ R} and `2 = {∞E22 + aE11 : a ∈ R}. For
every a ∈ R, the point ∞E22 + aE11 is the unique point on `2 that is coherent to
aE11 ∈ `1. Hence, there is exactly one line passing through aE11 that intersects `2
and this line is {aE11 + bE22 : b ∈ R}. Consequently, the union of all lines that
intersect `1 and `2 is {aE11 + bE22 : a, b ∈ R}. �

We will call the set

(3.12) {aE11 + bE22 : a, b ∈ R}
the diagonal surface. A direct consequence of Lemmas 3.29 and 3.31 is that any
surface is a ϕ-image of the diagonal surface for some standard automorphism ϕ of
H2.

Corollary 3.32. Let Π ⊂ H2 be a surface.

• Assume that A,B ∈ Π satisfy d(A,B) = 1. Then the line `A,B passing
through A and B is contained in Π.
• Assume that `1 and `2 are lines contained in Π and `1 ∩ `2 = ∅. Then Π is

the surface along `1 and `2.

Proof. Without loss of generality, we may assume that Π is the diagonal surface.
Then the verification of both statements is easy. �

Lemma 3.33. Let Q ∈ P. Assume that Π ⊂ H2 is a surface containing 0, (1/2)I,
I, and Q. Then

Π = {aQ+ bQ⊥ : a, b ∈ R}.

Proof. We have 0, Q ∈ Π and therefore, by Corollary 3.32 the line {aQ : a ∈ R} is
contained in Π. In particular, (1/2)Q ∈ Π. It follows that the line `1 := {Q+aQ⊥ :
a ∈ R} passing through Q and I, and the line `2 := {(1/2)Q + aQ⊥ : a ∈ R}
passing through (1/2)Q and (1/2)I, are both contained in Π. Observe that the
surface {aQ+bQ⊥ : a, b ∈ R} also contains `1 and `2. Since `1∩ `2 = ∅, the second
item of Corollary 3.32 leads to the desired conclusion. �

Let P ∈ P and consider the set

(3.13) �P = {aP + bP⊥ : a, b ∈ [0, 1]}.

It is contained in the surface {aP + bP⊥ : a, b ∈ R}.

Lemma 3.34. Let P ∈ P and A,B ∈ �P satisfy d(A,B) = 1. Then every point
of �P is coherent to some point of `A,B ∩�P .
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Proof. By the assumption, we see that one of the following holds. Either there
are p, q, r ∈ [0, 1] with A = pP + qP⊥, B = pP + rP⊥, and q 6= r, or there
are p, q, r ∈ [0, 1] with A = pP + qP⊥, B = rP + qP⊥, and p 6= r. We have
`A,B = {pP + tP⊥ : t ∈ R} in the former case and `A,B = {tP + qP⊥ : t ∈ R} in
the latter case. It is now clear to see that the desired conclusion holds. �

Lemma 3.35. Let P ∈ P and assume that ϕ : �P → H2 is a coherency preserver.
Then ϕ(�P ) is contained in a cone or in a surface.

Proof. The first possibility we will consider is that there exists a ∈ [0, 1] such that
the line segment sa := {aP + bP⊥ : b ∈ [0, 1]} is mapped to a singleton {A}. Then
clearly, ϕ(�P ) is contained in the cone with vertex A.

So, we may assume from now on that for each line segment sa, 0 ≤ a ≤ 1, there
is a unique line `a ⊂ H2 such that ϕ(sa) ⊂ `a.

Assume next that there is a pair a1, a2 ∈ [0, 1] such that `a1
∩ `a2

= ∅. We will
show that in this case ϕ(�P ) is contained in the surface along `a1

and `a2
. We

observe that for any line segment s′b := {aP + bP⊥ : a ∈ [0, 1]}, 0 ≤ b ≤ 1, there is

a line `′b ⊂ H2 such that ϕ(s′b) ⊂ `′b. Moreover, each `′b, 0 ≤ b ≤ 1, intersects both
`a1 and `a2 , as desired.

It remains to consider the case that for every pair a1, a2 ∈ [0, 1] either `a1
= `a2

,
or `a1

and `a2
intersect in one point. The desired conclusion holds trivially if

`a1
= `a2

for every pair a1, a2 ∈ [0, 1]. So, the final possibility we need to consider
is that there are a1, a2 ∈ [0, 1] such that `a1

and `a2
intersect in one point A. Let

0 ≤ a ≤ 1. If `a ∈ {`a1 , `a2}, then we have A ∈ `a. If `a /∈ {`a1 , `a2}, then Corollary
3.28 shows that A ∈ `a. Thus, we get ϕ(�P ) ⊂ CA in this case. �

We know that a surface is determined by any pair of lines that belong to the
surface and do not intersect. The situation is different for pairs of lines that do
intersect. To see this, we need the following lemma.

Lemma 3.36. Let P,Q ∈ P be distinct elements. Then the points 0,∞P,∞Q, ∞̂
are contained in no single cone, and are contained in the unique surface

(3.14) ΠP,Q := {aP + bQ : a, b ∈ R} ∪ `∞P,∞̂ ∪ `∞Q,∞̂.

Proof. To show that these points are contained in no single cone, assume that
A ∈ H2 is coherent to these points. Since 0 ∼ A ∼ ∞̂, we see that A = ∞R for
some R ∈ P. We also have ∞P ∼ A = ∞R ∼ ∞Q, which implies P = R = Q,
contradicting the assumption.

Let `1 be the line passing through 0 and∞P , and `2 the line passing through∞Q
and ∞̂. Then `1 = {aP : a ∈ R} and `2 = {∞Q+ aQ⊥ : a ∈ R}. For each t ∈ R,
the unique point in `2 that is coherent to tP is ∞Q + tP = ∞Q + ttr (PQ⊥)Q⊥.
Using Lemma 3.23, we easily see that the line passing through tP and ∞Q + tP
is {sQ + tP : s ∈ R} = {tP + sQ : s ∈ R} ∪ {∞Q + ttr (PQ⊥)Q⊥}. The unique
point in `2 that is coherent to ∞P is ∞̂. This completes the proof. �

Consider two lines `1 = `0,∞E11
, `2 = `∞E11,∞̂ in the diagonal surface. There

are infinitely many surfaces that contain both `1 and `2. Indeed, for every P ∈
P \ {E11}, we have 0,∞E11, ∞̂ ∈ ΠE11,P , which leads to `1 ∪ `2 ⊂ ΠE11,P .

3.6. Three points. Next, we will be interested in a relative position of any three
points A1, A2, A3 ∈ H2 with d(A1, A2) = d(A1, A3) = d(A2, A3) = 2.
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Lemma 3.37. Let A1, A2, A3 ∈ H2 satisfy d(A1, A2) = d(A1, A3) = d(A2, A3) = 2.
Then one and only one of the following holds.

• There exists a standard automorphism ϕ : H2 → H2 with the property that

ϕ(A1) = 0, ϕ(A2) = ∞̂, and ϕ(A3) = I.

• There exists a standard automorphism ϕ : H2 → H2 with the property that

ϕ(A1) = 0, ϕ(A2) = ∞̂, and ϕ(A3) = J :=

[
1 0
0 −1

]
.

Proof. By Lemma 3.15, there is a standard automorphism ψ : H2 → H2 with the
property that ψ(A1) = 0 and ψ(A2) = ∞̂. By d(ψ(A3), ∞̂) = d(ψ(A3), ψ(A2)) =
2, we get ψ(A3) ∈ H2. Because d(ψ(A3), 0) = d(ψ(A3), ψ(A1)) = 2, the 2 × 2
hermitian matrix ψ(A3) is invertible. In the case that ψ(A3) < 0, we replace the
automorphism ψ by the automorphism X 7→ −ψ(X), X ∈ H2. Hence, we have
either

ψ(A1) = 0, ψ(A2) = ∞̂, and ψ(A3) ∈ H++
2 ,

or
ψ(A1) = 0, ψ(A2) = ∞̂, and ψ(A3) ∈ H+−

2 .

In the first case, we can find an invertible 2 × 2 complex matrix S such that
Sψ(A3)S∗ = I. In the second case, we can find an invertible 2× 2 complex matrix
S such that Sψ(A3)S∗ = J . Then the standard automorphism ϕ(X) = Sψ(X)S∗,
X ∈ H2, has one of the above two desired properties.

It remains to verify that one cannot find an automorphism of H2 that sends 0,
∞̂, and I, to 0, ∞̂, and J , respectively. This is a consequence of the following
lemma. �

Lemma 3.38. We have

(3.15) C0 ∩ C∞̂ ∩ CI = ∅
but

(3.16) C0 ∩ C∞̂ ∩ CJ = {∞P : P⊥JP⊥ = 0} 6= ∅.
Thus there is no automorphism ϕ of H2 with

ϕ(0) = 0, ϕ(∞̂) = ∞̂, and ϕ(I) = J.

Proof. Every element of C0 ∩ C∞̂ is of the form ∞P for some P ∈ P. It is clear
that ∞P /∈ CI , so (3.15) is established. We have P⊥JP⊥ = 0 for

P =
1

2

[
1 1
1 1

]
∈ P,

thus we obtain (3.16). �

Definition 3.39. A tripleA1, A2, A3 ∈ H2 with d(A1, A2) = d(A1, A3) = d(A2, A3) =
2 is said to be in a timelike position if the first option of Lemma 3.37 holds, and it
is in a spacelike position if the second option holds.

Remark 3.40. Based on the above lemma, we should have spoken of ordered triples
of elements in H2, but actually there is no need to do so. Namely, there exist
automorphisms τ, σ of H2 such that

τ(0) = I, τ(I) = 0, and τ(∞̂) = ∞̂,
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and

σ(0) = I, σ(I) = ∞̂, and σ(∞̂) = 0.

These are

τ(X) = I −X and σ(X) = (I −X)−1, X ∈ H2.

Putting J in place of I, we obtain similar mappings for spacelike triples.

Example 3.41. The triple 0, (1/2)I, I is in a timelike position. Indeed, the auto-
morphism ϕ : H2 → H2 given by ϕ(X) = −I + (I −X)−1 satisfies

ϕ(0) = 0, ϕ((1/2)I) = I, and ϕ(I) = ∞̂.

On the other hand, the triple 0, (1/2)J, J is in a spacelike position. Indeed, we have

ϕ(0) = 0, ϕ((1/2)J) = J, and ϕ(J) = ∞̂,

where the automorphism ϕ : H2 → H2 is given by ϕ(X) = −J+(J−X)−1, X ∈ H2.

Remark 3.42. Let us recall that the triple 0, (1/2)I, I corresponds to spacetime
events (0, 0, 0, 0), (0, 0, 0, 1/2), and (0, 0, 0, 1), respectively. Thus, we have the origin
(0, 0, 0) of the space R3 at three different moments, t1 = 0, t2 = 1/2, and t3 = 1. On
the other hand, the triple 0, (1/2)J, J corresponds to spacetime events (0, 0, 0, 0),
(0, 0,−1/2, 0), and (0, 0,−1, 0), respectively. Thus we have three different points
on the line through the origin of R3 all of them considered at the moment t = 0.
This motivates our choice of terminology above.

Example 3.43. For an invertible A ∈ H2, the triple 0, ∞̂, A is in a timelike position
if and only if A ∈ H++

2 ∪H−−2 . To show this, consider the image of these points
by a suitable affine automorphism sending 0 to 0.

For P ∈ P, the triple (1/2)P, (1/2)P⊥, I is in a spacelike position. Indeed, we
have C(1/2)P ∩C(1/2)P⊥∩CI 6= ∅. A concrete description of the left-hand side follows.

Lemma 3.44. Let P ∈ P. Then

C(1/2)P ∩ C(1/2)P⊥ ∩ CI = {Q+ (1/3)Q⊥ : Q ∈ P, tr (PQ) = 1/2}.

Note that for any two projections P,Q ∈ P, we have tr (PQ) = 1/2 if and only
if tr (PQ⊥) = 1/2.

Proof. Without loss of generality, we may assume that P = E11. Then the set
{Q ∈ P : tr (PQ) = 1/2} is equal to{

1

2

[
1 z
z 1

]
: z ∈ T

}
.

Clearly, for every z ∈ T we have(
1

2

[
1 z
z 1

])⊥
=

1

2

[
1 −z
−z 1

]
and consequently,{

Q+
1

3
Q⊥ : Q ∈ P, tr (PQ) =

1

2

}
=

{
1

3

[
2 z
z 2

]
: z ∈ T

}
.

In the next step, we will verify that

B := C(1/2)E11
∩ C(1/2)E22

∩ CI ⊂ H2.



OPTIMAL VERSION OF THE FUNDAMENTAL THEOREM OF CHRONOGEOMETRY 25

Clearly, ∞̂ 6∈ B. If ∞R + bR⊥ ∈ B for some real number b and some R ∈ P, then
from ∞R + bR⊥ ∼ I we conclude that b = 1. But then ∞R + R⊥ ∼ (1/2)E11

implies (1/2)R⊥E11R
⊥ = R⊥. Considering the trace, we get a contradiction.

Thus, B ⊂ H2. Let t, s be real numbers and α a complex number. Then

A =

[
t α
α s

]
∈ B

holds if and only if

det(A− (1/2)E11) = det(A− (1/2)E22) = det(A− I) = 0,

which is further equivalent to

ts− 1

2
s = |α|2, ts− 1

2
t = |α|2, and (t− 1)(s− 1) = |α|2.

Real numbers t, s and a complex number α satisfy the above system of equations
if and only if t = s = 2/3 and |α| = 1/3. Hence, A ∈ B if and only if

A =
1

3

[
2 z
z 2

]
for some z ∈ T. �

Lemma 3.45. Let A,B ∈ H2 satisfy A < B. Then X ∈ H2 is coherent to some
element of SA,B if and only if

(3.17) X /∈ (A,B), X ≤ B, and X 6< A,

or

(3.18) X /∈ (A,B), X ≥ A, and X 6> B

holds.

Proof. By Lemma 3.18, we may assume that A = 0 and B = I without loss of
generality. Then we have SA,B = S0,I = P. In that case, it is easy to check that
(3.17) or (3.18) holds if and only if one of the eigenvalues of X is in [0, 1] and the
other is in (−∞, 0]∪ [1,∞). We need to verify that X satisfies this condition if and
only if X is coherent to some element of P.

Assume first that X ∼ P for some P ∈ P, that is, X = P +R for some R ∈ H2

of rank at most one. If R ≥ 0, then P ≤ X and thus the larger eigenvalue of X is
at least 1. On the other hand, for a unit vector y ∈ C2 that is perpendicular to the
range of R, we have (Xy, y) = ((P +R)y, y) = (Py, y) ∈ [0, 1]. This together with
X ≥ 0 implies that the smaller eigenvalue of X is in [0, 1]. Similarly, R ≤ 0 implies
that one of the eigenvalues of X is in [0, 1] and the other is in (−∞, 0].

To prove the other direction, assume that one of the eigenvalues of X is in [0, 1]
and the other is in (−∞, 0] ∪ [1,∞). Then X = aQ + bQ⊥ for some Q ∈ P,
a ∈ [0, 1], and b ∈ (−∞, 0] ∪ [1,∞). It follows that det(X −Q) · det(X −Q⊥) ≤ 0.
Combining this with the fact that P is connected, we see that there is P ∈ P
satisfying det(X − P ) = 0, as desired. �

Corollary 3.46. Let A,B ∈ H2 ⊂ H2 satisfy A < B. Let X ∈ H2 be a matrix
with d(A,X) = d(B,X) = 2. Then the triple A,B,X is in a spacelike position if
and only if (3.17) or (3.18) holds.

From this corollary, we see for example that a triple A,B,C ∈ H2 with A < C <
B is in a timelike position.
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Corollary 3.47. Let A ∈ H2 ∩ S0,J . Then the triple (1/2)A, (1/2)(J −A), J is in
a timelike position.

Proof. From 0 ∼ A ∼ J , we get 0 ∼ J−A ∼ J . It follows that there are projections
P,Q ∈ P and a, b ∈ R such that A = aP and J − A = bQ. We get aP + bQ = J .
By the definition of J , we see that P 6= Q and 0 = trJ = tr (aP + bQ) = a + b.
Thus, a = −b. If a < 0, then aI ≤ aP ≤ aP + bQ = J , and hence, a ≤ −1 < 1 ≤ b.
Similarly, if a > 0, then b ≤ −1 < 1 ≤ a.

Assume that a ≤ −1 < 1 ≤ b. Then we have A = aP < bQ = J − A by
Lemma 2.1. Moreover, since J − (1/2)A = (1/2)aP + bQ and J − (1/2)(J − A) =
aP + (1/2)bQ, Lemma 2.1 also implies that J − (1/2)A, J − (1/2)(J −A) ∈ H+−

2 .
Thus the preceding corollary implies that the triple (1/2)A, (1/2)(J − A), J is in
a timelike position. Similarly, if b ≤ −1 < 1 ≤ a, then we see that the triple
(1/2)(J −A), (1/2)A, J is in a timelike position. �

3.7. Identity-type theorem. The set U2 of 2 × 2 unitaries is endowed with the
usual topology as a closed subset of the finite-dimensional vector space. We endow
H2 with the topology that comes from the identification with U2 as in Subsection
2.2. From the discussion there, it is easy to see that H2 ⊂ H2 is open and that the
relative topology given to the subset H2 ⊂ H2 coincides with the usual topology of
H2.

Lemma 3.48. For any pair A,B ∈ H2, there is a homeomorphic automorphism
ϕ : H2 → H2 satisfying ϕ(A) = B.

Proof. This can be easily seen by considering U2 instead of H2. Indeed, if V, V ′ ∈
U2, then the mapping ϕ : U2 → U2 defined by U 7→ V ′V ∗U , U ∈ U2, is clearly a
homeomorphism satisfying ϕ(V ) = V ′ and

U ∼ U ′ ⇐⇒ ϕ(U) ∼ ϕ(U ′)

for every pair U,U ′ ∈ U2. �

Remark 3.49. In fact, it turns out that every automorphism of H2 is a homeomor-
phism, but we will not need such a general fact.

Lemma 3.50. The interior of a cone in H2 is empty. Let ` ⊂ H2 be a line and
U ⊂ H2 an open subset. If ` ∩ U is nonempty, then it has infinitely many points.

Proof. Observe that a unitary U ∈ U2 is coherent to I if and only if one of the
eigenvalues of U is 1. It is easily seen that the set of all such unitaries has empty
interior in U2. This together with Lemma 3.48 proves the first statement. Let us
show the second statement. By Lemma 3.48 again, it suffices to consider the case
0 ∈ ` ∩ U . Then ` = {tP : t ∈ R} for some P ∈ P, and H2 ∩ U is an open
neighborhood of 0 in H2. It follows that ` ∩ U has infinitely many points. �

Lemma 3.51. Let U ⊂ A ⊂ H2 and assume that U is open in H2. Let ϕ : A → H2

be a coherency preserving map. Assume that ϕ(X) = X for every X ∈ U . If A ∈ A
satisfies CA ∩ U 6= ∅, then ϕ(A) = A.

Proof. Let A ∈ A satisfy CA ∩ U 6= ∅. Since U is open and the interior of a line is
empty, we may take a pair of distinct lines `1, `2 passing through A such that `1∩U
and `2 ∩ U are nonempty. Then, by the openness of U again we see that `1 ∩ U
and `2 ∩ U have infinitely many points. Observe that ϕ(`1 ∩ A) and ϕ(`2 ∩ A) are
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coherent sets containing ϕ(`1 ∩U) = `1 ∩U and ϕ(`2 ∩U) = `2 ∩U , respectively. It
follows that ϕ(`1 ∩ A) ⊂ `1 and ϕ(`2 ∩ A) ⊂ `2. Thus we conclude that

ϕ(A) ∈ ϕ(`1 ∩ A) ∩ ϕ(`2 ∩ A) ⊂ `1 ∩ `2 = {A}.

�

Lemma 3.52. Let A,B,C ∈ H2 satisfy A < B < C. Let ϕ : [A,C] → H2 be a
coherency preserver. Assume that ϕ(X) = X for every X ∈ [A,B]. Then ϕ(X) =
X for every X ∈ [A,C].

Proof. By Lemma 3.18, we may, and we will assume that A = 0 and C = I without
loss of generality. Hence, we are considering B ∈ H2 with 0 < B < I and a
coherency preserver ϕ : [0, I] → H2 satisfying ϕ(X) = X for every X ∈ [0, B]. Let
t0 be the smaller eigenvalue of B. Then 0 < t0 < 1.

We consider the subset U1 := (0, t0I) ⊂ [0, I] that is open in H2. Note that
U1 ⊂ [0, B]. If one of the eigenvalues of a matrix A ∈ [0, I] lies in (0, t0), then
CA ∩ U1 is clearly nonempty, so Lemma 3.51 implies ϕ(A) = A. Next we define
the open subset U2 of H2 to be the set formed of all matrices X in (0, I) such
that σ(X) ∩ (0, t0) 6= ∅. We already know that ϕ(X) = X for every X ∈ U2. If
A ∈ [0, I] \ ({0, I} ∪ P), then it is easy to see that CA ∩ U2 is nonempty, thus we
obtain ϕ(A) = A again by Lemma 3.51. We know ϕ(0) = 0 from the assumption.
From ϕ(P + tP⊥) = P + tP⊥ for every t ∈ (0, 1) and P ∈ P, it clearly follows
that ϕ(I) = I. Finally, for P ∈ P we know that ϕ(P ) ∈ Sϕ(0),ϕ(I) = P and
ϕ(P ) ∼ ϕ((1/2)P ) = (1/2)P , and therefore ϕ(P ) = P . �

Corollary 3.53. Let A,B,C ∈ H2 with A < B < C. Let ϕ : [A,C] → H2 be
a coherency preserver. Assume that ϕ(X) = X for every X ∈ [B,C]. Then
ϕ(X) = X for every X ∈ [A,C].

Proof. We define a coherency preserver ϕ1 : [0, C −A]→ H2 by

ϕ1(X) = C − ϕ(C −X), X ∈ [0, C −A].

It is straightforward to check that the restriction of ϕ1 to [0, C −B] is the identity
map. By Lemma 3.52, ϕ1 is the identity on the whole matrix interval [0, C − A],
which is equivalent to ϕ(X) = X for every X ∈ [A,C]. �

In the proof of the next corollary, we will use the following simple fact: Let
U ⊂ H2 be an open subset and A ∈ U . Then there exist B,C ∈ H2 such that
B < A < C and [B,C] ⊂ U . Indeed, we only need to observe that for each ε > 0
we have [A− εI,A+ εI] = {D ∈ H2 : ‖D −A‖ ≤ ε}.

Corollary 3.54. Let A,B ∈ H2 with A < B. Let ϕ : [A,B] → H2 be a coherency
preserver. Assume that the set {X ∈ [A,B] : ϕ(X) = X} as a subset of H2 has
nonempty interior. Then ϕ(X) = X for every X ∈ [A,B].

Proof. By the assumption together with the remark above, we may take C,D ∈
(A,B) with C < D such that ϕ(X) = X for every X ∈ [C,D]. By Lemma 3.52, ϕ
is the identity on the matrix interval [C,B]. By Corollary 3.53, ϕ is the identity on
the whole matrix interval [A,B]. �

Corollary 3.55. Let A,B ∈ H2 with A < B. Let ϕ : [A,B] → H2 be a coherency
preserver. Assume that there exists an automorphism ψ of H2 such that the set
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{X ∈ [A,B] : ϕ(X) = ψ(X)} as a subset of H2 has nonempty interior. Then
ϕ(X) = ψ(X) for every X ∈ [A,B].

Proof. After introducing a new coherency preserver defined by

X 7→ ψ−1(ϕ(X)), X ∈ [A,B],

we may assume with no loss of generality that ψ is the identity. Then the desired
conclusion follows directly from Corollary 3.54. �

We continue with an identity-type theorem.

Theorem 3.56. Let A be a nonempty connected open subset of H2 and let ϕ : A →
H2 be a coherency preserving map. Let D be a nonempty open subset of A. If an
automorphism ψ of H2 satisfies ϕ(X) = ψ(X) for every X ∈ D, then ϕ(X) = ψ(X)
for every X ∈ A.

Proof. We denote by L ⊂ A the set of all points A ∈ A with the property that
ϕ(X) = ψ(X) for every X in some neighborhood of A. It is trivial to see that
D ⊂ L and that L is an open subset of A. It remains to prove that L is a closed
subset of A.

Hence, assume that A ∈ A and that there exists a sequence An ∈ L, n ≥ 1,
such that limAn = A. By Lemma 3.48, there is a homeomorphic automorphism
ψ1 : H2 → H2 satisfying ψ1(A) = 0. Thus ψ1(An) tends to 0 as n→∞. Let ε be a
positive number such that [−εI, εI] ⊂ ψ1(A). There exists a positive integer m such
that ψ1(Am) ∈ (−εI, εI). By Corollary 3.55, we have ϕ ◦ ψ−1

1 (X) = ψ ◦ ψ−1
1 (X)

for every X ∈ [−εI, εI]. Thus, we get A ∈ L. This completes the proof. �

Remark 3.57. The assumption of openness in Theorem 3.56 is essential. For exam-
ple, since tI 6∼ sI for distinct s, t ∈ R, we see that any mapping from {tI : t ∈ R}
to H2 preserves coherency even when ϕ(tI) = tI for every t > 0.

The assumption of connectedness is also essential. For example, consider the
mapping ϕ : H++

2 ∪H−−2 → H2 defined by

ϕ(X) = X, X ∈ H++
2 , and ϕ(H−−2 ) = {0}.

Since X 6∼ Y for any X ∈ H++
2 and Y ∈ H−−2 , we see that ϕ preserves coherency.

The identity mapping on H2 is an automorphism that extends ϕ|H++
2

, but ϕ is not

the identity mapping on H−−2 .

We close this section with two lemmas of the nature of the identity theorem.

Lemma 3.58. Let A,B ∈ H2 satisfy d(A,B) = 2. If C ∈ H2 has the property
C ∼ X for every X ∈ SA,B then C ∈ {A,B}.

Proof. Without loss of generality, we may assume A = 0 and B = ∞̂. In this case,
we have SA,B = {∞P : P ∈ P}, and it is easy to get to the desired conclusion. �

Lemma 3.59. Let A ∈ H2, 0 < A ≤ I, and B ∈ H2. Assume that for every P ∈ P
and every real s ∈ [0, 1] we have

A ∼ sP ⇒ B ∼ sP.

Then B = A or B = 0.
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Proof. By Lemma 3.58, it suffices to show that S0,A ⊂ {sP : s ∈ [0, 1], P ∈ P}.
Using the standard automorphism X 7→ A1/2XA1/2, X ∈ H2, we see

S0,A = {A1/2PA1/2 : P ∈ S0,I}.

Observe that for P ∈ S0,I = P the norm of the rank-one positive operatorA1/2PA1/2

is at most 1, which leads to the desired claim. �

Part 2. Main results and their proofs

4. Standard coherency preservers

Let A be a subset of H2 and ϕ : A → H2 a map. We say that ϕ is a standard
coherency preserver if ϕ extends to a standard automorphism of H2. The main
result of the current section is the following one.

Theorem A. Let A be a connected open subset of H2 and ϕ : A → H2 a coherency
preserving map. Assume that there exist A,B,C ∈ A ∩H2 such that

• A < C < B,
• [A,B] ⊂ A, and
• the triple ϕ(A), ϕ(C), ϕ(B) is in a timelike position.

Then ϕ is standard.

4.1. Proof of Theorem A. We first show the following proposition.

Proposition 4.1. Let ϕ : [0, I]→ H2 be a coherency preserver satisfying

(4.1) ϕ(0) = 0, ϕ((1/2)I) = (1/2)I, and ϕ(I) = I.

Then there exists a unitary U ∈ U2 satisfying either

ϕ(X) = UXU∗, X ∈ [0, I],

or
ϕ(X) = UXtU∗, X ∈ [0, I].

To prove this, we assume that ϕ : [0, I]→ H2 is a coherency preserver satisfying
(4.1). By Lemma 3.12, we have ϕ(P) ⊂ P. Lemma 3.12 also shows that the triple
0, (1/2)I, I is not contained in any cone.

We fix P ∈ P. Since 0, (1/2)I, I ∈ ϕ(�P ), where �P is defined as in (3.13),
Lemma 3.35 yields that ϕ(�P ) is contained in some surface. By Lemma 3.33, we
have

ϕ(�P ) ⊂ {aϕ(P ) + bϕ(P )⊥ : a, b ∈ R}.

Claim 4.2. The equation

(4.2) ϕ(aP + bP⊥) = aϕ(P ) + bϕ(P )⊥

holds for any a, b ∈ {0, 1/2, 1}.

Proof. We have ϕ((1/2)P ) ∼ ϕ((1/2)I) = (1/2)I and ϕ((1/2)P ) ∼ ϕ(0) = 0, and
by a simple modification of Lemma 3.12 we see that ϕ((1/2)P ) = (1/2)Q for some
Q ∈ P. But ϕ((1/2)P ) ∼ ϕ(P ) ∈ P and therefore,

ϕ((1/2)P ) = (1/2)ϕ(P ).

We continue with ϕ((1/2)P + P⊥). By

(1/2)P + P⊥ ∼ (1/2)I, I, (1/2)P,
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we get

ϕ((1/2)P + P⊥) ∼ (1/2)I, I, (1/2)ϕ(P ).

Using Corollary 3.27, we conclude that

ϕ((1/2)P + P⊥) = (1/2)ϕ(P ) + ϕ(P )⊥.

Now,

P⊥ ∼ 0, I, (1/2)P + P⊥

yields

ϕ(P⊥) ∼ 0, I, (1/2)ϕ(P ) + ϕ(P )⊥,

and thus

ϕ(P⊥) = ϕ(P )⊥.

Using the same arguments as above, we see that

ϕ((1/2)P⊥) = (1/2)ϕ(P )⊥ and ϕ(P + (1/2)P⊥) = ϕ(P ) + (1/2)ϕ(P )⊥.

�

Claim 4.3. The equation (4.2) holds for any a, b ∈ {0, 1/3, 1}.

Proof. Take Q ∈ P with tr (PQ) = 1/2. Claim 4.2 implies that

ϕ((1/2)Q) = (1/2)ϕ(Q), ϕ((1/2)Q⊥) = (1/2)ϕ(Q)⊥.

By Lemma 3.44, we have

P + (1/3)P⊥ ∈ C(1/2)Q ∩ C(1/2)Q⊥ ∩ CI .
Thus we obtain

ϕ(P + (1/3)P⊥) ∈ C(1/2)ϕ(Q) ∩ C(1/2)ϕ(Q)⊥ ∩ CI
= {R+ (1/3)R⊥ : R ∈ P, tr (ϕ(Q)R) = 1/2}.

(4.3)

Because P + (1/3)P⊥ ∈ `P,I , we have

(4.4) ϕ(P + (1/3)P⊥) ∈ `ϕ(P ),ϕ(I) = `ϕ(P ),I = {ϕ(P ) + aϕ(P )⊥ : a ∈ R}.

It follows from (4.3) and (4.4) that

ϕ(P + (1/3)P⊥) = ϕ(P ) + (1/3)ϕ(P )⊥,

and similarly,

ϕ(P⊥ + (1/3)P ) = ϕ(P )⊥ + (1/3)ϕ(P ).

Further, ϕ((1/3)P ) ∈ `0,ϕ(P ) and ϕ((1/3)P ) ∼ ϕ(P )⊥ + (1/3)ϕ(P ). It follows that

ϕ((1/3)P ) = (1/3)ϕ(P ) and similarly, ϕ((1/3)P⊥) = (1/3)ϕ(P )⊥.

Finally, ϕ((1/3)I) belongs to the lines

`(1/3)ϕ(P ),(1/3)ϕ(P )+ϕ(P )⊥ 6= `(1/3)ϕ(P )⊥,(1/3)ϕ(P )⊥+ϕ(P )

which intersect in the point (1/3)I. Thus, ϕ((1/3)I) = (1/3)I. �

In what follows, we sometimes make use of the coherency preserving map ϕ1 : [0, I]→
H2 defined by ϕ1(X) = I − ϕ(I −X), X ∈ [0, I]. Clearly,

ϕ1(0) = 0, ϕ1((1/2)I) = (1/2)I, ϕ1(I) = I, and ϕ1(P ) = ϕ(P ).

Claim 4.4. The equation (4.2) holds for any a, b ∈ {0, 1/3, 2/3, 1}.
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Proof. Applying Claim 4.3 to the mapping ϕ1 in place of ϕ, we have (4.2) for every
a, b ∈ {0, 2/3, 1}.

Let a, b ∈ {0, 1/3, 2/3, 1}. We have shown that (4.2) holds when one of the
numbers a, b equals 0 or 1. In the remaining cases, we have {aP + bP⊥} =
`aP,aP+P⊥ ∩ `bP⊥,P+bP⊥ . Thus

ϕ(aP + bP⊥) ∈ `ϕ(aP ),ϕ(aP+P⊥) ∩ `ϕ(bP⊥),ϕ(P+bP⊥)

= `aϕ(P ),aϕ(P )+ϕ(P )⊥ ∩ `bϕ(P )⊥,ϕ(P )+bϕ(P )⊥

= {aϕ(P ) + bϕ(P )⊥},

and consequently, ϕ(aP + bP⊥) = aϕ(P ) + bϕ(P )⊥. �

Claim 4.5. For every positive integer n, the equation (4.2) holds for any

a, b ∈

{
0,

1

3

(
2

3

)n−1

,

(
2

3

)n
}
.

Proof. The case n = 1 is true by the previous claim. So, assume that the above
is true for some positive integer n. We introduce a new coherency preserving map
τ : [0, I]→ H2 by

τ(X) = (3/2)
n
ϕ ((2/3)

n
X) , X ∈ [0, I].

Using the induction hypothesis, we see that

τ(0) = 0, τ((1/2)I) = (1/2)I, and τ(I) = I.

Moreover, τ(P ) = ϕ(P ). But then we already know that

τ(a′P + b′P⊥) = a′ϕ(P ) + b′ϕ(P )⊥

for any a′, b′ ∈ {0, 1/3, 2/3}. This immediately implies that (4.2) holds for any

a, b ∈

{
0,

1

3

(
2

3

)n

,

(
2

3

)n+1
}
,

as desired. �

Claim 4.6. For every positive integer n, we have

(4.5) ϕ

((
1−

(
2

3

)n)
P

)
=

(
1−

(
2

3

)n)
ϕ(P )

and

(4.6) ϕ

(
P +

(
2

3

)n

P⊥
)

= ϕ(P ) +

(
2

3

)n

ϕ(P )⊥.

Proof. We know that

(4.7) ϕ((2/3)nP ) = (2/3)nϕ(P ) and ϕ((2/3)nP⊥) = (2/3)nϕ(P )⊥

for every positive integer n.
Using (4.7) for the coherency preserving map ϕ1, we arrive at

ϕ(P + (1− (2/3)n)P⊥) = ϕ(P ) + (1− (2/3)n)ϕ(P )⊥

and
ϕ((1− (2/3)n)P + P⊥) = (1− (2/3)n)ϕ(P ) + ϕ(P )⊥

for every positive integer n.
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We now use the fact that

ϕ((1− (2/3)n)P ) ∼ 0, ϕ(P ), ϕ((1− (2/3)n)P + P⊥)

to deduce that

ϕ((1− (2/3)n)P ) = (1− (2/3)n)ϕ(P )

and similarly,

ϕ((1− (2/3)n)P⊥) = (1− (2/3)n)ϕ(P )⊥

for every positive integer n.
The last equation remains true if we replace ϕ by ϕ1. This yields

ϕ(P + (2/3)nP⊥) = ϕ(P ) + (2/3)nϕ(P )⊥

for every positive integer n. �

Claim 4.7. There is a 2× 2 unitary matrix U ∈ U2 such that

either ϕ(P ) = UPU∗, P ∈ P, or ϕ(P ) = UP tU∗, P ∈ P.

Proof. Let a be a positive real number < 1/2. Using Lemmas 3.13 and 3.14, we see
that a pair P,Q ∈ P satisfies

([0, I] ⊃) S(1−a)P,P+aP⊥ ∩ S(1−a)Q,Q+aQ⊥ 6= ∅

if and only if

‖P −Q‖ ≤ a

1− a
.

Therefore, the two equations (4.5) and (4.6) imply that for any positive integer
n > 2, we have

‖P −Q‖ ≤ (2/3)n

1− (2/3)n
⇒ ‖ϕ(P )− ϕ(Q)‖ ≤ (2/3)n

1− (2/3)n
.

Applying (3.9), we conclude that there exists a sequence of positive real numbers
an, n ≥ 1, such that lim an = 0 and

dg(P,Q) ≤ an ⇒ dg(ϕ(P ), ϕ(Q)) ≤ an
for every positive integer n.

Let P,Q ∈ P, P 6= Q, and ε > 0. Take a positive integer n such that an < ε.
Find a positive integer k such that

dg(P,Q) ≤ kan < dg(P,Q) + ε.

By Lemma 3.8, we can find rank one projections P0 = P, P1, . . . , Pk−1, Pk = Q such
that dg(Pj−1, Pj) ≤ an. But then

dg(ϕ(P ), ϕ(Q)) ≤ dg(ϕ(P0), ϕ(P1)) + · · ·+ dg(ϕ(Pk−1), ϕ(Pk))

≤ kan < dg(P,Q) + ε.

Therefore,

dg(ϕ(P ), ϕ(Q)) ≤ dg(P,Q), P,Q ∈ P.
Applying (3.9) once more, we conclude that

‖ϕ(P )− ϕ(Q)‖ ≤ ‖P −Q‖, P,Q ∈ P.

Finally, it follows from Lemma 3.11 and ϕ(P⊥) = ϕ(P )⊥ that

‖ϕ(P )− ϕ(Q)‖ = ‖P −Q‖, P,Q ∈ P.
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Now, Wigner’s theorem (Theorem 3.9, see also Remark 3.10) completes the proof.
�

Hence, after composing ϕ with the standard automorphism of H2 given by X 7→
U∗XU , and possibly with the standard automorphism of H2 given by X 7→ Xt, we
get to the situation where

ϕ(P ) = P, P ∈ P.
The following claim finally completes the proof of Proposition 4.1.

Claim 4.8. Under the above situation, we have ϕ(A) = A for every A ∈ [0, I].

Proof. Fix P ∈ P and a real number t, 1/3 ≤ t ≤ 1. By 0 ∼ tP ∼ P , ϕ(0) = 0,
and ϕ(P ) = P , there exists s ∈ R such that ϕ(tP ) = sP . It follows from Claim 4.3
that for every Q ∈ P we have

ϕ((1/3)Q+Q⊥) = (1/3)Q+Q⊥.

Further,

(1/3)Q+Q⊥ − tP = ((1/3)Q+Q⊥) (I − (3Q+Q⊥)(tP )).

Therefore, by Lemma 2.2, the condition (1/3)Q+Q⊥ ∼ tP holds if and only if

1 = tr ((3Q+Q⊥)(tP )) = tr ((2Q+ I)(tP )) = t(1 + 2tr (QP )).

Because (1 − t)/(2t) ∈ [0, 1], we can find a projection Q ∈ P such that tr (QP ) =
(1 − t)/(2t), and then by the above, (1/3)Q + Q⊥ ∼ tP . It follows that (1/3)Q +
Q⊥ ∼ sP , which further yields that t = s.

Hence, for every real t, 1/3 ≤ t ≤ 1, and every P ∈ P, we have ϕ(tP ) = tP .
Using the coherency preserving map ϕ1 : X 7→ I − ϕ(I − X), we obtain ϕ(tP +
P⊥) = tP + P⊥ for every real t, 0 ≤ t ≤ 2/3, and every P ∈ P. Since ϕ(tP ) ∼
0, ϕ(P ), ϕ(tP + P⊥), we get ϕ(tP ) = tP when 0 ≤ t ≤ 2/3. We conclude that

ϕ(tP ) = tP, P ∈ P, t ∈ [0, 1].

Let now A be any element of [0, I] of rank two. Applying Lemma 3.59 with B =
ϕ(A), we see that ϕ(A) = A or ϕ(A) = 0. We now use the obtained result for the
map ϕ1 : X 7→ I − ϕ(I − X) to conclude that ϕ(A) ∈ {A, I} for every A ∈ [0, I].
Hence we obtain ϕ(A) = A for every A ∈ [0, I]. �

Corollary 4.9. Let ϕ : [0, I]→ H2 be a coherency preserver with the property that
ϕ(0), ϕ((1/2)I), and ϕ(I) are in a timelike position. Then ϕ is standard.

Proof. This statement is a straightforward consequence of Proposition 4.1 and Ex-
ample 3.41. �

Proof of Theorem A. Suppose that ϕ : A → H2 satisfies the assumption of Theorem
A. By Corollary 3.21, there is a standard automorphism ψ1 of H2 satisfying

ψ1([0, I]) = [A,B], ψ1(0) = A, ψ1(I) = B, and ψ1((1/2)I) = C.

It follows that the restriction of the coherency preserver ϕ ◦ ψ1 to [0, I] satisfies
the assumption of Corollary 4.9. Thus, Corollary 4.9 and Theorem 3.56 imply that
ϕ ◦ ψ1 is standard, which further shows that ϕ is standard, too. �
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4.2. Applications of Theorem A. We begin with a useful lemma.

Lemma 4.10. Let U be an open connected subset of H2. For any pair X,Y ∈ U ,
there are X1 = X,X2, . . . , Xn = Y ∈ U such that X1 ∼ X2 ∼ · · · ∼ Xn.

Proof. For X,Y ∈ U , we write X ≈ Y if there are X1 = X,X2, . . . , Xn = Y ∈ U
such that X1 ∼ X2 ∼ · · · ∼ Xn. It is clear that ≈ is an equivalence relation.

First, let us consider the case where U is an open interval. When X < Y , then
we have SX,Y ⊂ U by Corollary 3.19. We may take any point Z ∈ SX,Y ⊂ U , and
then X ∼ Z ∼ Y . Thus X ≈ Y . If X,Y are arbitrary, then we may take Z ∈ U
such that X < Z, Y < Z, hence we obtain X ≈ Z ≈ Y . Thus the proof is complete
when U is an open interval.

Let U be an arbitrary open connected subset of H2. Fix X0 ∈ U , and let U0

denote the collection of Y ∈ U with X0 ≈ Y . Then the preceding paragraph shows
that U0 and U \ U0 are open. Since U is connected, we obtain U0 = U . �

Let us prove the fundamental theorem of chronogeometry as a consequence of
the preceding subsection.

Theorem 4.11. Let ϕ : H2 → H2 be a bijective map satisfying

A ∼ B ⇐⇒ ϕ(A) ∼ ϕ(B)

for every pair A,B ∈ H2. Then ϕ extends to an affine automorphism.

Proof. After composing ϕ with a translation, we can assume with no loss of gen-
erality that ϕ(0) = 0. As before, we define d(A,B) = rank (A − B) ∈ {0, 1, 2},
A,B ∈ H2. It is clear that we have d(A,B) = d(ϕ(A), ϕ(B)), A,B ∈ H2. The set
H2

2 of invertible matrices in H2 is formed of A ∈ H2 with the property d(A, 0) = 2.
Thus we get

ϕ(H2
2 ) = H2

2 .

Recall that H2
2 is the disjoint union of three sets H++

2 , H−−2 , and H+−
2 . We first

claim that

ϕ(H++
2 ∪H−−2 ) = H++

2 ∪H−−2 .

The above equality follows directly from the following characterization of the set
H++

2 ∪H−−2 : An invertible matrix A ∈ H2 belongs to H++
2 ∪H−−2 if and only if for

each line ` passing through zero there exists B ∈ ` ∩H2 such that A ∼ B. Indeed,
let A ∈ H++

2 and ` = {aP : a ∈ R} where P ∈ P. Then A−1 > 0 and therefore
tr (A−1P ) = tr (PA−1P ) > 0. It follows that there exists exactly one (positive)
a ∈ R such that tr (A−1(aP )) = 1, or equivalently, A ∼ aP (see Lemma 2.2). In
the same way we treat the case when A ∈ H−−2 . So, assume finally that A ∈ H+−

2 .
Then A−1 is again in H+−

2 . Therefore, there exists a unit vector x ∈ C2 such that
x∗A−1x = 0, yielding that tr (A−1Q) = 0, where Q = xx∗. It follows from Lemma
2.2 that there is no point in {aQ : a ∈ R} that is coherent to A.

Observe that if A,B ∈ H++
2 ∪ H−−2 and A ∼ B, then either A,B ∈ H++

2 , or
A,B ∈ H−−2 . Moreover, H++

2 and H−−2 are open and connected sets. Thus Lemma
4.10 implies that

ϕ(H++
2 ) = H++

2 and ϕ(H−−2 ) = H−−2 ;

or

ϕ(H++
2 ) = H−−2 and ϕ(H−−2 ) = H++

2 .
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Therefore, we get ϕ(−I) < 0 = ϕ(0) < ϕ(I) or ϕ(−I) > 0 = ϕ(0) > ϕ(I). Hence
Corollary 3.46 implies that the triple ϕ(−I), ϕ(0), ϕ(I) is in a timelike position.
Theorem A shows that ϕ extends to an automorphism ϕ̂ of H2. Note that ϕ̂(H2) =
H2 implies ϕ̂(∞̂) = ∞̂. It remains to show that ϕ̂ is an affine automorphism.
By composing ϕ̂ with an appropriate affine automorphism of H2, we may assume
ϕ̂(0) = 0 and ϕ̂(I) = I without loss of generality. (Recall that the composition of
affine automorphisms is again an affine automorphism by Lemma 3.7.)

Then the automorphism ψ : X 7→ X−1 − I of H2 satisfies

ψ−1 ◦ ϕ̂ ◦ ψ(0) = ψ−1 ◦ ϕ̂(∞̂) = ψ−1(∞̂) = 0,

ψ−1 ◦ ϕ̂ ◦ ψ(I) = ψ−1 ◦ ϕ̂(0) = ψ−1(0) = I, and

ψ−1 ◦ ϕ̂ ◦ ψ((1/2)I) = ψ−1 ◦ ϕ̂(I) = ψ−1(I) = (1/2)I.

Now we apply Proposition 4.1. We see that there is a 2× 2 unitary matrix U such
that ψ−1◦ϕ̂◦ψ(X) = UXU∗ holds for every X ∈ [0, I], or ψ−1◦ϕ̂◦ψ(X) = UXtU∗

holds for every X ∈ [0, I]. By the identity-type theorem (Theorem 3.56), the same
equality holds for every X ∈ H2. It is easy to see that ψ(UXU∗) = Uψ(X)U∗ and
ψ(Xt) = ψ(X)t for every X ∈ H2. It follows that ϕ̂(X) = UXU∗ holds for every
X ∈ H2, or ϕ̂(X) = UXtU∗ holds for every X ∈ H2. �

Proof of Theorem 1.1. Assume that φ : M4 → M4 is a bijection that preserves
lightlikeness in both directions. We need to show that φ is of the form (1.3). We
may assume φ(0) = 0 without loss of generality. Let ξ : M4 → H2 be the mapping
as in (1.4). Then the mapping ϕ := ξ ◦ φ ◦ ξ−1 : H2 → H2 clearly satisfies the
assumption of Theorem 4.11. It follows that ϕ extends to an affine automorphism.
In particular, we see that ϕ is linear. It follows that φ = ξ−1 ◦ ϕ ◦ ξ is also linear,
that is, φ(r) = Sr for some real 4× 4 matrix S. Our task is to show that S = cQ
for some positive real number c and some Lorentz matrix Q. We know that for
every r ∈M4 we have

〈r, r〉 = 0 ⇐⇒ 〈Sr, Sr〉 = 0,

that is,

(Mr, r) = 0 ⇐⇒ (StMSr, r) = 0.

Here, (·, ·) denotes the standard inner product on the space of all real quadruples,
andM is as in (1.1). Choosing suitable spacetime events r (say, r = (cos γ, sin γ, 0, 1), . . .)
and applying the fact that StMS is symmetric, it is trivial to deduce that

StMS = dM

for some real number d. The matrix StMS has the same inertia as M , that is,
it has three negative eigenvalues and one positive eigenvalue. It follows that d is
positive, and consequently,(

1√
d
S

)t

M

(
1√
d
S

)
= M,

as desired. �

Corollary 4.12. Every automorphism of H2 is standard. An automorphism ϕ of
H2 is an affine automorphism if and only if ϕ(∞̂) = ∞̂.
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Proof. Let ϕ be an automorphism of H2. Since the triple 0, I, (1/2)I is timelike
(Example 3.41), we see that the triple ϕ(0), ϕ(I), ϕ((1/2)I) is also timelike. Thus
Theorem A together with Theorem 3.56 implies that ϕ is standard. If in addition
ϕ(∞̂) = ∞̂, then we get ϕ(H2) = H2. Thus Theorems 4.11 and 3.56 show that ϕ
is an affine automorphism. Conversely, it is clear that an affine automorphism ϕ
satisfies ϕ(∞̂) = ∞̂. �

Therefore, we no longer need to make the distinction between an automorphism
and a standard automorphism.

Corollary 4.13. Let A,B ∈ H2. An automorphism ϕ of H2 satisfies ϕ(A) = B if
and only if there is an affine automorphism ψ satisfying

ϕ(X) = ψ((X −A)−1)−1 +B

for every X ∈ H2.

Proof. If ψ is an affine automorphism, then

ψ((A−A)−1)−1 +B = ψ(∞̂)−1 +B = ∞̂−1 +B = B.

Conversely, assume that an automorphism ϕ of H2 satisfies ϕ(A) = B. Define two
automorphisms ϕ1, ϕ2 by ϕ1(X) := X−1 + A, ϕ2(X) := (X − B)−1, X ∈ H2.
Then ψ := ϕ2 ◦ ϕ ◦ ϕ1 is an automorphism. By ϕ(A) = B, we get ψ(∞̂) = ∞̂, or
equivalently, ψ is an affine automorphism. We get

ϕ(X) = ϕ−1
2 ◦ ψ ◦ ϕ

−1
1 (X) = ψ((X −A)−1)−1 +B

for every X ∈ H2, as desired. �

In particular, if A = B = 0, then ϕ is of the form ϕ(X) = ψ(X−1)−1. We may
also see that a general automorphism can be expressed as the composition of only a
few affine automorphisms and inversions. To show this, let ϕ be an automorphism
of H2. From the fact that the cone with vertex ∞̂ is mapped by ϕ onto some cone,
it is easy to see that there is A ∈ H2 such that B := ϕ(A) ∈ H2. Thus the preceding
corollary shows that ϕ is expressed as the composition of two inversions and three
affine automorphisms (two of which are translations).

5. Degenerate coherency preservers

5.1. Two types of degenerate coherency preservers. We first give some ex-
amples of coherency preservers that are not standard. This is to motivate the
definition of degenerate coherency preservers. Those who want to get to the main
result immediately may look at Definitions 5.6, 5.8, 5.9, and Theorem B, then skip
to Subsection 5.2.

For n ∈ {0, 1, 2}, let Hn
2 denote the set of matrices in H2 of rank n. Observe

that H2
2 is the set of all invertible (= nonsingular) matrices in H2.

Example 5.1. Obviously, any mapping from A ⊂ H2 into a line ` is a coherency
preserver. As a special case, let P be any projection of rank one, and define
ϕ : H2 → H2 by

ϕ(A) = (trA)P, A ∈ H2.

This is a coherency preserver, and it is of interest to observe that ϕ is linear.
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Example 5.2. Another simple example is the map ϕ : H2 → H2 defined by

ϕ(A) = A, A ∈ H2 \H2
2

and

(5.1) ϕ(A) = 0, A ∈ H2
2 .

A slight modification gives a much “wilder” example. We choose any function
η : P → P and for every rank one projection P we choose a function fP : R → R
satisfying fP (0) = 0. Define ϕ : H2 → H2 by

ϕ(tP ) = fP (t)η(P ), (t, P ) ∈ R× P

and (5.1). It is easily seen from Lemma 3.22 that any such ϕ preserves coherency.
If η and all functions fP are chosen to be surjective, then the image of ϕ is the
whole cone C0.

Observe that the range of a coherency preserver in the above example is con-
tained in one cone. We will give the general form of such coherency preservers in
Proposition 5.21. After some more reflection, one may encounter an example of
a coherency preserver whose range slightly protrudes one cone. Here is such an
example:

Example 5.3. Let f : P → P be any mapping, and define ϕ : H2 → H2 by

ϕ(0) = 0, ϕ(H2 \ C0) = {I},

and

ϕ(tP ) = f(P ), P ∈ P, t ∈ R \ {0}.
It is easy and left to the reader to show that ϕ is a coherency preserver. Observe
that ϕ(H2) = f(P) ∪ {0, I} is not necessarily contained in one cone.

Note that ϕ(H2 \ {0}) = f(P)∪{I} is contained in one cone CI in this example.
Let us give another example, which is seemingly more complicated.

Example 5.4. We denote by L ⊂ H1
2 the set of all rank one matrices that are of

the form

t

[
s i

√
s(1− s)

−i
√
s(1− s) 1− s

]
for some nonzero real t and some real s, 0 ≤ s ≤ 1. We set

K =

{[
0 p
p 0

]
: p ∈ R \ {0}

}
⊂ H2

2 .

Let g : R \ {0} → R and η : [0, 1]→ P be any maps. We define ϕ1 : H2 → H2 by

ϕ1(0) = 0, ϕ1(H1
2 \ L) = {E11}, ϕ1(H2

2 \ K) = {I},

ϕ1

(
t

[
s i

√
s(1− s)

−i
√
s(1− s) 1− s

])
= η(s), (t, s) ∈ (R \ {0})× [0, 1],

and

ϕ1

([
0 p
p 0

])
= g(p)E22 + E11, p ∈ R \ {0}.

Then ϕ1 is a coherency preserver.
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Proof. Assume that A,B ∈ H2 are coherent. Observe that rank one matrices are
mapped to rank one matrices. Thus, if one of A or B is the zero matrix, then the
other one is of rank at most one, and therefore ϕ1(A) ∼ ϕ1(B). The next case we
will treat is that both A and B are of rank one, that is, A = tP and B = sP for some
rank one projection P and some nonzero scalars t, s. Then clearly, ϕ1(A) = ϕ1(B).
We continue by treating the case that both A and B are invertible. Using the fact
that ϕ1 maps the set of invertible matrices into the line

` =
{
tE22 + E11 : t ∈ R

}
,

we see that ϕ1(A) ∼ ϕ1(B) in this case, as well.
It remains to consider the case when one of A,B, say A, is of rank one, and

B is of rank two. Then clearly, ϕ1(A) ∈ P. If B 6∈ K, then ϕ1(B) = I and
ϕ1(A) ∼ ϕ1(B). If B ∈ K, then Lemma 5.5 below implies A 6∈ L, which yields
ϕ1(A) = E11. Therefore, we have ϕ1(A) ∼ ϕ1(B) in this last case, too. �

Lemma 5.5. Let p, t be nonzero real numbers and let s be a real number, 0 ≤ s ≤ 1.
Then the matrices

A = t

[
s i

√
s(1− s)

−i
√
s(1− s) 1− s

]
∈ L and B =

[
0 p
p 0

]
∈ K

are not coherent.

Proof. Observe that A is of rank one while B is invertible. We have B − A =
B(I − B−1A). It is straightforward to verify that B−1A is a trace zero complex
matrix and since it is of rank one, it is a square-zero matrix. Consequently, I−B−1A
is invertible, which further yields that B −A is of rank two, as desired. �

For ϕ1 in Example 5.4, we see that the image ϕ1(H2 \ {0}) is contained in one
cone CI . Thus, for each of the above examples of coherency preservers ϕ : A → H2,
there are A ∈ A, B ∈ ϕ(A) with the property ϕ(A \ {A}) ⊂ CB . We give a name
to this class of coherency preservers.

Definition 5.6. A coherency preserver ϕ : A → H2 defined on a subset A of H2 is
of type (C) if there exist A ∈ A and B ∈ ϕ(A) such that ϕ(A \ {A}) ⊂ CB .

Is every non-standard coherency preserver of type (C)? The answer is no.

Example 5.7. Let f : R→ R be any function. Let us define a map ϕ2 : H2 → H2

in the following way. We start by defining

ϕ2(tE11) = f(t)E11

for every t ∈ R. If a matrix A ∈ H2\`0,E11
is coherent to tE11 for some real number

t, then such a t is uniquely determined. In this case, we set

ϕ2(A) = E22 + f(t)E11.

In the remaining case that d(A, tE11) = 2 for all t ∈ R (equivalently, A is of rank
two and the (2, 2)-entry of A is zero), we define

ϕ2(A) = E22.

Then ϕ2 is a coherency preserving map.
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Proof. We need to show that ϕ2(A) 6∼ ϕ2(B) implies A 6∼ B. Observe that ϕ(H2 ∩
`0,E11

) ⊂ `0,E11
and ϕ(H2 \ `0,E11

) ⊂ `E22,I . Therefore, ϕ2(A) 6∼ ϕ2(B) implies that
one of the two matrices A,B is in H2∩`0,E11

and the other is in H2 \`0,E11
. In that

case, it is obvious from the definition of ϕ2 that ϕ2(A) 6∼ ϕ2(B) implies A 6∼ B. �

Observe that ϕ2 defined in this manner is not necessarily of type (C). However,
it is a coherency preserver of type (`) in the following sense.

Definition 5.8. A coherency preserver ϕ : A → H2 defined on a subset A of H2 is
of type (`) if there are lines `, `′ such that ϕ(A \ `) ⊂ `′.

Note that the two types (C), (`) of coherency preservers are not disjoint. For
example, any mapping ϕ : A → H2 whose range is contained in a single line is a
coherency preserver of both types (C) and (`). Note also that in both types the
range of ϕ is contained in a “small” subset of H2. Indeed, if ϕ is of type (C), then
its range is contained in a union of a point and a cone; and if ϕ is of type (`), then
its range is contained in a union of two lines.

It will turn out that the two types of coherency preservers play a dominant role
in the class of non-standard coherency preservers, so let us give a name to the union
of these two classes.

Definition 5.9. A coherency preserver ϕ : A → H2 defined on a subset A of H2 is
degenerate if it is of type (C) or of type (`).

Here we present the key result of the current section.

Theorem B. Let A,B ∈ H2 satisfy A < B and ϕ : [A,B] → H2 be a coherency
preserver that is not standard. Then ϕ is degenerate.

We will give its lengthy proof in Section 6. Before that, we give applications of
Theorem B in the next subsection. It will turn out that a coherency preserver is
either standard or degenerate if it is defined on a subset that looks like a matrix
interval.

However, it is not true that a non-standard coherency preserver defined on, say,
an open connected subset of H2 is always degenerate in the sense of Definition 5.9.
We give some examples. Let U ⊂ H2 be the set formed of all matrices X in H2

such that the difference of the largest eigenvalue of X and the smallest eigenvalue
is less than 1. Clearly, it is open. It is also connected. Indeed, let A,B ∈ U with
eigenvalues t1 ≤ t2 and s1 ≤ s2, respectively. It is trivial to find paths contained
in U from A to ((t1 + t2)/2)I, from ((t1 + t2)/2)I to ((s1 + s2)/2)I, and from
((s1 + s2)/2)I to B.

Lemma 5.10. Let U ⊂ H2 be as above. Assume that A,B ∈ U are coherent. Then
|tr (A−B)| < 2.

Proof. We have B = A+ tP for some real number t and some rank one projection
P . Assume t ≥ 0. Then trA ≤ trB. We need to verify that t < 2. Let p ≤ q be
eigenvalues of A, x ∈ C2 a unit vector spanning the image of P and y a unit vector
orthogonal to x. We have

(Bx, x) = (Ax, x) + t(Px, x) ≥ p+ t

and

(By, y) = (Ay, y) + t(Py, y) ≤ q
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and therefore, the difference of the larger eigenvalue of B and the smaller eigenvalue
of B is no smaller than (p+ t)− q = t− (q − p) > t− 1. It follows that 1 > t− 1,
as desired. If t ≤ 0, then exchange the roles of A and B. �

We first give an easy example.

Example 5.11. Let a > 3 be a real number. Let An ∈ H2, n ∈ Z, satisfy
An ∼ An+1 for every n. We define ψ : U → H2 by ψ(X) = An for X ∈ U with
an ≤ trX < a(n + 1), n ∈ Z. Since every pair X,Y ∈ U with X ∼ Y satisfies
|tr (X − Y )| < 2, it is easy to see that ψ is a coherency preserver.

Next we give a more involved example that mixes coherency preservers of the
two types (`) and (C).

Example 5.12. Let ϕ1 : H2 → H2 be a coherency preserver of type (C) given
in Example 5.4. Let ϕ2 : H2 → H2 be a coherency preserver of type (`) given in
Example 5.7. Let ϕ3 : H2 → C0 be any coherency preserver of type (C). Assume
that a ∈ R, a > 3. We define ϕ : U → H2 by

ϕ(X) =


ϕ2(X + aI)− E22, trX < −a,
ϕ1(X)− I, −a ≤ trX < a,

ϕ3(X), a ≤ trX.

Then ϕ is a coherency preserver.

Proof. Recall that ϕ1(X) = I if X > 0 or X < 0. Thus we have ϕ(X) = 0 for
0 < X ∈ U with trX < a, and for 0 > X ∈ U with trX ≥ −a.

Assume that X,Y ∈ U are coherent. We show that ϕ(X) is coherent to ϕ(Y ).
Since Y −X is of rank one, we see that X ≤ Y or Y ≤ X holds. We may assume
X ≤ Y without loss of generality. By Lemma 5.10, we get |tr (X − Y )| < 2.
Obviously, one of the following holds:

• The set {trX, trY } is contained either in (−∞,−a), [−a, a), or [a,∞).
• trX < −a ≤ trY .
• trX < a ≤ trY .

In the first case, it is clear that ϕ(X) ∼ ϕ(Y ).
Assume trX < −a ≤ trY . Then we have trY < trX + 2 < −a + 2 < −1.

By the definition of U , we see that Y < 0, and we obtain ϕ(Y ) = ϕ1(Y ) − I = 0.
On the other hand, we know that trX > trY − 2 ≥ −a − 2 and thus tr (X +
aI) > a − 2 > 1, which leads to X + aI > 0. From the definition of ϕ2, we have
ϕ(X) = ϕ2(X + aI)− E22 ∈ {sE11 : s ∈ R}. Therefore, ϕ(Y ) = 0 ∼ ϕ(X).

If trX < a ≤ trY , a similar argument shows that X > 0 and thus ϕ(X) =
ϕ1(X)− I = 0. Since ϕ(Y ) = ϕ3(Y ) ∈ C0, we have ϕ(X) ∼ ϕ(Y ), as desired. �

Combining ideas in the above two examples together, one may construct vari-
ous coherency preservers involving (possibly infinitely) many degenerate coherency
preservers. One may also construct similar examples of coherency preservers on,
say, the open connected subset {X ∈ H2 : −1 < trX < 1} ⊂ H2.

5.2. Applications of Theorem B. In this subsection, we give several results
assuming that Theorem B holds true. The proof of Theorem B will be given later
in Section 6. Recall that H2 is endowed with the topology that comes from the
identification with U2 as in Subsection 2.2.
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Lemma 5.13. Let An ∈ H2, n ≥ 1, be a sequence that converges to A in the
compact space H2. Then ⋂

N≥1

⋃
n≥N

CAn
⊂ CA.

Proof. We may consider U2 instead of H2. Thus, let us think of An and A as
elements in U2. The condition

B ∈
⋂
N≥1

⋃
n≥N

CAn

means that B ∼ An for infinitely many n. Recall that B ∼ An in U2 means that
the rank of B −An is at most 1. Since An → A, it follows that the rank of B −A
is at most 1, too. �

Lemma 5.14. Let `n ⊂ H2, n ≥ 1, be a sequence of lines. Then there is a
subsequence `nk

and a line ` satisfying⋂
N≥1

⋃
k≥N

`nk
⊂ `.

Proof. Take any An ∈ `n for each n. By passing to a subsequence, we may assume
that An converges to some point A ∈ H2 in the compact space H2. We may also
assume A = 0 without loss of generality (use Lemma 3.48). Set U = {X ∈ H2 :
‖X‖ < 1}, which is an open neighborhood of A = 0. It is easy to see that we may
take Bn ∈ `n \ U for each n. By passing to a subsequence, we may assume that Bn

converges to some element B ∈ H2 \ U . Since An ∼ Bn for each n, we have A ∼ B
(to see this, consider the corresponding points in U2). If

X ∈
⋂
N≥1

⋃
n≥N

`n,

then we have An ∼ X ∼ Bn for infinitely many n. Since An → A and Bn → B, we
have X ∈ `A,B . Thus we obtain the desired conclusion. �

Lemma 5.15. Let A ⊂ H2 be a subset and ϕ : A → H2 a coherency preserver.
Assume that the following condition holds: For any pair X,Y ∈ A, there are X1 =
X,X2, . . . , Xn = Y ∈ A such that X1 ∼ X2 ∼ · · · ∼ Xn. (By lemma 4.10,
this condition is satisfied whenever A is open and connected.) If A ∈ H2 satisfies
ϕ(A) ⊂ CA, then either A ∈ ϕ(A), or there is a line ` passing through A with
ϕ(A) ⊂ `.

Proof. We may assume A = 0 without loss of generality. The desired conclusion
readily follows from Lemma 3.22. �

Let A,B ∈ H2 with A < B. Any of the sets (A,B), {C ∈ H2 : C > A},
{C ∈ H2 : C < A}, and H2 will be called an open interval in H2.

Theorem 5.16. Let U be an open interval in H2 and ϕ : U → H2 a coherency
preserver. Then ϕ is either standard or degenerate.

Proof. We may find {An : n ∈ Z} ⊂ H2 such that

· · · < A−2 < A−1 < A0 < A1 < A2 < · · ·
and U =

⋃
n≥1[A−n, An] hold. The restriction ϕn : [A−n, An] → H2 of ϕ to

[A−n, An] is obviously a coherency preserver. Assume that ϕ is not standard.
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Then Theorem 3.56 implies that for every n ≥ 1 the map ϕn is not standard. It
follows from Theorem B that ϕn is degenerate.

Assume that there are infinitely many n ≥ 1 such that ϕn is of type (C). By
passing to a subsequence, we may assume that ϕn is of type (C) for every n ≥ 1.
For each n ≥ 1, we may take Bn ∈ [A−n, An] and Cn ∈ H2 such that ϕ([A−n, An] \
{Bn}) ⊂ CCn

. By passing to a subsequence again, we may assume that {Bn} and
{Cn} converge in the compact space H2. Let Bn → B and Cn → C as n → ∞ in
H2. It follows that

U \ {B} ⊂
⋃

n≥N

[A−n, An] \ {Bn}

for every N ≥ 1. Therefore, we have

ϕ(U \ {B}) ⊂
⋂
N≥1

⋃
n≥N

ϕ([A−n, An] \ {Bn}) ⊂
⋂
N≥1

⋃
n≥N

CCn .

This together with Lemma 5.13 implies that ϕ(U \ {B}) ⊂ CC . Therefore, ϕ is of
type (C) if C ∈ ϕ(U). Assume that C /∈ ϕ(U). Since U \{B} is open and connected,
Lemma 5.15 shows that ϕ(U \ {B}) is contained in one line. Thus ϕ is of type (C).

Assume that there are infinitely many n ≥ 1 such that ϕn is of type (`). This
case can be considered in a parallel manner as in the preceding case. By passing to a
subsequence, we may assume that ϕn is of type (`) for every n ≥ 1. For each n ≥ 1,
we may take lines `n, `′n such that ϕ([A−n, An] \ `n) ⊂ `′n. By using Lemma 5.14
and passing to a subsequence, we may assume that

⋂
N≥1

⋃
n≥N `′n ⊂ `′ for some

line `′. Observe that the sequence
⋂

n≥N `n, N ≥ 1, of subsets of H2 is expanding

and that each of
⋂

n≥N `n is either empty or a singleton or a line. Thus we see that⋂
n≥N `n is contained in a line ` for all N ≥ 1. It follows that

ϕ(U \ `) ⊂
⋂
N≥1

⋃
n≥N

ϕ([A−n, An] \ `n) ⊂
⋂
N≥1

⋃
n≥N

`′n ⊂ `′.

Thus ϕ is of type (`). �

Almost the same proof shows that a coherency preserver defined on an interval
of the form [A,B), or {C ∈ H2 : C ≥ A}, or (A,B], or {C ∈ H2 : C ≤ A} is also
either standard of degenerate. We also obtain the following.

Theorem 5.17. Let ϕ : H2 → H2 be a coherency preserver. Then ϕ is either
standard or degenerate.

Proof. For n ≥ 1, set An := {aP +bP⊥ : P ∈ P, a, b ∈ [−n,∞]}. Clearly, we have⋃
n≥1An = H2. If ϕ is not standard, then ϕ restricted to each An is not standard,

either. Observe that the automorphism X 7→ (X+(n+1)I)−1 sends An onto [0, I].
Therefore, Theorem B implies that ϕ restricted to each An is degenerate. Hence
the same argument as above shows that ϕ is degenerate on H2. �

Let us call a subset of H2 a generalized open interval if it is an image of some
open interval in H2 by an automorphism of H2. Let U be an open subset of H2.
Observe that for every X ∈ U there is a generalized open interval I such that
X ∈ I ⊂ U . We say that a coherency preserver ϕ : U → H2 is locally degenerate
if ϕ is degenerate on every generalized open interval contained in U . Here is a
consequence of Theorem 5.16 with the identity-type theorem (Theorem 3.56).
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Theorem 5.18. Let U be an open connected subset of H2. Then every coherency
preserver ϕ : U → H2 is either standard or locally degenerate.

Now, we are going to give a proof of Theorem 1.2, which was the original goal
of our research. We need an easy lemma.

Lemma 5.19. Let ` ⊂ H2 be a line and ξ : M4 → H2 the mapping as in (1.4).
Then ξ−1(H2 ∩ `) is contained in one light line.

Proof. There is nothing to prove when ` ∩ H2 = ∅. If ` ∩ H2 6= ∅, then Lemma
3.23 implies that there exist A ∈ H2 and P ∈ P such that ` ∩ H2 = {A + aP :
a ∈ R}. This can be rewritten as ` ∩ H2 = {B + t(2P ) : t ∈ R}, where B =
A − (trA)P is a trace zero matrix. The space time event r0 that corresponds to
B via the identification (1.4) is of the form r0 = (x0, y0, z0, 0). Applying the Bloch
representation (Subsection 3.2), we see that ` ∩ H2 corresponds to the lightlike
line {(x0 + tx, y0 + ty, z0 + tz, t) : t ∈ R} for some (x0, y0, z0), (x, y, z) ∈ R3 with
x2 + y2 + z2 = 1. �

Proof of Theorem 1.2. Instead of working on M4, we may equivalently consider a
coherency preserver ϕ : H2 → H2. By Theorem 5.16, ϕ : H2 → H2 ⊂ H2 is either
standard or degenerate.

If ϕ is standard, then ϕ extends to an automorphism of H2, which necessarily
maps ∞̂ to itself. By Corollary 4.12, the extension is an affine automorphism, and
the proof is complete in this case (see Subsection 4.2).

Assume that ϕ is of type (C). Then there are A ∈ H2 and B ∈ H2 such that
ϕ(H2 \ {A}) ⊂ CB ∩H2. It immediately follows that the second item of Theorem
1.2 holds.

Assume that ϕ is of type (`). Then there are lines `, `′ ⊂ H2 satisfying ϕ(H2\`) ⊂
H2 ∩ `′. It follows from Lemma 5.19 that the third item of Theorem 1.2 holds. �

A generalization of Alexandrov’s theorem given by Lester is also a simple con-
sequence of our main result.

Theorem 5.20 ([21]). Let U be an open connected subset of H2. If ϕ : U → H2

satisfies

X ∼ Y ⇐⇒ ϕ(X) ∼ ϕ(Y )

for every pair X,Y ∈ U , then ϕ is standard.

Proof. Theorem 5.18 tells us that ϕ is either standard or locally degenerate. We
need to show that ϕ is not locally degenerate. By Lemma 3.18, we just need to
show that a degenerate coherency preserver ϕ : (0, I) → H2 never satisfies X ∼
Y ⇐⇒ ϕ(X) ∼ ϕ(Y ) for every pair X,Y ∈ (0, I).

We prove it. Assume that ϕ : (0, I) → H2 is a degenerate coherency preserver
satisfying X ∼ Y ⇐⇒ ϕ(X) ∼ ϕ(Y ) for every pair X,Y ∈ (0, I). We need to
obtain a contradiction.

If ϕ is of type (C), then there are A ∈ (0, I) and B ∈ ϕ((0, I)) such that
ϕ((0, I) \ {A}) ⊂ CB . Take A < C < D < I, Then we have SC,D ⊂ [C,D] ⊂ (0, I)
by Corollary 3.19. Since C 6∼ D, we see that ϕ(C) 6∼ ϕ(D). This together with
ϕ(C), ϕ(D) ∈ CB shows that d(B,ϕ(C)) = d(B,ϕ(D)) = 1 and `B,ϕ(C) ∩ `B,ϕ(D) =
{B}. It follows that

ϕ(SC,D) ⊂ Cϕ(C) ∩ Cϕ(D) ∩ CB = `B,ϕ(C) ∩ `B,ϕ(D) = {B}
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However, SC,D (⊂ (0, I)) has infinitely many points, thus we obtain a contradiction.
If ϕ is of type (`), then there are lines `, `′ such that ϕ((0, I) \ `) ⊂ `′. It is clear

that there is a pair A,B ∈ (0, I) \ ` with A 6∼ B, but we have ϕ(A), ϕ(B) ∈ `′,
hence ϕ(A) ∼ ϕ(B), which contradicts our assumption. �

5.3. More concrete description of degenerate coherency preservers. We
would like to describe degenerate coherency preservers in a more concrete manner.
We remark that none of the results in this subsection depend on Theorem B.

Let A ⊂ H2 be a subset. First, we study the special case where the image
is contained in one cone. Consider a coherency preserver ϕ : A → H2 such that
the image ϕ(A) is contained in a cone. By considering ψ ◦ ϕ for an appropriate
automorphism ψ of H2 instead of ϕ, the description of such a map reduces to the
case ϕ(A) ⊂ C0 without loss of generality. We may give a complete characterization.

Proposition 5.21. Let ϕ : A → C0 be a mapping. For P ∈ P we denote AP :=
ϕ−1(`0,P \ {0}). Then the following two conditions are equivalent.

• The mapping ϕ is a coherency preserver.
• A 6∼ B holds for any P,Q ∈ P with P 6= Q and any A ∈ AP , B ∈ AQ.

Proof. The mapping ϕ preserves coherency if and only if ϕ(A) 6∼ ϕ(B) implies
A 6∼ B for every pair A,B ∈ A. By Lemma 3.22, we see that ϕ(A) 6∼ ϕ(B) holds if
and only if A ∈ AP and B ∈ AQ hold for some P,Q ∈ P with P 6= Q. This leads
to the desired conclusion. �

This generalizes Example 5.2. We may get more examples in the following man-
ner. Let B ⊂ A be a subset satisfying B1 6∼ B2 for any distinct B1, B2 ∈ B, e.g.,
B = {tI : t ∈ R}, B = {A ∈ H2 : trA = 0}. Take any mapping ϕ : A → C0
satisfying ϕ(A \ B) = {0}. Then ϕ satisfies the condition of Proposition 5.21.

In what follows, we consider the case where the image is not contained in any
single cone. Let us begin with type (`). Consider a coherency preserver ϕ : A → H2

of type (`). We may take lines `1, `
′
2 such that ϕ(A \ `1) ⊂ `′2. We may also take a

line `′1 such that ϕ(A ∩ `1) ⊂ `′1. If ϕ(A) is not contained in any single cone, then
we have `′1 ∩ `′2 = ∅. By considering ψ2 ◦ ϕ ◦ ψ1 for an appropriate pair ψ1, ψ2 of
automorphisms of H2 instead of ϕ, the general description of such a map reduces
to the case `1 = `′1 = `0,E11

and `′2 = `E22,I .

Proposition 5.22. A mapping ϕ : A → H2 with ϕ(A∩ `0,E11) ⊂ `0,E11 and ϕ(A \
`0,E11

) ⊂ `E22,I is a coherency preserver if and only if the equation ϕ(A ∩ CA \
`0,E11

) ⊂ {ϕ(A) + E22} holds for every A ∈ A ∩ `0,E11
.

Proof. Let ϕ : A → H2 be a mapping satisfying ϕ(A ∩ `0,E11) ⊂ `0,E11 and ϕ(A \
`0,E11) ⊂ `E22,I . If ϕ preserves coherency, then we get ϕ(A∩CA \ `0,E11) ⊂ `E22,I ∩
Cϕ(A) = {ϕ(A) + E22} for every A ∈ A ∩ `0,E11

.
Conversely, assume that ϕ(A ∩ CA \ `0,E11) ⊂ {ϕ(A) + E22} holds for every

A ∈ A ∩ `0,E11 . If A,B ∈ A satisfies ϕ(A) 6∼ ϕ(B), then one of A,B lies in
A∩ `0,E11

and the other is in A \ `0,E11
. Then it follows from the assumption that

A 6∼ B, as desired. �

Observe that this generalizes Example 5.7.
Lastly, we consider type (C). Let ϕ : A → H2 be a coherency preserver of type

(C). We may take A ∈ A and B ∈ H2 such that ϕ(A \ {A}) ⊂ CB . If ϕ(A) is not
contained in any single cone, then we have ϕ(A) 6∼ B. By considering ψ2 ◦ ϕ ◦ ψ1
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for an appropriate pair ψ1, ψ2 of automorphisms of H2 instead of ϕ, the general
description of such a map reduces to the case A = 0, B = I, and ϕ(0) = 0.

Proposition 5.23. Assume that 0 ∈ A. Let ϕ : A → H2 be a mapping with
ϕ(0) = 0 and ϕ(A\ {0}) ⊂ CI . For P ∈ P we denote AP := ϕ−1(`I,P \ {I}). Then
ϕ is a coherency preserver if and only if the following conditions hold.

• A 6∼ B holds for any P,Q ∈ P with P 6= Q and any A ∈ AP , B ∈ AQ.
• For each P ∈ P there is Q ∈ P such that ϕ(A ∩ `0,P \ {0}) ⊂ {Q}.

Proof. If ϕ is a coherency preserver and P ∈ P, then ϕ(A∩ `0,P \{0}) is a coherent
subset of P, so there is Q ∈ P such that ϕ(A ∩ `0,P \ {0}) ⊂ {Q}. The rest of the
proof is similar to the proof of Proposition 5.21. �

In what follows, we observe that ϕ needs to be of a very special form in the case
A = H2 or A = H2. Recall that H2

2 = H2 \ C0 is the collection of all invertible
matrices in H2.

Proposition 5.24. A mapping ϕ : H2 → H2 with ϕ(0) = 0 and ϕ(H2 \ {0}) ⊂ CI
is a coherency preserver if and only if one of the following conditions are satisfied.

(1) ϕ(H2
2 ) = {I}, and for each P ∈ P there is QP ∈ P such that ϕ(H2 ∩ `0,P \

{0}) = {QP }.
(2) There is a unique element R ∈ P such that B = H2

2 ∩ ϕ−1(`I,R \ {I}) is
nonempty, and for each P ∈ P there is QP ∈ P such that ϕ(H2 ∩ `0,P \
{0}) = {QP }. Moreover, for every P ∈ P with the property that some point
of H2 ∩ `0,P is coherent to some point of B, we have QP = R.

Proof. It is left to the reader to show that a mapping satisfying (1) or (2) preserves
coherency.

Assume that ϕ : H2 → H2 with ϕ(0) = 0 and ϕ(H2 \ {0}) ⊂ CI is a coherency
preserver. For each P ∈ P, ϕ(H2 ∩ `0,P \ {0}) is a coherent subset of P, so there is
QP ∈ P such that ϕ(H2 ∩ `0,P \ {0}) = {QP }.

Assume in addition (1) does not hold. Then we may find X ∈ H2
2 satisfying

ϕ(X) = R + cR⊥ with R ∈ P and c ∈ R \ {1}. If X > 0 or X < 0, then for every
P ∈ P there is d ∈ R \ {0} such that X ∼ dP . This implies ϕ(dP ) = R, hence we
obtain QP = R for every P ∈ P. Assume that X 6> 0 and X 6< 0. Then we may
find E ∈ P and c1, c2 > 0 such that X = c1E − c2E⊥. By the lemma below, we
have QP = R for every P ∈ P with tr (PE) 6= c1/(c1 + c2). In both cases, we have
QP = R for all points P in the Bloch sphere possibly with the exception of points
in one circle. Thus we see that (2) holds in this case. �

Lemma 5.25. Let E ∈ P and c1, c2 > 0. For each P ∈ P with tr (PE) 6=
c1/(c1 + c2), there is d ∈ R \ {0} such that c1E − c2E⊥ ∼ dP .

Proof. There is no loss of generality in assuming that E = E11. We may write

P =

[
c eit

√
c− c2

e−it
√
c− c2 1− c

]
for some c ∈ [0, 1] \ {c1/(c1 + c2)} and some t ∈ [0, 2π). Then we have

c1E − c2E⊥ − dP =

[
c1 − dc −deit

√
c− c2

−de−it
√
c− c2 −c2 − d(1− c)

]
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and thus

det(c1E−c2E⊥−dP ) = (c1−dc)(−c2−d(1−c))−d2(c−c2) = −c1c2+d((c1+c2)c−c1),

which takes the value 0 when d = c1c2/((c1 + c2)c− c1) 6= 0. �

Proposition 5.26. A mapping ϕ : H2 → H2 with ϕ(0) = 0 and ϕ(H2 \ {0}) ⊂ CI
is a coherency preserver if and only if one of the following conditions holds.

• There is Q ∈ P satisfying ϕ(C0 \ {0}) = {Q} and ϕ(H2 \ C0) ⊂ `Q,I . (In

this case, we have ϕ(H2) ⊂ CQ.)

• ϕ(H2 \ C0) = {I}, and for each P ∈ P there is QP ∈ P such that ϕ(`0,P \
{0}) = {QP }.

Proof. If ϕ : H2 → H2 with ϕ(0) = 0 and ϕ(H2\{0}) ⊂ CI is a coherency preserver,
then ϕ(`0,P \ {0}) is a coherent subset of P for each P ∈ P. Thus there is QP ∈ P
such that ϕ(`0,P \ {0}) = {QP }.

Assume that QP = Q ∈ P for every P ∈ P. Since every element of H2 \ C0 is
coherent to some point of C0 \{0}, we see that ϕ(H2 \C0) ⊂ CQ. This together with

the assumption implies ϕ(H2 \ C0) ⊂ CQ ∩ CI = `Q,I .
Assume that QP1 6= QP2 for some pair P1, P2 ∈ P. Observe that every element

of H2 \C0 is coherent to some element of `0,P1
\{0} and some element of `0,P2

\{0}.
This together with

ϕ(`0,P1
\ {0}) = {QP1

} 6= {QP2
} = ϕ(`0,P1

\ {0})
and ϕ(H2 \ {0}) ⊂ CI shows that ϕ(H2 \ C0) = {I}.

Thus we obtain the direct implication. The converse is easy to show. �

Observe that Proposition 5.24 generalizes Example 5.4 and Proposition 5.26
generalizes Example 5.3.

6. Coherency preservers on a closed interval

The purpose of the current section is to prove Theorem B. Before we begin, we
give some easy lemmas about an interval.

Lemma 6.1. Let A,B ∈ H2 satisfy A < B, and P ∈ SA,B. Then [A,B] ∩ CP =
[A,P ] ∪ [P,B].

Proof. By Lemma 3.18, we may assume A = 0 and B = I without loss of generality.
Then P ∈ S0,I = P. It suffices to think of the case P = E11.

We need to show that [0, I] ∩ CE11
= [0, E11] ∪ [E11, I]. Note that [0, E11] =

{tE11 : t ∈ [0, 1]} and that [E11, I] = {E11 + tE22 : t ∈ [0, 1]}. It is clear that
[0, I]∩CE11

⊃ [0, E11]∪[E11, I]. Let X ∈ [0, I]∩CE11
. We show X ∈ [0, E11]∪[E11, I].

If X = E11, then there is nothing to prove. So, assume that X = E11 + tQ for
some rank one projection Q and some nonzero real number t. It suffices to show
that Q ∈ {E11, E22}. If Q 6= E11, then t > 0. Indeed, if t < 0, then Q 6= E11

implies that (Qe2, e2) > 0 and consequently, (Xe2, e2) < 0, a contradiction. We
have 1 ≥ (Xe1, e1) = 1 + t(Qe1, e1), and consequently Q = E22. This completes
the proof. �

Lemma 6.2. Let A,B ∈ H2 satisfy A < B, and P ∈ SA,B. Then

(6.1) (A,B] \ `P,B ⊂
⋃

X∈[A,P ]\{A,P}

CX
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and

[A,B) \ `A,P ⊂
⋃

X∈[P,B]\{P,B}

CX

hold.

Proof. With no loss of generality, we may again assume that A = 0, B = I, and
P = E11. To verify the first inclusion, let X ∈ (0, I] \ `E11,I . We need to find
t ∈ (0, 1) satisfying X ∼ tE11. Since X > 0, we have detX > 0. On the other hand,
we have ((X−E11)e1, e1) = (Xe1, e1)−1 < 0 and ((X−E11)e2, e2) = (Xe2, e2) > 0,
thus X −E11 ∈ H+−

2 . It follows that det(X −E11) < 0. By the intermediate value
theorem, there is t ∈ (0, 1) satisfying det(X− tE11) = 0, or equivalently, X ∼ tE11.
The proof of the second inclusion is similar. �

The above two lemmas clearly imply

Corollary 6.3. Let A,B ∈ H2 satisfy A < B, and let P ∈ SA,B. Then every point
of [A,B] is coherent to some point of [A,P ] and some point of [P,B].

Remark 6.4. When applying the above results, we will often use some straightfor-
ward consequences. For example, it is easy to see that (6.1) yields the following.
Every point of (A,B] is coherent to some point of [A,P ] \ {A}, and every point of
[A,B] \ `P,B is coherent to some point of [A,P ] \ {P}.

Now, let us begin the proof of Theorem B. Therefore, suppose that A,B ∈ H2

satisfy A < B, and that ϕ : [A,B] → H2 is a coherency preserver that is not
standard. We need to show that ϕ is either of type (C) or (`). We will distinguish
three possibilities: d(ϕ(A), ϕ(B)) = 0, or 1, or 2. We will first consider the case
d(ϕ(A), ϕ(B)) = 2 in Subsection 6.1 and then apply the result there to attack the
case d(ϕ(A), ϕ(B)) ∈ {0, 1} in Subsections 6.2, 6.3.

6.1. The case d(ϕ(A), ϕ(B)) = 2. We first deal with the case d(ϕ(A), ϕ(B)) = 2.
By considering ψ2 ◦ϕ ◦ψ1 instead of ϕ for a pair of suitable automorphisms ψ1, ψ2

of H2, we may assume that A = 0, B = I, and ϕ(0) = 0, ϕ(I) = I. In this case, we
have ϕ(P) ⊂ P by Lemma 3.12.

Proposition 6.5. Let ϕ : [0, I]→ H2 be a coherency preserving map with ϕ(0) = 0
and ϕ(I) = I. Assume that ϕ is not standard. Then (at least) one of the following
holds.

(o) The set ϕ(P) is a singleton {Q}, and ϕ([0, I]) ⊂ CQ.
(i) We have ϕ([0, I)) = {0}, and there is no P ∈ P such that the image

ϕ(P \ {P}) is a singleton. In this case, the equality ϕ(P + cP⊥) = ϕ(P )
holds for each P ∈ P and each c ∈ [0, 1).

(ii) We have ϕ((0, I]) = {I}, and there is no P ∈ P such that the image
ϕ(P \ {P}) is a singleton. In this case, the equality ϕ(cP ) = ϕ(P ) holds
for each P ∈ P and each c ∈ (0, 1].

(iii) There are P×, Q◦, Q× ∈ P satisfying Q◦ 6= Q×, ϕ([0, I] ∩ `0,P×) ⊂ `0,Q× ,
and ϕ([0, I] \ `0,P×) ⊂ `Q◦,I . In this case, for every c ∈ [0, 1], the set
ϕ(CcP× ∩ [0, I] \ `0,P×) is a singleton that consists of the unique point in
`Q◦,I that is coherent to ϕ(cP×).

(iv) There are P×, Q◦, Q× ∈ P satisfying Q◦ 6= Q×, ϕ([0, I] ∩ `P×,I) ⊂ `Q×,I ,
and ϕ([0, I] \ `P×,I) ⊂ `0,Q◦ . In this case, for every c ∈ [0, 1], the set
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ϕ(CP×+cP⊥×
∩ [0, I] \ `P×,I) is a singleton that consists of the unique point

in `0,Q◦ that is coherent to ϕ(P× + cP⊥× ).

Observe that (iii) or (iv) implies ϕ(P \ {P×}) = {Q◦} and ϕ(P×) = Q× 6= Q◦.
A mapping of one of the forms in (i)–(iv) is automatically a degenerate coherency
preserver. More precisely, the following holds.

Lemma 6.6. Let ϕ : [0, I] → H2 be a map with ϕ(0) = 0 and ϕ(I) = I, ϕ(P) ⊂
P. If one of the following two conditions holds, then ϕ is a degenerate coherency
preserver of type (C).

(i) ϕ([0, I)) = {0}, and ϕ(P + cP⊥) = ϕ(P ) for every P ∈ P and c ∈ [0, 1).
(ii) ϕ((0, I]) = {I}, and ϕ(cP ) = ϕ(P ) for every P ∈ P and c ∈ (0, 1].

If one of the following two conditions holds, then ϕ is a degenerate coherency pre-
server of type (`).

(iii) There are P×, Q◦, Q× ∈ P satisfying Q◦ 6= Q×, ϕ([0, I] ∩ `0,P×) ⊂ `0,Q× ,
and ϕ([0, I]\`0,P×) ⊂ `Q◦,I . Moreover, for every c ∈ [0, 1], the set ϕ(CcP× ∩
[0, I] \ `0,P×) is a singleton that consists of the unique point in `Q◦,I that is
coherent to ϕ(cP×).

(iv) There are P×, Q◦, Q× ∈ P satisfying Q◦ 6= Q×, ϕ([0, I] ∩ `P×,I) ⊂ `Q×,I ,
and ϕ([0, I]\`P×,I) ⊂ `0,Q◦ . Moreover, for every c ∈ [0, 1], the set ϕ(CP×+cP⊥×

∩
[0, I] \ `P×,I) is a singleton that consists of the unique point in `0,Q◦ that is

coherent to ϕ(P× + cP⊥× ).

Proof. If (ii) holds, then ϕ is the restriction of a mapping described in (1) of Propo-
sition 5.24. Thus ϕ is a degenerate coherency preserver of type (C). If (i) holds,
then one may check that the mapping X 7→ I − ϕ(I −X) is of the form (ii), so we
again see that ϕ is a degenerate coherency preserver of type (C).

Assume that (iii) holds and that A,B ∈ [0, I] satisfy ϕ(A) 6∼ ϕ(B). We see
that one of A,B lies in [0, I]∩ `0,P× and the other is in [0, I] \ `0,P× , so (iii) clearly
implies that A 6∼ B. Thus ϕ is a coherency preserver. It is apparent that ϕ is of
type (`). Similarly, we see that ϕ is a degenerate coherency preserver of type (`) if
(iv) holds. �

Proposition 6.5 together with Lemma 6.6 implies the following.

Corollary 6.7. Let A,B ∈ H2 satisfy A < B. Let ϕ : [A,B]→ H2 be a coherency
preserving map with d(ϕ(A), ϕ(B)) = 2. Assume that ϕ is not standard. Then ϕ
is degenerate.

Remark 6.8. If j, k ∈ {o, i, ii, iii, iv} with j 6= k and {j, k} 6= {iii, iv}, then it is
clear that the items (j) and (k) in Proposition 6.5 cannot be fulfilled simultaneously.
However, it can happen that (iii) and (iv) are fulfilled simultaneously, in which case
ϕ([0, I]) consists of exactly four points, and ϕ is of both types (C) and (`). To see
this, we may assume with no loss of generality that P× = Q× = E11. If ϕ satisfies
both (iii) and (iv), then all elements of the set A = [0, I] \ (`0,E11 ∪ `E11,I) are
mapped into the intersubsection of lines `0,Q◦ and `Q◦,I . Thus, we have

(6.2) ϕ(0) = 0, ϕ(I) = I, ϕ(E11) = E11, and ϕ(X) = Q◦, X ∈ A.

It remains to consider the ϕ-images of elements of the set

{tE11 : 0 < t < 1} ∪ {E11 + tE22 : 0 < t < 1}.
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For every t ∈ (0, 1), the matrix tE11 is coherent to 0, E11, and some X ∈ A. It
follows that

(6.3) ϕ(tE11) = 0, 0 < t < 1.

Similarly, for every t ∈ (0, 1), the matrix E11 + tE22 is coherent to E11, I, and some
X ∈ A. It follows that

(6.4) ϕ(E11 + tE22) = I, 0 < t < 1.

Hence, the image of ϕ consists of points 0, E11, Q◦, I. Because ϕ([0, I] \ {E11}) =
{0, I, Q◦} ⊂ CQ◦ , the map ϕ is also of type (C). Conversely, it is easy to see that

ϕ : [0, I] → H2 defined by (6.2), (6.3), and (6.4) satisfies (iii) and (iv) simultane-
ously.

Since the proof of Proposition 6.5 is rather long, we separate it into claims. In
what follows, we assume that ϕ : [0, I] → H2 is a coherency preserving map with
ϕ(0) = 0, ϕ(I) = I. We also assume that ϕ is not standard.

Claim 6.9. We have

(6.5) ϕ([0, I] \ (0, I)) ⊂
⋃
P∈P

(`0,ϕ(P ) ∪ `ϕ(P ),I).

Proof. Observe that every A ∈ [0, I] \ (0, I) is coherent to some P ∈ P and one of
0, I, so that we have either 0 = ϕ(0) ∼ ϕ(A) ∼ ϕ(P ) or I = ϕ(I) ∼ ϕ(A) ∼ ϕ(P ).
Since ϕ(P) ⊂ P, we obtain (6.5). �

Let A ∈ (0, I). We show

ϕ(A) ∈
⋃
P∈P

(`0,ϕ(P ) ∪ `ϕ(P ),I) ∪
⋂
P∈P
Cϕ(P ).

By Lemma 3.20, there is an automorphism ψ of H2 such that

ψ([0, I]) = [0, I], ψ(0) = 0, ψ(I) = I, and ψ((1/2)I) = A.

By considering ϕ ◦ ψ instead of ϕ, we may assume A = (1/2)I without loss of
generality. By Corollary 4.9, the triple ϕ(0) = 0, ϕ((1/2)I), ϕ(I) = I is not in a
timelike position. Thus we see that one of the following holds:

• Either ϕ((1/2)I) ∈ C0 ∪ CI , or
• the triple 0, ϕ((1/2)I), I is in a spacelike position.

Claim 6.10. If ϕ((1/2)I) ∈ C0 ∪ CI , then we have

ϕ((1/2)I) ∈
⋃
P∈P

(
`0,ϕ(P ) ∪ `ϕ(P ),I

)
.

Proof. Assume that ϕ((1/2)I) ∈ C0 \ {0}. Then there are a ∈ R \ {0} and P0 ∈ P
such that ϕ((1/2)I) = aP0. Fix any Q ∈ P. We have 0 ∼ (1/2)Q ∼ (1/2)I, thus

0 = ϕ(0) ∼ ϕ((1/2)Q) ∼ ϕ((1/2)I) = aP0.

It follows that ϕ((1/2)Q) = bP0 for some b ∈ R. If b 6= 0, then ϕ(Q) = P0 because

bP0 = ϕ((1/2)Q) ∼ ϕ(Q) ∈ P.
If b = 0, then ϕ(Q⊥ + (1/2)Q) = P0 because

aP0 = ϕ((1/2)I) ∼ ϕ(Q⊥ + (1/2)Q) ∼ ϕ((1/2)Q) = 0
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and ϕ(Q⊥ + (1/2)Q) ∼ ϕ(I) = I. This in turn shows ϕ(Q⊥) = P0 because

P0 = ϕ(Q⊥ + (1/2)Q) ∼ ϕ(Q⊥) ∈ P.

In both cases, we see that ϕ((1/2)I) = aP0 ∈
⋃

P∈P `0,ϕ(P ). Similarly, we obtain
ϕ((1/2)I) ∈

⋃
P∈P `ϕ(P ),I when ϕ((1/2)I) ∈ CI \ {I}. �

As before, we use the symbol J =

[
1 0
0 −1

]
.

Claim 6.11. If the triple 0, ϕ((1/2)I), I is in a spacelike position, then

(6.6) ϕ((1/2)I) ∈
⋂
P∈P
Cϕ(P ).

Proof. Assume that the triple 0, ϕ((1/2)I), I is in a spacelike position. One may find
an automorphism ψ3 of H2 such that the coherency preserver ϕ′ := ψ3 ◦ϕ : [0, I]→
H2 satisfies

ϕ′(0) = 0, ϕ′((1/2)I) = (1/2)J, and ϕ′(I) = J

(see Example 3.41).
Let P ∈ P. Then we have ϕ′(P ) ∈ Sϕ′(0),ϕ′(I) = S0,J . Assume that ϕ′(P ) ∈ H2.

We aim to obtain a contradiction. Observe that ϕ′((1/2)P ) is the unique point (see
Remark 3.26) that is coherent to the three points

ϕ′(0) = 0, ϕ′(P ), and ϕ′((1/2)I) = (1/2)J.

Since (1/2)ϕ′(P ) ∼ 0, ϕ′(P ), (1/2)J , we obtain ϕ′((1/2)P ) = (1/2)ϕ′(P ). Similarly,
ϕ′(P + (1/2)P⊥) is the unique point that is coherent to the three points

ϕ′(P ), ϕ′(I) = J, and ϕ′((1/2)I) = (1/2)J,

which leads to ϕ′(P + (1/2)P⊥) = (1/2)ϕ′(P ) + (1/2)J . Then, the fact that
ϕ′((1/2)P⊥) is the unique point that is coherent to the three points

ϕ′(0) = 0, ϕ′((1/2)I) = (1/2)J, and ϕ′(P + (1/2)P⊥) = (1/2)ϕ′(P ) + (1/2)J

implies that ϕ′((1/2)P⊥) = (1/2)J − (1/2)ϕ′(P ).
By Lemma 3.44, the set CI ∩ C(1/2)P ∩ C(1/2)P⊥ ⊂ [0, I] is nonempty. It follows

that

∅ 6= ϕ′(CI ∩ C(1/2)P ∩ C(1/2)P⊥)

⊂ Cϕ′(I) ∩ Cϕ′((1/2)P ) ∩ Cϕ′((1/2)P⊥)

= CJ ∩ C(1/2)ϕ′(P ) ∩ C(1/2)J−(1/2)ϕ′(P ).

However, Corollary 3.47 together with Lemma 3.38 shows that

CJ ∩ C(1/2)ϕ′(P ) ∩ C(1/2)J−(1/2)ϕ′(P ) = ∅,

so we get to a contradiction.
It follows that ϕ′(P ) /∈ H2. Thus we obtain ϕ′(P ) =∞Q for some Q ∈ P because

0 = ϕ′(0) ∼ ϕ′(P ). Since J = ϕ′(I) ∈ Cϕ′(P ) = C∞Q, we have Q⊥JQ⊥ = 0. Thus

Q⊥(1/2)JQ⊥ = 0, which in turn implies (1/2)J ∈ C∞Q = Cϕ′(P ). Since P ∈ P
is arbitrary, we arrive at the conclusion ϕ′((1/2)I) = (1/2)J ∈

⋂
P∈P Cϕ′(P ). This

clearly implies (6.6). �
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By the above claims, we get

(6.7) ϕ([0, I]) ⊂
⋃
P∈P

(
`0,ϕ(P ) ∪ `ϕ(P ),I

)
∪
⋂
P∈P
Cϕ(P ).

Claim 6.12. If ϕ(P) is a singleton {Q}, then ϕ([0, I]) ⊂ CQ.

Proof. By (6.7), we get

ϕ([0, I]) ⊂
⋃
P∈P

(`0,ϕ(P ) ∪ `ϕ(P ),I) ∪
⋂
P∈P
Cϕ(P ) = `0,Q ∪ `Q,I ∪ CQ = CQ.

�

From now on, we assume that ϕ(P) has at least two points. Consider the auto-
morphism ψ of H2 defined by X 7→ (I −X)−1 − I, X ∈ H2. By the definition of
the inversion, we have

ψ([0, I]) = H+
2 := {aP + bP⊥ : a, b ∈ [0,∞], P ∈ P}.

In the rest of the proof, to simplify the discussion, we work with the coherency

preserver Φ := ψ ◦ ϕ ◦ ψ−1 : H+
2 → H2. Note that Φ(0) = 0, Φ(∞̂) = ∞̂ and that

Φ(∞P) ⊂ ∞P := {∞P : P ∈ P}. Therefore, for each P ∈ P, there is a unique
P ′ ∈ P with Φ(∞P ) =∞P ′.

For distinct P,Q ∈ P, we define Π+
P,Q := H+

2 ∩ΠP,Q, where

ΠP,Q = {aP + bQ : a, b ∈ R} ∪ `∞P,∞̂ ∪ `∞Q,∞̂

is the surface as in (3.14).

Lemma 6.13. Let P,Q ∈ P be distinct elements. Assume that T is an invertible 2×
2 matrix such that TPT ∗ = E11 and TQT ∗ = E22. Let ψ denote the automorphism
X 7→ TXT ∗ of H2. Then

• ψ(ΠP,Q) is the diagonal surface {aE11 + bE22 : a, b ∈ R} as in (3.12), and

• ψ(H+
2 ) = H+

2 .

Proof. Clearly, ψ(ΠP,Q) is a surface that contains 0,∞E11,∞E22, ∞̂. By Lemma
3.36, the diagonal surface is the unique surface that contains these points. Conse-
quently, ψ(ΠP,Q) is the diagonal surface.

Let S be any invertible 2 × 2 matrix. For A ∈ H2 satisfying A ≥ 0 we have
SAS∗ ≥ 0. If P is any rank one projection and b ∈ [0,∞] then S(∞P + bP⊥)S∗

is equal to ∞Q + cQ⊥ for some Q ∈ P and some c ∈ [0,∞]. It follows that

ψ(H+
2 ) ⊂ H+

2 and ψ−1(H+
2 ) ⊂ H+

2 , and consequently, ψ(H+
2 ) = H+

2 . �

Lemma 6.14. Let P,Q ∈ P be distinct elements. Then there is an automorphism
of H2 that maps Π+

P,Q onto �E11 = {aE11 + bE22 : a, b ∈ [0, 1]}.

Proof. We may take an invertible 2 × 2 matrix T such that TPT ∗ = E11 and
TQT ∗ = E22. Let ψ1 denote the affine automorphism X 7→ TXT ∗ of H2. By
Lemma 6.13 we have ψ1(Π+

P,Q) = {aE11 + bE22 : a, b ∈ [0,∞]}. Let ψ2 denote the

automorphism X 7→ I − (I + X)−1. Then we obtain ψ2({aE11 + bE22 : a, b ∈
[0,∞]}) = �E11

by definition. Thus the automorphism ψ2 ◦ ψ1 maps Π+
P,Q onto

�E11
. �
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We study a pair P1, P2 ∈ P satisfying P ′1 6= P ′2. Note that the condition P ′1 6= P ′2
is equivalent to tr (P ′1P

′
2
⊥

) 6= 0. Observe that 0,∞P ′1,∞P ′2, ∞̂ are contained in
Φ(Π+

P1,P2
). Since P ′1 6= P ′2, Lemmas 6.14, 3.35, and 3.36 imply that

(6.8) Φ(Π+
P1,P2

) ⊂ ΠP ′1,P
′
2
.

Claim 6.15. We have

(6.9) Φ(Π+
P1,P2

) ⊂ `0,∞P ′1
∪ `∞P ′1,∞̂ ∪ `0,∞P ′2

∪ `∞P ′2,∞̂.

Proof. Observe that (6.7) assures that

Φ(H+
2 ) ⊂

⋃
P∈P

(`0,∞P ′ ∪ `∞P ′,∞̂) ∪
⋂
P∈P
C∞P ′ ⊂ C0 ∪ C∞̂ ∪ C∞P ′1

.

On the other hand, it is clear that

C0 ∩ΠP ′1,P
′
2

= `0,∞P ′1
∪ `0,∞P ′2

, C∞̂ ∩ΠP ′1,P
′
2

= `∞P ′1,∞̂ ∪ `∞P ′2,∞̂,

and

C∞P ′1
∩ΠP ′1,P

′
2

= `0,∞P ′1
∪ `∞P ′1,∞̂

hold. Therefore, (6.8) leads to (6.9). �

For each P ∈ P, we have Φ(`0,∞P ∩H+
2 ) ⊂ `0,∞P ′ , so we may define a function

fP : [0,∞]→ R by

Φ(tP ) = fP (t)P ′, t ∈ [0,∞].

Similarly, we may define a function gP : [0,∞]→ R by

Φ(∞P + tP⊥) =∞P ′ + gP (t)P ′
⊥
, t ∈ [0,∞].

Note that fP (0) = gP (0) = 0 and fP (∞) = gP (∞) =∞ hold.
In what follows, we apply the rule c · ∞ = ∞ · c = ∞ when c ∈ (0,∞). Let

t ∈ [0,∞]. Since tP1 ∼ ∞P2 + ttr (P1P
⊥
2 )P⊥2 , we obtain

fP1
(t)P ′1 = Φ(tP1) ∼ Φ(∞P2 + ttr (P1P

⊥
2 )P⊥2 ) =∞P ′2 + gP2

(ttr (P1P
⊥
2 ))P ′2

⊥
,

which in turn implies

(6.10) fP1
(t)tr (P ′1P

′
2
⊥

) = gP2
(ttr (P1P

⊥
2 )).

Note that the equality (6.10) is valid in the case fP1
(t) =∞ or gP2

(ttr (P1P
⊥
2 )) =

∞, too. Actually, in the case when fP1
(t) ∈ {0,∞} or gP2

(ttr (P1P
⊥
2 )) ∈ {0,∞}

we have

(6.11) fP1(t) = gP2(ttr (P1P
⊥
2 )).

Claim 6.16. Either

(6.12) fP1([0,∞]) ⊂ {0,∞} and Φ(Π+
P1,P2

) ⊂ `0,∞P ′2
∪ `∞P ′1,∞̂,

or

(6.13) gP1
([0,∞]) ⊂ {0,∞} and Φ(Π+

P1,P2
) ⊂ `0,∞P ′1

∪ `∞P ′2,∞̂

holds.
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Proof. Assume that there is a real number a ∈ (0,∞) such that fP1(a) /∈ {0,∞}.
Put A1 := aP1 and A2 := ∞P2 + atr (P1P

⊥
2 )P⊥2 . Set B1 := Φ(A1) = fP1

(a)P ′1
and B2 := Φ(A2) =∞P ′2 + gP2(atr (P1P

⊥
2 ))P ′2

⊥
. Then (6.10) implies B2 =∞P ′2 +

fP1
(a)tr (P ′1P

′
2
⊥

)P ′2
⊥

. It follows that

`B1,B2 = {fP1(a)P ′1 + bP ′2 : b ∈ R} ∪ {B2}.
Since fP1

(a) /∈ {0,∞}, (6.9) implies

(6.14) Φ(`A1,A2
∩H+

2 ) ⊂ `B1,B2
∩(`0,∞P ′1

∪`∞P ′1,∞̂∪`0,∞P ′2
∪`∞P ′2,∞̂) = {B1, B2}.

Since A1, A2 ∈ Π+
P1,P2

and A1 ∼ A2, Lemma 6.14 combined with Lemma 3.34

implies that each element in Π+
P1,P2

is coherent to some element of `A1,A2
∩Π+

P1,P2
.

This together with (6.9) and (6.14) yield

Φ(Π+
P1,P2

) ⊂ (CB1 ∪CB2)∩ (`0,∞P ′1
∪ `∞P ′1,∞̂ ∪ `0,∞P ′2

∪ `∞P ′2,∞̂) = `0,∞P ′1
∪ `∞P ′2,∞̂.

In particular, for every t ∈ [0,∞] we have

Φ(∞P1 + tP⊥1 ) =∞P ′1 + gP1(t)P ′1
⊥ ∈ `0,∞P ′1

∪ `∞P ′2,∞̂.

Consequently, gP1
([0,∞]) ⊂ {0,∞} holds. Thus (6.13) is established in this case.

Assume that fP1
((0,∞)) ⊂ {0,∞}. Let a ∈ [0,∞]. By aP1 ∼ ∞P2+atr (P1P

⊥
2 )P⊥2 ,

we have

Φ(∞P2 + atr (P1P
⊥
2 )P⊥2 ) ∼ Φ(aP1) ∈ {0,∞P ′1}.

This together with

Φ(∞P2 + atr (P1P
⊥
2 )P⊥2 ) ∈ `Φ(∞P2),Φ(∞̂) = `∞P ′2,∞̂

implies that Φ(∞P2 + atr (P1P
⊥
2 )P⊥2 ) = ∞P ′2 when Φ(aP1) = 0 and Φ(∞P2 +

atr (P1P
⊥
2 )P⊥2 ) = ∞̂ when Φ(aP1) =∞P ′1. It follows that

Φ(`aP1,∞P2+atr (P1P⊥2 )P⊥2
∩H+

2 ) ⊂ `0,∞P ′2
∪ `∞P ′1,∞̂.

Every point of Π+
P1,P2

lies in `aP1,∞P2+atr (P1P⊥2 )P⊥2
for some a ∈ [0,∞]. (To see

this, one can use the automorphism ψ1 of H2 defined as in the proof of Lemma 6.12
with P1, P2 instead of P,Q, which maps Π+

P1,P2
onto {aE11 + bE22 : a, b ∈ [0,∞]}

and the line `aP1,∞P2+atr (P1P⊥2 )P⊥2
onto the line `aE11,∞E22+aE11

.) Consequently,

Φ(Π+
P1,P2

) ⊂ `0,∞P ′2
∪ `∞P ′1,∞̂ in this case. Thus (6.12) is established. �

Claim 6.17. If the set Φ(∞P) (or equivalently, ϕ(P)) has at least three elements,
then fP ([0,∞]) ⊂ {0,∞} and gP ([0,∞]) ⊂ {0,∞} hold for every P ∈ P.

Proof. For P ∈ P, we have fP ([0,∞]) ⊂ {0,∞} or gP ([0,∞]) ⊂ {0,∞} by Claim
6.16. In the latter case, take P1, P2 ∈ P such that P ′ 6= P ′1 6= P ′2 6= P ′. Then the
equation (6.11) implies fP1

([0,∞]) ⊂ {0,∞}, and similarly, we obtain gP2
([0,∞]) ⊂

{0,∞}, and then fP ([0,∞]) ⊂ {0,∞}. Therefore, we see that fP ([0,∞]) ⊂ {0,∞}
holds for every P ∈ P. Similarly, we have gP ([0,∞]) ⊂ {0,∞}. �

The same argument shows the following.

Claim 6.18. Assume that the set Φ(∞P) (or equivalently, ϕ(P)) has at least three
elements.

• If fP ((0,∞)) = {0} or gP ((0,∞)) = {0} for some P ∈ P, then fP ((0,∞)) =
gP ((0,∞)) = {0} holds for all P ∈ P.
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• If fP ((0,∞)) = {∞} or gP ((0,∞)) = {∞} for some P ∈ P, then fP ((0,∞)) =
gP ((0,∞)) = {∞} holds for all P ∈ P.

Claim 6.19. Assume that P ∈ P satisfies fP ([0,∞]) = {0,∞}. Assume in ad-
dition that for any c ∈ (0, 1) there exists Qc ∈ P satisfying tr (PQc) = c and
P ′ 6= Q′c 6= (P⊥)′. Then fP ((0,∞)) = {0} or fP ((0,∞)) = {∞} holds.

Proof. We have tr (PQ⊥c ) = 1 − c and tr (P⊥Q⊥c ) = c. Therefore, (6.11) implies
that

{0,∞} 3 fP (t) = gQc
((1− c)t) = fP⊥

(
1− c
c

t

)
for every t ∈ [0,∞] and c ∈ (0, 1). Let t ∈ (0,∞). Then there is c ∈ (0, 1) such that
((1− c)/c)t = 1. Thus fP (t) = fP⊥(1) ∈ {0,∞} for every t ∈ (0,∞). �

In the same way, we get the following.

Claim 6.20. Assume that R ∈ P satisfies gR([0,∞]) = {0,∞}. Assume in addition
that for any c ∈ (0, 1) there exists Qc ∈ P such that tr (RQc) = c and R′ 6= Q′c 6=
(R⊥)′. Then gR((0,∞)) = {0} or gR((0,∞)) = {∞} holds.

Claim 6.21. Assume that there is no P ∈ P such that the image ϕ(P \ {P}) is a
singleton.

• If fP (t) = 0 for every P ∈ P and every t ∈ (0,∞), then (i) holds.
• If fP (t) =∞ for every P ∈ P and every t ∈ (0,∞), then (ii) holds.

Proof. Assume fP (t) = 0 for every P ∈ P and every t ∈ (0,∞). Since Φ(P) is not a
singleton, an application of (6.11) implies that gP (t) = 0 for every P ∈ P and every
t ∈ (0,∞). These equations mean that ϕ(cP ) = 0 and ϕ(P + cP⊥) = ϕ(P ) ∈ P
for every P ∈ P and every c ∈ (0, 1). Let X ∈ (0, I). For each P ∈ P, we may find
c, d ∈ (0, 1) such that cP ∼ X ∼ P + dP⊥ (Lemma 6.2). It follows that

0 = ϕ(cP ) ∼ ϕ(X) ∼ ϕ(P + dP⊥) = ϕ(P ).

This implies ϕ(X) = 0 because ϕ(P) ⊂ P has at least two elements. Thus we have
shown that (i) holds in this case. Similarly, we see that (ii) holds if fP (t) =∞ for
every P ∈ P and every t ∈ (0,∞). �

Let us continue with a very simple lemma.

Lemma 6.22. Let m : (0,∞) → {0,∞} and g : (0,∞) → R be two functions and
a, b real numbers with 0 < a < b. Assume that for every t ∈ (0,∞) and every
s ∈ (a, b) we have

m(t) = g(ts).

Then either g(t) = m(t) = 0 for every t ∈ (0,∞), or g(t) = m(t) = ∞ for every
t ∈ (0,∞).

Proof. It is easy to see that both sets {t ∈ (0,∞) : m(t) = 0} and {t ∈ (0,∞) :
m(t) = ∞} are open. Since (0,∞) is connected, one of these two sets is equal to
(0,∞). �

Claim 6.23. If the set Φ(∞P) has at least three elements, then (i) or (ii) holds.
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Proof. By Claim 6.17, fP ([0,∞]) ⊂ {0,∞} and gP ([0,∞]) ⊂ {0,∞} hold for every
P ∈ P. Assume that Φ restricted to ∞P is injective. Then Claims 6.19, 6.18, and
6.25 imply that (i) or (ii) holds.

In the rest of this proof, we assume that there is a pair of distinct elements
P1, P2 ∈ P such that P ′1 = P ′2. By considering Φ ◦ ψ1 for an appropriate affine
automorphism ψ1 of H2 of the form X 7→ SXS∗ for some invertible 2× 2 complex
matrix S, we may assume that P2 = P⊥1 without loss of generality. Assume that for
each c ∈ (0, 1) there is Qc ∈ P with tr (P1Qc) = c and Q′c 6= P ′1 = (P⊥1 )′. Applying
Claims 6.19, 6.18, and 6.25 again, we see that either (i) or (ii) holds.

From now on, we assume that there is c ∈ (0, 1) such that every projection Q ∈ P
with tr (P1Q) = c satisfies Q′ = P ′1. Assume that there is a pair of distinct points
P3, P4 ∈ P such that P ′3 6= P ′1 6= P ′4 and the set

(6.15)

{
tr (QP⊥4 )

tr (QP⊥3 )
: Q ∈ P, tr (P1Q) = c

}
has nonempty interior. Then, P ′3 6= Q′ 6= P ′4, so (6.11) implies that

(6.16) {0,∞} 3 gP3(t) = fQ

(
t

tr (QP⊥3 )

)
= gP4

(
t
tr (QP⊥4 )

tr (QP⊥3 )

)
for every t ∈ [0,∞] and Q ∈ P with tr (P1Q) = c. Using Lemma 6.22, we see that
gP3

is constantly 0 or constantly∞ on (0,∞). It follows from Claims 6.18 and 6.25
that we may obtain the same conclusion as in the preceding paragraphs.

If there is no pair P3, P4 with the above property, then the technical lemma
below (Lemma 6.24) implies that P ′ = P ′1 holds for all but exactly two points in
P. (Here we used the assumption that Φ(∞P) has at least three points.) In this
case, let P5 and P6 be the exceptional points. Considering Φ◦ψ2 for an appropriate
affine automorphism ψ2 of H2 instead of Φ, we may assume that P6 = P⊥5 without
loss of generality. We have P ′5 6= P ′ 6= (P⊥5 )′ for every P ∈ P \ {P5, P

⊥
5 }. Let d

be any real number, 0 < d < 1. For every Q ∈ P satisfying tr (P5Q) = d, we have
P5 6= Q 6= P⊥5 and therefore P ′5 6= Q′ 6= (P⊥5 )′. Thus we may once again apply
Claims 6.19, 6.18, and 6.25 to obtain the same conclusion. �

Lemma 6.24. Let P1 ∈ P and 0 < c < 1. Set R := {Q ∈ P : tr (P1Q) = c}. For
any P3 ∈ P \({P1, P

⊥
1 }∪R), there is at most one point P4 ∈ P \({P1, P

⊥
1 , P3}∪R)

with the property that the set

(6.17)

{
tr (QP⊥4 )

tr (QP⊥3 )
: Q ∈ R

}
has empty interior.

Proof. We may assume P1 = E11 without loss of generality. In this case, we have

R =

{[
c eit

√
c− c2

e−it
√
c− c2 1− c

]
: t ∈ R

}
.

For a pair of elements P3, P4 ∈ P \ ({P1, P
⊥
1 }∪R), there are cj ∈ (0, 1) with cj 6= c

and tj ∈ [0, 2π) such that

Pj =

 cj eitj
√
cj − c2j

e−itj
√
cj − c2j 1− cj

 , j = 3, 4.
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Let t ∈ R and

Q =

[
c eit

√
c− c2

e−it
√
c− c2 1− c

]
∈ R.

Then

tr (QP⊥j ) = c+ cj − 2ccj − 2 cos(t− tj)
√

(c− c2)(cj − c2j ).

We have c+ cj − 2ccj > 0. Note that Pj /∈ R implies tr (QP⊥j ) 6= 0, j = 3, 4, for all
Q ∈ R. We see that the set (6.17) is equal to the range of the continuous function
f : R→ R given by

f(t) =
a4 − b4 cos(t− t4)

a3 − b3 cos(t− t3)
=
g4(t)

g3(t)
,

where

aj = c+ cj − 2ccj , bj = 2
√

(c− c2)(cj − c2j ), and gj(t) = aj − bj cos(t− tj)

for j = 3, 4, t ∈ R. Therefore, the set (6.17) has empty interior if and only if f
is a constant function, that is, g3 and g4 are linearly dependent. Using the fact
that a3, a4, b3, b4 are positive together with the assumption 0 ≤ t3, t4 < 2π, and
considering the behavior of the functions g3, g4, it is easily seen that t3 = t4 and
a4/a3 = b4/b3 > 0. It follows that

c+ c4 − 2cc4
c+ c3 − 2cc3

=

√
c4 − c24√
c3 − c23

,

hence (
c+ c4 − 2cc4
c+ c3 − 2cc3

)2

=
c4 − c24
c3 − c23

.

Observe that for a fixed c3 this may be viewed as a quadratic equation with respect
to c4 one of whose solution is c3. Thus the desired conclusion is obtained. �

In what follows, we assume that the set Φ(∞P) (or equivalently, ϕ(P)) has
exactly two elements. Let Φ(∞P) consist of exactly two points ∞Q1,∞Q2 with
Q1, Q2 ∈ P. Set Q := {P ∈ P : P ′ = Q1}.

Claim 6.25. Assume that both Q and P \Q have at least two points. Then (i) or
(ii) holds.

Proof. Apply Claim 6.16 together with (6.11) to see the following. By exchanging
the roles of Q and P \Q if necessary, we may assume fP ([0,∞]) ⊂ {0,∞} for every
P ∈ Q and gP ([0,∞]) ⊂ {0,∞} for every P ∈ P \ Q.

From here, we go along more or less the same lines as in the proof of the preceding
claim for a while. Take distinct elements P1, P2 ∈ Q. Considering Φ ◦ ψ1 for
an appropriate affine automorphism ψ1 of H2 instead of Φ, we may assume that
P2 = P⊥1 without loss of generality.

Assume that for each c ∈ (0, 1) there is Qc ∈ P \ Q with tr (P1Qc) = c. Using
Claim 6.19, we see that fP1

(t) is constantly 0 on (0,∞) or constantly ∞ on (0,∞).
In the current and the next paragraph, we assume that there is c ∈ (0, 1) such

that every projection Q ∈ P with tr (P1Q) = c is in Q. Assume additionally that
there is a pair of distinct points P3, P4 ∈ P\Q such that the set (6.15) has nonempty
interior. Then, (6.11) implies (6.16) for every t ∈ [0,∞] and Q ∈ Q with tr (P1Q) =
c. Using Lemma 6.22, we see that gP3

((0,∞)) = {0} or gP3
((0,∞)) = {∞} holds.
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Assume that there is no pair P3, P4 with the above property. Lemma 6.24 implies
that P ∈ Q holds for all but exactly two points in P. Let P \ Q = {R,R1} with
R 6= R1. As in the second paragraph of the proof, there is no loss of generality
in assuming that R1 = R⊥. Clearly, for every c ∈ (0, 1) there exists Qc ∈ Q such
that tr (RQc) = c. Moreover, R′ 6= Q′c 6= (R⊥)′. Using Claim 6.20, we see that
gP ((0,∞)) = {0} or gP ((0,∞)) = {∞} holds for every P ∈ P \ Q.

Therefore, in all cases, by using (6.11), we see that one of the following holds.

• fQ(t) = gP (t) = 0 for every Q ∈ Q, P ∈ P \ Q, and t ∈ (0,∞), or
• fQ(t) = gP (t) =∞ for every Q ∈ Q, P ∈ P \ Q, and t ∈ (0,∞).

Let us assume that the first condition holds. Let P ∈ P. Then we may find
Q ∈ Q that is different from P . For each t ∈ (0,∞), we have∞P + ttr (QP⊥)P⊥ ∼
tQ and Φ(tQ) = 0, thus we get Φ(∞P + ttr (QP⊥)P⊥) ∼ 0. It follows that
gP ((0,∞)) = {0} for every P ∈ P, hence (6.11) implies fP ((0,∞)) = {0} for every
P ∈ P. Thus Claim 6.25 implies that (i) holds. Similarly, we obtain (ii) in the
latter case. �

We consider the remaining case. Therefore, we assume that either Q or P \ Q
has only one point. By exchanging the roles of Q and P \ Q if necessary, we may
assume that Q has only one point P×. Put Q× := (P×)′ and Q◦ := P ′ for any
P ∈ P \ {P×}.

Claim 6.26. Either fP×([0,∞)) = {0}, or gP×((0,∞]) = {∞} holds.

Proof. Fix a point P ∈ P \ {P×} and a real number t ∈ (0,∞). Let R ∈ P \ {P×}.
We have

Φ(tP ) ∼ ∞Q◦ + gR(ttr (PR⊥))Q⊥◦

because tP ∼ ∞R+ ttr (PR⊥)R⊥. Moreover, by (6.10), we obtain

(6.18) fP×(s)tr (Q×Q
⊥
◦ ) = gR(str (P×R

⊥))

for every s ∈ [0,∞]. It follows that

Φ(tP ) ∼ ∞Q◦ + fP×

(
t

tr (PR⊥)

tr (P×R⊥)

)
tr (Q×Q

⊥
◦ )Q⊥◦ .

Note that the number tr (PR⊥)/tr (P×R
⊥) can take all values of [0,∞) as R runs

over P \ {P×}.
Therefore, if fP× restricted to [0,∞) is not a constant function, then Φ(tP )

needs to lie in `∞Q◦,∞̂, which together with 0 ∼ tP implies Φ(tP ) =∞Q◦ for every
P ∈ P \ {P×} and t ∈ (0,∞). In this case, (6.11) implies gP×(t) = ∞ for every
t ∈ (0,∞). �

The following claim completes the proof of Proposition 6.5.

Claim 6.27. If fP×([0,∞)) = {0}, then (iv) holds. If gP×((0,∞]) = {∞}, then
(iii) holds.

Proof. We only confirm the latter statement because the other can be verified in
a parallel manner. Thus we assume gP×((0,∞]) = {∞}. In this case, we have

Φ(∞P× + tP⊥× ) = ∞̂ for every t ∈ (0,∞]. It is clear from the definition of the

coherency relation that every element of H+
2 \ `0,∞P× is coherent to ∞P× + tP⊥×

for some t ∈ (0,∞]. Thus, we get Φ(H+
2 \ `0,∞P×) ⊂ C∞̂.
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By (6.11), we have Φ(tP ) = ∞Q◦ for every P ∈ P \ {P×} and t ∈ (0,∞]. On

the other hand, we see that every A ∈ H+
2 \ `0,∞P× is coherent to tP for some

P ∈ P \ {P×} and t ∈ (0,∞]. Indeed, this is clear if A ∼ 0. If A 6∼ 0, then A is

coherent to tP⊥× for some t ∈ (0,∞]. Therefore, we get Φ(H+
2 \ `0,∞P×) ⊂ C∞Q◦ .

For any c ∈ [0,∞], we have Φ(cP×) ∈ `0,∞Q× , so Φ(cP×) 6∈ `∞Q◦,∞̂. Hence, any

A ∈ H+
2 \ `0,∞P× that is coherent to cP× is mapped by Φ to the unique point on

the line `∞Q◦,∞̂ that is coherent to Φ(cP×). It is now straightforward to deduce
that (iii) holds. �

Remark 6.28. In the language of ϕ, the condition gP×((0,∞]) = {∞} in Claim 6.27

means that ϕ(P× + tP⊥× ) = ϕ(I) = I for every t ∈ (0, 1).

Using Proposition 6.5 and Lemma 3.18, we obtain

Corollary 6.29. Let A,B ∈ H2 satisfy A < B. Let ϕ : [A,B]→ H2 be a coherency
preserving map with d(ϕ(A), ϕ(B)) = 2. Assume that ϕ is not standard. Then one
of the following holds.

(o) The set ϕ(SA,B) is a singleton {Q}, and ϕ([A,B]) ⊂ CQ.
(i) We have ϕ([A,B)) = {ϕ(A)}, and there is no P ∈ SA,B such that the image

ϕ(SA,B \ {P}) is a singleton.
(ii) We have ϕ((A,B]) = {ϕ(B)}, and there is no P ∈ SA,B such that the

image ϕ(SA,B \ {P}) is a singleton.
(iii) There are P× ∈ SA,B and distinct points Q◦, Q× ∈ Sϕ(A),ϕ(B) such that

ϕ([A,B] ∩ `A,P×) ⊂ `ϕ(A),Q× and ϕ([A,B] \ `A,P×) ⊂ `Q◦,ϕ(B).
(iv) There are P× ∈ SA,B and distinct points Q◦, Q× ∈ Sϕ(A),ϕ(B) such that

ϕ([A,B] ∩ `P×,B) ⊂ `Q×,ϕ(B) and ϕ([A,B] \ `P×,B) ⊂ `ϕ(A),Q◦ .

The following will be used in the subsequent arguments.

Lemma 6.30. Let j ∈ {o, i, ii, iii, iv}. Let A,B,C ∈ H2 satisfy A < C ≤
B. Let ϕ : [A,B] → H2 be a coherency preserving map with d(ϕ(A), ϕ(B)) =
d(ϕ(A), ϕ(C)) = 2. Assume that ϕ : [A,B]→ H2 is of the form described in (j) of
Corollary 6.29. Then ϕ restricted to [A,C] also satisfies (j) of Corollary 6.29.

Proof. By Corollary 3.55, we see that ϕ restricted to [A,C] is degenerate. Thus,
this restriction is of (at least) one of the types (o), (i), (ii), (iii), and (iv). For each
P ∈ SA,C , there is a unique P ′ ∈ SA,B such that P ∼ P ′. Clearly, P ′ is the unique
point on `A,P that is coherent to B. The correspondence P 7→ P ′ is a bijection of
SA,C onto SA,B . Indeed, for R ∈ SA,B , we take the unique point Q on the line `A,R

that is coherent to C. Then Q′ = R.
The point ϕ(P ′) is the unique point on `ϕ(A),ϕ(P ) that is coherent to ϕ(B). It

follows that for P,Q ∈ SA,C we have ϕ(P ) = ϕ(Q) if and only if ϕ(P ′) = ϕ(Q′).
Hence, if ϕ is of type (o), then the restriction of ϕ to [A,C] is of type (o), and if ϕ
is of type (i) or type (ii), then the restriction of ϕ to [A,C] is of type (i) or (ii), and
if ϕ is of type (iii) or type (iv), then the restriction of ϕ to [A,C] is of type (iii) or
(iv). It is trivial to see that if ϕ is of the type (j), j ∈ {i, ii}, then ϕ restricted to
[A,C] is of the type (j).

Assume next that ϕ is of type (iii). Then we have ϕ([A,B] ∩ `A,P×) ⊂ `ϕ(A),Q×

and ϕ([A,B] \ `A,P×) ⊂ `Q◦,ϕ(B). It follows that ϕ([A,C] ∩ `A,P×) ⊂ `ϕ(A),Q× and
ϕ([A,C]\`A,P×) ⊂ `Q◦,ϕ(B). From this, it is straightforward to see that ϕ restricted
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to [A,C] is also of type (iii). The case when ϕ is of type (iv) can be treated in an
analogous manner. �

In the same way, we get the following lemma.

Lemma 6.31. Let j ∈ {o, i, ii, iii, iv}. Let A,B,C ∈ H2 satisfy A ≤ C <
B. Let ϕ : [A,B] → H2 be a coherency preserving map with d(ϕ(A), ϕ(B)) =
d(ϕ(C), ϕ(B)) = 2. Assume that ϕ : [A,B]→ H2 is of the form described in (j) of
Corollary 6.29. Then ϕ restricted to [C,B] also satisfies (j) of Corollary 6.29.

6.2. The case d(ϕ(A), ϕ(B)) = 0. We consider the case d(ϕ(A), ϕ(B)) = 0, or
equivalently, ϕ(A) = ϕ(B). In this case, we have either ϕ([A,B]) ⊂ Cϕ(A) = Cϕ(B),
or there is C ∈ (A,B) such that d(ϕ(C), ϕ(A)) = 2. In the former case, ϕ is clearly
of type (C).

We study the latter case. By considering ψ2 ◦ ϕ ◦ ψ1 for a pair of suitable
automorphisms ψ1, ψ2 of H2, we may assume that A = −I, B = I, and ϕ(0) = 0,
ϕ(−I) = ϕ(I) = I (use Corollary 3.21).

Proposition 6.32. Let ϕ : [−I, I] → H2 be a coherency preserver with ϕ(0) = 0
and ϕ(−I) = ϕ(I) = I. Then ϕ is degenerate.

To prove this proposition, let us consider a coherency preserver ϕ : [−I, I]→ H2

satisfying ϕ(0) = 0 and ϕ(−I) = ϕ(I) = I. Observe that ϕ is not standard because
ϕ(−I) = ϕ(I). By Corollary 3.55 we see that ϕ is not standard on every nonempty
open subset of [−I, I]. We have ϕ(P) ⊂ P and ϕ(−P) ⊂ P by the assumption. For
each P ∈ P, we have P ∼ −P and thus ϕ(P ) ∼ ϕ(−P ). Since ϕ(P ), ϕ(−P ) ∈ P,
we obtain ϕ(P ) = ϕ(−P ).

The restriction ϕ1 of ϕ to [0, I], and the mapping ϕ2 : [0, I] → H2 defined by
ϕ2(X) = ϕ(−X), X ∈ [0, I], satisfy the assumption of Proposition 6.5. Moreover,
we know that ϕ(P ) = ϕ1(P ) = ϕ2(P ) for every P ∈ P. By considering the mapping
X 7→ ϕ(−X) instead of ϕ, if necessary, we see that we only need to consider the
following seven possibilities:

(I) Both ϕ1 and ϕ2 satisfy (o) of Proposition 6.5.
(II) Both ϕ1 and ϕ2 satisfy (i) of Proposition 6.5.

(III) The maps ϕ1 and ϕ2 satisfy (i) and (ii) of Proposition 6.5, respectively.
(IV) Both ϕ1 and ϕ2 satisfy (ii) of Proposition 6.5.
(V) Both ϕ1 and ϕ2 satisfy (iii) of Proposition 6.5.

(VI) The maps ϕ1 and ϕ2 satisfy (iii) and (iv) of Proposition 6.5, respectively.
(VII) Both ϕ1 and ϕ2 satisfy (iv) of Proposition 6.5.

Let us study each case.

Claim 6.33. If (I) holds, then ϕ([−I, I]) is contained in one cone and ϕ is of type
(C).

Proof. Assume that (o) of Proposition 6.5 applies to both ϕ1 and ϕ2. Then we have
ϕ([−I, 0]∪ [0, I]) ⊂ CQ and ϕ(P) = {Q}. For every X ∈ [−I, I]\ ([−I, 0]∪ [0, I]) we
have X 6∈ (0, I), X ≤ I, and X 6< 0, and so Lemma 3.45 implies that X is coherent
to some point of P. Thus ϕ([−I, I]) ⊂ CQ. �

Claim 6.34. The condition (II) never holds.
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Proof. If both ϕ1 and ϕ2 satisfy (i), then we have ϕ([0, I) ∪ (−I, 0]) = {0}. For
each real number c ∈ (0, 2) and P ∈ P, we see that −I + cP⊥ is coherent to some
point of [0, I) ∪ (−I, 0]. By −P ∼ −I + cP⊥ ∼ −I and

ϕ([0, I) ∪ (−I, 0]) = {0}, ϕ(−P ) = ϕ(P ) ∈ P, ϕ(−I) = I,

we have ϕ(−I + cP⊥) = ϕ(P ) ∈ P. Similarly, we have ϕ(I − cP⊥) = ϕ(P ) ∈ P
for every P ∈ P and c ∈ (0, 2). By Lemma 6.2, for every pair P,Q ∈ P, P 6= Q⊥

and c ∈ (0, 2), there is d ∈ (0, 2) such that −I + cP⊥ ∼ I − dQ⊥. Thus ϕ(P ) ∈ P
is coherent to ϕ(Q) ∈ P, hence ϕ(P ) = ϕ(Q) whenever P 6= Q⊥. This yields that
ϕ(P) is a singleton, which contradicts our assumption. �

Claim 6.35. The condition (III) never holds.

Proof. If ϕ1 satisfies (i) and ϕ2 satisfies (ii), then we see that ϕ([0, I)) = {0} and
ϕ([−I, 0)) = {I}. Set N := (−I, I)∩H+−

2 . Each A ∈ N is coherent to some scalar
matrix in (0, I) and some scalar matrix in (−I, 0) and therefore ϕ(N ) ⊂ S0,I = P.
Recall that any two distinct elements in P are not coherent. On the other hand, N
is open and connected, so Lemma 4.10 implies that ϕ(N ) is a singleton {Q} in P.
For every P ∈ P, we have ϕ(P ) = ϕ(P + (1/2)P⊥) because ϕ1 satisfies (i), while

ϕ(P + (1/2)P⊥) ∼ ϕ(−(1/2)P + (1/2)P⊥) ∈ ϕ(N ) = {Q}.
This further implies that ϕ(P) = {Q} and we again get a contradiction. �

Claim 6.36. If (IV) holds, then ϕ([−I, I] \ {0}) ⊂ CI , thus ϕ is of type (C).

Proof. Assume that both ϕ1 and ϕ2 satisfy (ii). Then we have ϕ([−I, 0)∪ (0, I]) =
{I}. Since every point of [−I, I] \ {0} is coherent to some point in [−I, 0) ∪ (0, I],
we have ϕ([−I, I] \ {0}) ⊂ CI . �

In what follows, we assume that ϕ1 satisfies (iii) or (iv). Then there is P× ∈ P
such that the image ϕ(P \ {P×}) is a singleton {Q◦} and Q× := ϕ(P×) 6= Q◦.
Since ϕ(P ) = ϕ(−P ) for every P ∈ P, we obtain ϕ(−P \ {−P×}) = {Q◦} and
ϕ(−P×) = Q×.

Lemma 6.37. If X ∈ [−I, I] \ `0,P× , then X is coherent to some point of C0 ∩
[−I, I] \ `0,P× .

Proof. We may write X = aP + bP⊥ for some P ∈ P \ {P×} and a, b ∈ [−1, 1],
a 6= 0. Thus X is coherent to aP ∈ C0 ∩ [−I, I] \ `0,P× . �

Lemma 6.38. If X ∈ [−I, I] \ `0,P× , then X is coherent to some point of

{P× + cP⊥× : c ∈ [−1, 1] \ {0}} ∪ {−P× + cP⊥× : c ∈ [−1, 1] \ {0}}.

Proof. By Corollary 6.3, we know that every point of [−I, I] \ CP× is coherent to

some point of {P× + cP⊥× : c ∈ [−1, 1] \ {0}}, and every point of [−I, I] \ C−P× is

coherent to some point of {−P×+cP⊥× : c ∈ [−1, 1]\{0}}. Since CP×∩C−P× = `0,P× ,
we get to the desired conclusion. �

Claim 6.39. If (V), (VI), or (VII) holds, then ϕ is of type (`).

Proof. Let b ∈ (0, 1]. Then −P× + bP⊥× is coherent to −I and −P×. Moreover,

since −P× + bP⊥× 6∼ P×, Lemma 3.45 implies that −P× + bP⊥× is also coherent to
some point of S0,I \ {P×} = P \ {P×}. From

ϕ(−I) = I, ϕ(−P×) = Q×, and ϕ(P \ {P×}) = {Q◦},
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we obtain

(6.19) ϕ(−P× + bP⊥× ) = I.

Observe that bP⊥× is coherent to the three points 0, P⊥× ,−P× + bP⊥× . Since

ϕ(0) = 0, ϕ(P⊥× ) = Q◦, and ϕ(−P× + bP⊥× ) = I,

we get ϕ(bP⊥× ) = Q◦. Observe that P× + bP⊥× is coherent to the three points

P×, I, bP
⊥
× . Since

ϕ(P×) = Q×, ϕ(I) = I, and ϕ(bP⊥× ) = Q◦,

we get

(6.20) ϕ(P× + bP⊥× ) = I.

A similar discussion shows

(6.21) ϕ(P× − bP⊥× ) = I

and

(6.22) ϕ(−P× − bP⊥× ) = I.

By Lemma 6.38, every point in [−I, I] \ `0,P× is coherent to some point of

{P× + cP⊥× : c ∈ [−1, 1] \ {0}} ∪ {−P× + cP⊥× : c ∈ [−1, 1] \ {0}}.

By (6.19), (6.20), (6.21), (6.22), ϕ sends this set to {I}.
On the other hand, by Claim 6.27 (see also Remark 6.28) and (6.20) (resp.

(6.22)), we see that ϕ1 (resp. ϕ2) satisfies (iii) of Proposition 6.5. It follows that
ϕ(C0 ∩ [−I, I] \ `0,P×) = {Q◦}. By Lemma 6.37, every point in [−I, I] \ `0,P× is
coherent to some point of C0 ∩ [−I, I] \ `0,P× . Therefore, we get ϕ(X) ∈ `Q◦,I for
every X ∈ [−I, I] \ `0,P× . Thus ϕ is of type (`). �

Thus we have completed the proof of Proposition 6.32.

Corollary 6.40. Let A,B ∈ H2 satisfy A < B. Let ϕ : [A,B]→ H2 be a coherency
preserving map with ϕ(A) = ϕ(B). Then ϕ is degenerate.

6.3. The case d(ϕ(A), ϕ(B)) = 1. Now let us consider a coherency preserver
ϕ : [A,B] → H2 with d(ϕ(A), ϕ(B)) = 1. By considering ψ2 ◦ ϕ ◦ ψ1 for a pair
of suitable automorphisms ψ1, ψ2 of H2, we may assume that A = 0, B = I, and
ϕ(0) = 0, ϕ(I) = E11.

Proposition 6.41. Let ϕ : [0, I] → H2 be a coherency preserver with ϕ(0) = 0,
ϕ(I) = E11. Then ϕ is degenerate.

The proof of this proposition is involved, so we will separate it into claims, as
usual. We assume that ϕ : [0, I] → H2 is a coherency preserver with ϕ(0) = 0,
ϕ(I) = E11. Observe that ϕ is not standard because 0 6∼ I and ϕ(0) ∼ ϕ(I). By
Corollary 3.55, we see that ϕ is not standard on every nonempty open subset of
[0, I]. Set ` := `0,E11 . Note that ϕ(P) ⊂ `ϕ(0),ϕ(I) = ` holds.

Claim 6.42. If ϕ([0, I] \ (0, I)) ⊂ `, then ϕ([0, I]) is contained in one cone and ϕ
is of type (C).
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Proof. Let ϕ satisfy ϕ([0, I] \ (0, I)) ⊂ `. Assume in addition that there is a point
A ∈ (0, I) such that ϕ(A) /∈ C0 ∪ CE11 . Let A′ be the unique point in ` such that
ϕ(A) ∼ A′. Note that S0,A and SA,I are both contained in [0, I] \ (0, I). Since
ϕ([0, I] \ (0, I)) ⊂ `, we have ϕ(S0,A) = ϕ(SA,I) = {A′}. Thus, the restriction
of ϕ to [0, A] and that to [A, I] both satisfy (o) of Corollary 6.29. It follows that
ϕ([0, A] ∪ [A, I]) ⊂ CA′ . Moreover, we see from Lemma 3.45 that every element of
[0, I] \ ([0, A) ∪ (A, I]) is coherent to some point of S0,A. Since ϕ(S0,A) = {A′}, we
get ϕ([0, I] \ ([0, A) ∪ (A, I])) ⊂ CA′ . Thus we have shown that ϕ([0, I]) ⊂ CA′ in
this case.

It remains to consider the case

ϕ([0, I]) ⊂ Cϕ(0) ∪ Cϕ(I) = C0 ∪ CE11
.

If every X ∈ (0, I) satisfies ϕ(X) ∈ CE11
, then the assumption ϕ([0, I] \ (0, I)) ⊂ `

implies ϕ([0, I]) ⊂ CE11
, as desired. Therefore, we assume that there is an element

X ∈ (0, I) satisfying ϕ(X) ∈ C0 \ CE11
. For any W ∈ SX,I , we have ϕ(W ) ∈

ϕ([0, I] \ (0, I)) ⊂ `. Since 0 is the unique point on the line ` that is coherent
to ϕ(X), we conclude that ϕ(SX,I) = {0}. Using Corollary 6.29 (o), we see that
ϕ([X, I]) ⊂ C0. We claim that

(6.23) ϕ([0, I] \ [0, X)) ⊂ C0.

Indeed, we already know that ϕ(Z) ∈ C0 whenever Z ∈ [X, I]. For Z ∈ [0, I] \
([0, X) ∪ [X, I]), we can apply Lemma 3.45 together with ϕ(SX,I) = {0} to get
ϕ(Z) ∈ C0.

We show that every Y ∈ [0, X) satisfies ϕ(Y ) ∈ C0. Assume contrarily that
ϕ(Y ) /∈ C0. Then ϕ(Y ) ∈ CE11

\ `. Observe that 0 ≤ Y < X < I and thus Corollary
3.19 implies SY,X ⊂ [0, I]. By (6.23), we have

(6.24) ϕ(SY,X) ⊂ C0 ∩ Cϕ(Y ) = S0,ϕ(Y ).

On the other hand, SY,I ⊂ [0, I] \ (0, I) implies

(6.25) ϕ(SY,I) ∈ ` ∩ Cϕ(Y ) = {E11}.

Since every point of SY,X is coherent to some point of SY,I , (6.24) and (6.25) lead
to

ϕ(SY,X) ⊂ S0,ϕ(Y ) ∩ CE11
= {E11}.

This contradicts ϕ(X) 6∼ E11. Thus we get ϕ([0, I]) ⊂ C0. �

Therefore, in what follows we assume that ϕ([0, I] \ (0, I)) 6⊂ `. By considering
the mapping X 7→ E11−ϕ(I−X) instead of ϕ, if necessary, we may and do assume
that there is A ∈ CI ∩ [0, I] such that ϕ(A) /∈ `. Since ϕ(P) ⊂ `, we get 0 < A. We
will apply Corollary 6.29 to the restriction ϕ1 of ϕ to [0, A].

Claim 6.43. If ϕ1 satisfies (o) of Corollary 6.29, then ϕ([0, I]) is contained in one
cone and ϕ is of type (C).

Proof. Suppose that ϕ1 satisfies (o). There is a singleton {Q} such that ϕ(S0,A) =
{Q} and ϕ([0, A]) ⊂ CQ. By Lemma 3.45, every element of [0, I]\[0, A] is coherent to
some element of S0,A. It follows from ϕ(S0,A) = {Q} that ϕ([0, I]\[0, A]) ⊂ CQ. �

Claim 6.44. If ϕ(S0,A) ⊂ `, then ϕ1 satisfies (o) of Corollary 6.29, so ϕ is of type
(C).
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Proof. Suppose that ϕ(S0,A) ⊂ `. Let C ∈ S0,A (⊂ [0, I]). Because ϕ(C) ∼ ϕ(A)
and ϕ(C) ∈ `, we have ϕ(C) = E11. Thus ϕ1 satisfies (o) of Corollary 6.29. �

In what follows, we assume that ϕ(S0,A) 6⊂ `. Then there is B ∈ S0,A such that
ϕ(B) /∈ `. Observe that E11 (resp. 0) is the unique point on ` that is coherent to
ϕ(A) (resp. ϕ(B)). Let E ∈ P be the unique projection satisfying A ∼ E. Then we
have E ∼ A, 0, I, which implies ϕ(E) ∈ Cϕ(A)∩ ` = {E11}. Similarly, for the unique
projection F ∈ P satisfying B ∼ F , we have F ∼ B, 0, I, and thus ϕ(F ) = 0.

Lemma 6.45. Let E,F ∈ P, E 6= F . Then there exists an automorphism ψ of H2

satisfying ψ([0, I]) = [0, I], ψ(0) = 0, ψ(I) = I, ψ(E) = E, and ψ(F ) = E⊥.

Proof. Let ψ0 be the automorphism X 7→ I − (I +X)−1. Take an invertible 2× 2
complex matrix T such that TET ∗ = E and TFT ∗ = E⊥. Then the automorphism
X 7→ ψ0(Tψ−1

0 (X)T ∗) satisfies the desired properties. (See also Lemmas 6.13, 6.14
and their proofs.) �

Take an automorphism ψ as in this lemma. By considering ϕ ◦ ψ−1 instead of
ϕ, we may and do assume that F = E⊥ without loss of generality. In this case, we
have A = E + cE⊥ for some c ∈ (0, 1), which implies B = cE⊥.

Claim 6.46. If ϕ1 satisfies (i) of Corollary 6.29, then ϕ([0, I] \ {A}) ⊂ C0, and
thus ϕ is of type (C).

Proof. Recall that A = E + cE⊥. Suppose that ϕ1 satisfies (i). Then we have
ϕ([0, A)) = {ϕ(0)} = {0}. In particular, we have ϕ(tE) = 0 for every t ∈ [0, 1).
Therefore, Lemma 6.2 implies that ϕ([0, I] \ `E,I) ⊂ C0. It remains to consider
an element of the form E + tE⊥, t ∈ [0, 1] \ {c}. If t ∈ [0, c), then E + tE⊥ ∼
tE⊥ ∈ [0, A) and hence we get ϕ(E + tE⊥) ∼ ϕ(tE⊥) = 0. Let t > c and assume
that ϕ(E + tE⊥) 6∼ 0. Then Lemma 6.30 implies that ϕ restricted to [0, E + tE⊥]
also satisfies (i). (Note that a coherency preserver of the form (i) cannot satisfy
(j) for j ∈ {o, ii, iii, iv}.) It follows that ϕ([0, E + tE⊥] \ {E + tE⊥}) ⊂ C0, which
contradicts the facts A ∈ [0, E + tE⊥] \ {E + tE⊥} and ϕ(A) 6∼ 0. Therefore, we
get ϕ(E + tE⊥) ∼ 0. Thus we have shown that ϕ([0, I] \ {A}) ⊂ C0. �

Claim 6.47. The mapping ϕ1 never satisfies (ii) of Corollary 6.29.

Proof. Recall that A = E + cE⊥ and B = cE⊥. Suppose that ϕ1 satisfies (ii). We
are going to get a contradiction. We have ϕ((0, A]) = {ϕ(A)}. In particular, we
get ϕ(tE + cE⊥) = ϕ(A) for every t ∈ (0, 1]. If t ∈ (0, 1], then tE +E⊥ is coherent
to tE + cE⊥. Consequently,

ϕ(tE + E⊥) ∈ `ϕ(E⊥),ϕ(I) ∩ Cϕ(A) = ` ∩ Cϕ(A) = {E11}.

Hence

(6.26) ϕ(tE + E⊥) = E11.

By Lemma 6.2, every point of [0, I]\`0,E⊥ is coherent to tE+E⊥ for some t ∈ (0, 1].
Since S0,A \ {B} ⊂ [0, I] \ `0,E⊥ , (6.26) implies

ϕ(S0,A \ {B}) ⊂ Sϕ(0),ϕ(A) ∩ CE11
= {E11}.

Thus we obtain ϕ(S0,A \ {B}) = {E11}, contradicting our assumption that ϕ1

satisfies (ii). �
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From now on, let us also consider the restriction ϕ2 of ϕ to [B, I]. By imitating
the above argument, one may complete the proof of Proposition 6.41 whenever we
assume that ϕ2 satisfies (o), (i), or (ii) of Corollary 6.29. Therefore, let us consider
the case where ϕ1 satisfies (iii) or (iv) of Corollary 6.29 and ϕ2 also satisfies (iii) or
(iv). Since E,B ∈ S0,A and E11 = ϕ(E) 6= ϕ(B), we have two possibilities: Either
ϕ(S0,A \ {E}) = {ϕ(B)}, or ϕ(S0,A \ {B}) = {ϕ(E)} = {E11}. Similarly, either
ϕ(SB,I \ {E⊥}) = {ϕ(A)}, or ϕ(SB,I \ {A}) = {ϕ(E⊥)} = {0} holds.

Claim 6.48. If ϕ(S0,A \ {E}) = {ϕ(B)}, then ϕ([0, I] \ `E,I) ⊂ `0,ϕ(B), hence ϕ is
of type (`).

Proof. Suppose that ϕ(S0,A \ {E}) = {ϕ(B)}. Let t ∈ [0, 1). By Lemma 3.45
and the relation tE + E⊥ 6∼ E, we see that tE + E⊥ is coherent to some point in
S0,A \ {E}. This together with E⊥ ∼ tE + E⊥ ∼ I and

ϕ(E⊥) = 0, ϕ(I) = E11, ϕ(S0,A \ {E}) = {ϕ(B)}
shows that ϕ(tE + E⊥) ∈ `0,E11 ∩ `0,ϕ(B) = {0} and hence ϕ(tE + E⊥) = 0.

Observe that tE+ cE⊥ is coherent to three points A,B, and tE+E⊥. It follows
that

ϕ(tE + cE⊥) ∈ Cϕ(A) ∩ Cϕ(B) ∩ Cϕ(tE+cE⊥) = `ϕ(A),ϕ(B) ∩ C0 = {ϕ(B)}.

Since tE is coherent to three points 0, E, and tE + cE⊥, we get

ϕ(tE) ∈ Cϕ(0) ∩ Cϕ(E) ∩ Cϕ(tE+cE⊥) = ` ∩ Cϕ(B) = {0}.
By Lemma 6.2, every point of [0, I]\`E,I is coherent to tE for some t ∈ [0, 1). Thus
we get ϕ([0, I] \ `E,I) ⊂ C0.

To complete the proof, we show ϕ([0, I] \ `E,I) ⊂ Cϕ(B). It suffices to verify that
every point of [0, I] \ `E,I is coherent to some point of

(S0,A \ {E}) ∪ {tE + cE⊥ : t ∈ [0, 1)}.
Lemma 6.2 implies that every element of [0, A) = [0, E + cE⊥) is coherent to
tE + cE⊥ for some t ∈ [0, 1). So, let X ∈ [0, I] \ (`E,I ∪ [0, A)). Lemma 6.1 implies
that X 6∼ E. Because X 6> A and X ≥ 0, Lemma 3.45 yields that X is coherent to
some point in S0,A \ {E}. Thus we get the desired conclusion. �

Essentially the same argument shows that ϕ is of type (`) whenever ϕ(SB,I \
{E⊥}) = {ϕ(A)}. In what follows, we consider the case where

ϕ(S0,A \ {B}) = {ϕ(E)} = {E11} and ϕ(SB,I \ {A}) = {ϕ(E⊥)} = {0}
hold.

Claim 6.49. If ϕ1 satisfies (iii) of Corollary 6.29, then ϕ2 also satisfies (iii), and
ϕ([0, I] \ {B}) ⊂ CE11 . Thus ϕ is of type (C).

Proof. Suppose that ϕ1 satisfies (iii) of Corollary 6.29. Then we have

ϕ([0, A] \ `0,B) ⊂ `ϕ(E),ϕ(A) = `E11,ϕ(A).

Let t ∈ (0, 1]. Since the set ϕ(CB ∩ [0, A] \ `0,B) is a singleton, we get ϕ(tE +
cE⊥) = ϕ(E + cE⊥) = ϕ(A). Observe that tE + E⊥ is coherent to three points
tE + cE⊥, E⊥, I. Since

ϕ(tE + cE⊥) = ϕ(A), ϕ(E⊥) = 0, and ϕ(I) = E11,

we get ϕ(tE + E⊥) ∈ `E11,ϕ(A) ∩ C0 = {E11}.
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We now prove that ϕ2 does not satisfy (iv). Assume on the contrary that ϕ2 is
of type (iv). Then we have

ϕ([B, I] \ `A,I) ⊂ `ϕ(E⊥),ϕ(B) = `0,ϕ(B).

However, we already know that ϕ((1/2)E + cE⊥) = ϕ(A) /∈ `0,ϕ(B) although

(1/2)E + cE⊥ ∈ [B, I] \ `A,I , so we obtain a contradiction. Thus ϕ2 satisfies (iii).
It follows that for every t ∈ [0, 1], the set ϕ(CtE+cE⊥ ∩ [B, I] \ `B,A) is a singleton.
This together with Lemma 6.2 and the fact ϕ(tE + E⊥) = E11 for every t ∈ (0, 1]
yields ϕ((B, I]) = {E11}.

We show ϕ([0, I] \ {B}) ⊂ CE11
. By Lemma 6.2, we see that every element of

[0, I]\`0,E⊥ is coherent to tE+E⊥ for some t ∈ (0, 1]. Thus ϕ([0, I]\`0,E⊥) ⊂ CE11
.

If t ∈ (c, 1], then tE⊥ ∼ E + tE⊥ ∈ (B, I], thus ϕ(tE⊥) ∈ CE11
. It remains to

show that ϕ(tE⊥) ∼ E11 for every t ∈ [0, c). Assume towards a contradiction
that ϕ(tE⊥) 6∼ E11 for some t ∈ [0, c). Since ϕ restricted to [B, I] satisfies (iii)
and does not satisfy (iv), Lemma 6.31 implies that ϕ restricted to [tE⊥, I] needs
to satisfy (iii). In particular, we see that ϕ((tE⊥, I]) is necessarily contained in
one line. However, it is easily seen that {I} ∪ (SB,I \ {E⊥}) ⊂ (tE⊥, I] and that
ϕ({I} ∪ (SB,I \ {E⊥})) = {E11, ϕ(A), 0} is not contained in one line. Thus we get
to a contradiction. �

Similarly, if ϕ2 satisfies (iv) of Corollary 6.29, then so does ϕ1, and ϕ([0, I] \
{A}) ⊂ C0. Let us finish the proof of Proposition 6.41 by considering the remaining
case.

Claim 6.50. If ϕ1 satisfies (iv) and ϕ2 satisfies (iii) of Corollary 6.29, then
ϕ([0, I] \ `A,B) ⊂ `, so ϕ is of type (`).

Proof. From the assumption, we obtain ϕ([0, A]\`A,B) ⊂ ` and ϕ([B, I]\`A,B) ⊂ `.
We also see that ϕ(tE⊥) = {0} for every t ∈ [0, c) and ϕ(E + tE⊥) = {E11} for
every t ∈ (c, 1].

We see that each element of [0, I]\[0, A] is coherent to E+tE⊥ for some t ∈ (c, 1].
Indeed, if X ∈ CA ∩ [0, I] \ [0, A], then X = A + R for some R of rank at most
one, and X 6≤ A implies R ≥ 0, which yields A ≤ X ≤ I and hence X ∼ I. If
X ∈ [0, I] \ ([0, A]∪CA), then det(X −A) 6= 0. Because neither X < A nor X > A,
we have det(X −A) < 0. This together with det(X − I) ≥ 0 and the intermediate
value theorem shows the existence of t ∈ (c, 1] with X ∼ E + tE⊥. Similarly, each
element of [0, I] \ [B, I] is coherent to tE⊥ for some t ∈ [0, c). Thus we obtain
ϕ([0, I] \ ([0, A] ∪ [B, I])) ⊂ `. Therefore, we get ϕ([0, I] \ `A,B) ⊂ `. �

Corollary 6.51. Let A,B ∈ H2 satisfy A < B. Let ϕ : [A,B]→ H2 be a coherency
preserving map with d(ϕ(A), ϕ(B)) = 1. Then ϕ is degenerate.

Theorem B is the union of Corollaries 6.7, 6.40, 6.51.
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M4, 2

M4, 9

P, 6

P(R6), 9

P⊥, 6

ΠP,Q, 22

Π+
P,Q, 51

∞P , 7

∞P, 51

R, 6

SA,B , 16

SAS∗, 13

S2, 15

T, 8

U2, 8

[X], 9

∞, 6

∞̂, 7

‖·‖, 15

〈·, ·〉, 2, 10

≤, 6

∼ (on H2), 4

∼ (on H2), 7

∼ (for a pair of 2× 2 matrices), 8

∼ (on M4), 10

�P , 21

(a,∞], 6

[a,∞], 6

d, 7

dg , 15

e, 10

ei, 6

fP , 52

gP , 52

`A,B , 20

q, 9

σ(A), 6

trA, 6

ξ, 4, 10

affine automorphism, 14

automorphism, 12

Bloch ball, 15

Bloch representation, 15

Bloch sphere, 15

Cayley transform, 8

coherency preserver, 5

coherency preserver of type (`), 39

coherency preserver of type (C), 38

coherent, 4

coherent set, 19

compactified Minkowski space, 9

cone, 7

conformal compactification, 9

conformal Minkowski space, 9

conformal transformation, 5

degenerate coherency preserver, 39

density matrix, 15

diagonal surface, 21

finite point, 10

fundamental theorem of chronogeometry, 3,
34

generalized open interval, 42

identity-type theorem, 26, 28

inversion, 14

light cone, 2

lightlike, 2

lightlike line, 3

line, 19

locally degenerate, 42

Loewner order, 6

Lorentz matrix, 2

Lorentz transformation, 2

Lorentz–Minkowski indefinite inner

product, 2

matrix interval, 18

Minkowski spacetime, 2

open interval, 41

Penrose’s diagram, 9
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Poincaré transformation, 3
preserve lightlikeness, 3

preserve lightlikeness in both directions, 3

projection, 6

spacelike, 23

standard automorphism, 14
standard coherency preserver, 29

surface, 20, 21

Theorem A, 29

Theorem B, 39

timelike, 23
translation, 12

Wigner’s theorem, 16
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